Research Article
BibTex RIS Cite

Auxenochlorella protothecoides SC3'ten Ekstre Edilen Pigmentlerin Pseudomonas aeruginosa'ya karşı Antimikrobiyal Aktivitesinin Değerlendirilmesi

Year 2021, , 163 - 167, 31.12.2021
https://doi.org/10.46810/tdfd.930388

Abstract

Günümüzde, doğal mikrobiyal pigmentler, antibiyotik direncinde kullanılabilecek potansiyel aday terapötik ajanlar olarak karşımıza çıkmaktadır. Bu çalışmada, yeşil alg pigmentlerinin antimikrobiyal aktivitesi gösterilmiştir. Yeşil alg SC3 izolatı Erzurum'da topraktan izole edildi. Metanol:dimetil sülfoksit ile ekstrakte edilen pigmentler kısmi olarak ince tabaka kromotografisi (TLC), UV-Absorbansı ve fourier-transform kızılötesi spektroskopi (FTIR) yöntemleri ile karakterize edildi. Pigmentlerin antimikrobiyal aktivitesi, Pseudomonas aeruginosa (ATCC 27853 ve klinik izolatı), Staphylococcus aureus (ATCC 25923) ve Escherichia coli (ATCC 25922)’ye karşı agar difüzyon ve mikroplak deneyleri ile belirlendi. SC3 izolatını tanımlamak için total DNA izole edildi ve hem 18S rRNA bölgesi hem de kloroplast genomu için 16S rRNA bölgesi evrensel primerler kullanılarak çoğaltıldı. Bu şekilde, SC3 izolatı Auxenochlorella protothecoides olarak tanımlandı ve Genbank'a kaydedildi (Erişim numarası: MW139225 ve MW063613). Çalışmamıza göre, en iyi antimikrobiyal aktivite P. aeruginosa'ya karşı olduğu belirlenmiştir. Sonuçlarımız, A. protothecoides yeşil alginden elde edilen total pigmentlerin antimikrobiyal aktivitesini ilk kez göstermektedir.

References

  • Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 2002;1:895–910. https://doi.org/10.1038/nrd940.
  • Amaro H, Guedes A, Malcata F. Antimicrobial activities of microalgae: an invited review. Sci against Microb Pathog Commun Curr Res Technol Adv 2011:1272–80.
  • López Y, Soto SM. The Usefulness of Microalgae Compounds for Preventing Biofilm Infections. Antibiotics 2019;9:9. https://doi.org/10.3390/antibiotics9010009.
  • Asker D, Awad TS. Isolation and characterization of a novel lutein-producing marine microalga using high throughput screening. Food Res Int 2019;116:660–7. https://doi.org/10.1016/j.foodres.2018.08.093.
  • Mourelle M, Gómez C, Legido J. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017;4:46. https://doi.org/10.3390/cosmetics4040046.
  • Vehapi M, Koçer AT, Yılmaz A, Özçimen D. Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Arch Microbiol 2020;202:455–71. https://doi.org/10.1007/s00203-019-01760-7.
  • Kendirlioglu G, Kadri Cetin A. Effect of different wavelengths of light on growth, pigment content and protein amount of chlorella vulgaris. Fresenius Environ Bull 2017;25:7974–80.
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71–9. https://doi.org/10.1016/j.jpha.2015.11.005.
  • Rojas V, Rivas L, Cárdenas C, Guzmán F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020;25. https://doi.org/10.3390/molecules25245804.
  • Polat E, Altınbaş M. Optimization of Auxenochlorella protothecoides lipid content using response surface methodology for biofuel production. Biomass Convers Biorefinery 2020. https://doi.org/10.1007/s13399-020-00798-8.
  • Neha T, Shishir T, Ashutosh D. Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. African J Biotechnol 2017;16:1507–12. https://doi.org/10.5897/ajb2017.15959.
  • Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L. Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. vol. 7. 2019. https://doi.org/10.3390/microorganisms7070186.
  • Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Front Nutr 2019;6:1–14. https://doi.org/10.3389/fnut.2019.00007.
  • Sampathkumar SJ, Srivastava P, Ramachandran S, Sivashanmugam K, Gothandam KM. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb Pathog 2019;135:103658. https://doi.org/10.1016/j.micpath.2019.103658.
  • Redmond S. Gracilaria Culture Handbook for New England Gracilaria Culture Handbook for New England 2017.
  • Ahmed JK. Effect of Chlorophyll and Anthocyanin on the Secondary Bonds of Poly Vinyl Chloride (PVC). Int J Mater Sci Appl 2015;4:21. https://doi.org/10.11648/j.ijmsa.s.2015040201.15.
  • Özçimen D. Chlorella protothecoides Mikroalg Yağının Botrytis cinerea ve Aspergillus niger Küflerine Karşı Antifungal Etkisinin İncelenmesi. Tekirdağ Ziraat Fakültesi Derg 2018;15:45–52.
  • Vaz B da S, Moreira JB, Morais MG de, Costa JAV. Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 2016;7:73–7. https://doi.org/10.1016/j.cofs.2015.12.006.
  • Jyotirmayee P, Sachidananda D, Basanta K Das. Antibacterial activity of freshwater microalgae: A review. African J Pharm Pharmacol 2014;8:809–18. https://doi.org/10.5897/ajpp2013.0002.
  • Wei D, Chen F, Chen G, Zhang XW, Liu LJ, Zhang H. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China, Ser C Life Sci 2008;51:1088–93. https://doi.org/10.1007/s11427-008-0145-2.
  • Number V, Online A-I. Biosciences and Plant Biology Conditions. Int J Curr Res Biosci Plant Biol 2017;4:101–5.
  • Fei Q, Fu R, Shang L, Brigham CJ, Chang HN. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst Eng 2015;38:691–700. https://doi.org/10.1007/s00449-014-1308-0.
  • Shen Y, Yuan W, Pei Z, Mao E. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 2010;160:1674–84. https://doi.org/10.1007/s12010-009-8659-z.

Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa

Year 2021, , 163 - 167, 31.12.2021
https://doi.org/10.46810/tdfd.930388

Abstract

Nowadays, natural microbial pigments are emerging as potential candidate therapeutic agents that can be used in antibiotic resistance. In this paper, we report the antimicrobial activity of green algae pigments. Green algae SC3 isolate was isolated from soil in Erzurum. Pigments extracted by methanol: dimethyl sulfoxide solvents were partially characterized by Thin Layer Chromatography (TLC), UV-Absorbance, and Fourier-transform infrared spectroscopy (FTIR). The antimicrobial activity of pigments was determined with agar well diffusion and microbroth assays against Pseudomonas aeruginosa (ATCC 27853 and clinic isolate), Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922). To identify green algae, total DNA was isolated and both 18S rRNA and 16S rRNA for the chloroplast genome were amplified using universal primers. Thus, this alga was identified as Auxenochlorella protothecoides and submitted to Genbank (Accession number: MW139225 and MW063613). According to our results, the best antimicrobial activity was recorded against P. aeruginosa. Our results show for the first time the antimicrobial activity of the total pigments from A. protothecoides green algae.

References

  • Coates A, Hu Y, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 2002;1:895–910. https://doi.org/10.1038/nrd940.
  • Amaro H, Guedes A, Malcata F. Antimicrobial activities of microalgae: an invited review. Sci against Microb Pathog Commun Curr Res Technol Adv 2011:1272–80.
  • López Y, Soto SM. The Usefulness of Microalgae Compounds for Preventing Biofilm Infections. Antibiotics 2019;9:9. https://doi.org/10.3390/antibiotics9010009.
  • Asker D, Awad TS. Isolation and characterization of a novel lutein-producing marine microalga using high throughput screening. Food Res Int 2019;116:660–7. https://doi.org/10.1016/j.foodres.2018.08.093.
  • Mourelle M, Gómez C, Legido J. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017;4:46. https://doi.org/10.3390/cosmetics4040046.
  • Vehapi M, Koçer AT, Yılmaz A, Özçimen D. Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Arch Microbiol 2020;202:455–71. https://doi.org/10.1007/s00203-019-01760-7.
  • Kendirlioglu G, Kadri Cetin A. Effect of different wavelengths of light on growth, pigment content and protein amount of chlorella vulgaris. Fresenius Environ Bull 2017;25:7974–80.
  • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71–9. https://doi.org/10.1016/j.jpha.2015.11.005.
  • Rojas V, Rivas L, Cárdenas C, Guzmán F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020;25. https://doi.org/10.3390/molecules25245804.
  • Polat E, Altınbaş M. Optimization of Auxenochlorella protothecoides lipid content using response surface methodology for biofuel production. Biomass Convers Biorefinery 2020. https://doi.org/10.1007/s13399-020-00798-8.
  • Neha T, Shishir T, Ashutosh D. Fourier transform infrared spectroscopy (FTIR) profiling of red pigment produced by Bacillus subtilis PD5. African J Biotechnol 2017;16:1507–12. https://doi.org/10.5897/ajb2017.15959.
  • Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L. Multifaceted applications of microbial pigments: Current knowledge, challenges and future directions for public health implications. vol. 7. 2019. https://doi.org/10.3390/microorganisms7070186.
  • Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry—challenges and the way forward. Front Nutr 2019;6:1–14. https://doi.org/10.3389/fnut.2019.00007.
  • Sampathkumar SJ, Srivastava P, Ramachandran S, Sivashanmugam K, Gothandam KM. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb Pathog 2019;135:103658. https://doi.org/10.1016/j.micpath.2019.103658.
  • Redmond S. Gracilaria Culture Handbook for New England Gracilaria Culture Handbook for New England 2017.
  • Ahmed JK. Effect of Chlorophyll and Anthocyanin on the Secondary Bonds of Poly Vinyl Chloride (PVC). Int J Mater Sci Appl 2015;4:21. https://doi.org/10.11648/j.ijmsa.s.2015040201.15.
  • Özçimen D. Chlorella protothecoides Mikroalg Yağının Botrytis cinerea ve Aspergillus niger Küflerine Karşı Antifungal Etkisinin İncelenmesi. Tekirdağ Ziraat Fakültesi Derg 2018;15:45–52.
  • Vaz B da S, Moreira JB, Morais MG de, Costa JAV. Microalgae as a new source of bioactive compounds in food supplements. Curr Opin Food Sci 2016;7:73–7. https://doi.org/10.1016/j.cofs.2015.12.006.
  • Jyotirmayee P, Sachidananda D, Basanta K Das. Antibacterial activity of freshwater microalgae: A review. African J Pharm Pharmacol 2014;8:809–18. https://doi.org/10.5897/ajpp2013.0002.
  • Wei D, Chen F, Chen G, Zhang XW, Liu LJ, Zhang H. Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China, Ser C Life Sci 2008;51:1088–93. https://doi.org/10.1007/s11427-008-0145-2.
  • Number V, Online A-I. Biosciences and Plant Biology Conditions. Int J Curr Res Biosci Plant Biol 2017;4:101–5.
  • Fei Q, Fu R, Shang L, Brigham CJ, Chang HN. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst Eng 2015;38:691–700. https://doi.org/10.1007/s00449-014-1308-0.
  • Shen Y, Yuan W, Pei Z, Mao E. Heterotrophic culture of Chlorella protothecoides in various nitrogen sources for lipid production. Appl Biochem Biotechnol 2010;160:1674–84. https://doi.org/10.1007/s12010-009-8659-z.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Elif Arslan This is me 0000-0001-7310-241X

Şeymanur Çobanoğlu This is me 0000-0002-2805-0523

Ayşenur Yazıcı 0000-0002-3369-6791

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Arslan, E., Çobanoğlu, Ş., & Yazıcı, A. (2021). Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa. Türk Doğa Ve Fen Dergisi, 10(2), 163-167. https://doi.org/10.46810/tdfd.930388
AMA Arslan E, Çobanoğlu Ş, Yazıcı A. Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa. TDFD. December 2021;10(2):163-167. doi:10.46810/tdfd.930388
Chicago Arslan, Elif, Şeymanur Çobanoğlu, and Ayşenur Yazıcı. “Antimicrobial Activity of Pigments Extracted from Auxenochlorella Protothecoides SC3 Against Pseudomonas Aeruginosa”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 163-67. https://doi.org/10.46810/tdfd.930388.
EndNote Arslan E, Çobanoğlu Ş, Yazıcı A (December 1, 2021) Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa. Türk Doğa ve Fen Dergisi 10 2 163–167.
IEEE E. Arslan, Ş. Çobanoğlu, and A. Yazıcı, “Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa”, TDFD, vol. 10, no. 2, pp. 163–167, 2021, doi: 10.46810/tdfd.930388.
ISNAD Arslan, Elif et al. “Antimicrobial Activity of Pigments Extracted from Auxenochlorella Protothecoides SC3 Against Pseudomonas Aeruginosa”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 163-167. https://doi.org/10.46810/tdfd.930388.
JAMA Arslan E, Çobanoğlu Ş, Yazıcı A. Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa. TDFD. 2021;10:163–167.
MLA Arslan, Elif et al. “Antimicrobial Activity of Pigments Extracted from Auxenochlorella Protothecoides SC3 Against Pseudomonas Aeruginosa”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 163-7, doi:10.46810/tdfd.930388.
Vancouver Arslan E, Çobanoğlu Ş, Yazıcı A. Antimicrobial Activity of Pigments Extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa. TDFD. 2021;10(2):163-7.