Research Article
BibTex RIS Cite

Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties

Year 2021, , 206 - 211, 31.12.2021
https://doi.org/10.46810/tdfd.956504

Abstract

Carbon quantum dots (CQDs); It is a carbon-based nanomaterial that has become popular in recent years due to its advantages such as biocompatibility, tunable fluorescent properties, simple and economical synthesis methods. In this study, synthesis of N-doped carbon quantum dots by hydrothermal synthesis method using tangerine juice, onion shell and ethylenediamine was investigated. The structures and optical properties of the synthesized carbon quantum dots were illuminated by photoluminescence (PL), X-ray Diffractometer (XRD), Infrared (IR) and UV-vis spectrometer. Electrochemical properties were examined by the cyclic voltammetry (CV) technique. The stability of N-doped carbon quantum dots (at 1st, 10th, 15th and 26th days) and pH-dependent emission properties were investigated. Peaks are seen at 285 nm and 347 nm in the UV-vis spectrum proved the presence of C=O and C=N bonds. It has been observed that there is a redshift in the absorption peak due to the amine groups in the structure of the N-doped carbon quantum dots. As a result of the XRD analysis, it was seen that the N-doped carbon quantum dots were in an amorphous structure. The FTIR spectrum of N-doped carbon quantum dots characteristic absorption bands of shows N-H vibration stretching and C-H bending peaks at 3240 and 2923 cm-1, respectively. These functional groups seen in the structure showed that N-CQD is bonded by hydrogen bond. In 1574 cm-1 and 1336 cm-1 C=O vibration stretching peaks and C-N vibration stretching peaks are observed. In the next step, the electrochemical properties of the carbon dots were examined by cyclic voltammetry technique. Different scanning rates (10-1000 mV/s) were used to understand and clarify the substance (mass) transport to the electrode surface.

Supporting Institution

Kahramanmaraş Sütçü İmam University Scientific Research Project Coordination Unit

Project Number

2019/5-21 M and 2020/7-9 D

Thanks

This work was financially supported by the Kahramanmaraş Sütçü İmam University Scientific Research Project Coordination Unit (Project Number: 2019/5-21 M and 2020/7-9 D).

References

  • [1] Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci 2019:102046. https://doi.org/10.1016/j.cis.2019.102046.
  • [2] Wang X, Feng Y, Dong P, Huang J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front Chem 2019;7. https://doi.org/10.3389/fchem.2019.00671.
  • [3] Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem 2018;8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.
  • [4] Chan KK, Yap SHK, Yong K-T. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Lett 2018;10:72. https://doi.org/10.1007/s40820-018-0223-3.
  • [5] Jayaweera S, Yin K, Hu X, Ng WJ. Fluorescent N/Al Co-Doped Carbon Dots from Cellulose Biomass for Sensitive Detection of Manganese (VII). J Fluoresc 2019. https://doi.org/10.1007/s10895-019-02452-7.
  • [6] Kailasa SK, Ha S, Baek SH, Phan LMT, Kim S, Kwak K, et al. Tuning of carbon dots emission color for sensing of Fe 3+ ion and bioimaging applications. Mater Sci Eng C 2019;98:834–42. https://doi.org/10.1016/j.msec.2019.01.002.
  • [7] Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 2013;52:15673–8. https://doi.org/10.1021/ie402421s.
  • [8] Sciortino A, Cannizzo A, Messina F. Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. C 2018. https://doi.org/10.3390/c4040067.
  • [9] Woo J, Song Y, Ahn J, Kim H. Green one-pot preparation of carbon dots (CD)-embedded cellulose transparent film for Fe3+ indicator using ionic liquid. Cellulose 2020;27:4609–21. https://doi.org/10.1007/s10570-020-03099-5.
  • [10] Molaei MJ. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal Methods 2020;12:1266–87. https://doi.org/10.1039/c9ay02696g.
  • [11] Liu L, Li Y, Zhan L, Liu Y, Huang C. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Sci China Chem 2011;54:1342–7. https://doi.org/10.1007/s11426-011-4351-6.
  • [12] Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim Acta - Part A Mol Biomol Spectrosc 2018;203:481–93. https://doi.org/10.1016/j.saa.2018.06.021.
  • [13] Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed Pharmacother 2020;132:110834. https://doi.org/10.1016/j.biopha.2020.110834.
  • [14] Papaioannou N, Titirici MM, Sapelkin A. Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega 2019;4:21658–65. https://doi.org/10.1021/acsomega.9b01798.
  • [15] Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon N Y 2016;104:169–78. https://doi.org/10.1016/j.carbon.2016.04.003.
  • [16] Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim JJ, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors Actuators, B Chem 2017;246:497–509. https://doi.org/10.1016/j.snb.2017.02.119.
  • [17] Bandi R, Dadigala R, Gangapuram BR, Sabir FK, Alle M, Lee SH, et al. N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(III) and copper(II). Microchim Acta 2020;187:1–10. https://doi.org/10.1007/s00604-019-4017-1.
  • [18] Muthusankar G, Devi RK, Gopu G. Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosens Bioelectron 2020;150:111947. https://doi.org/10.1016/j.bios.2019.111947.
  • [19] Wu P, Li W, Wu Q, Liu Y, Liu S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment. RSC Adv 2017;7:44144–53. https://doi.org/10.1039/c7ra08400e.
  • [20] Pu ZF, Wen QL, Yang YJ, Cui XM, Ling J, Liu P, et al. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions. vol. 229. Elsevier B.V; 2020. https://doi.org/10.1016/j.saa.2019.117944.
  • [21] Andrade PF, Nakazato G, Durán N. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria. J Phys Conf Ser 2017;838. https://doi.org/10.1088/1742-6596/838/1/012028.
  • [22] Hu Y, Geng X, Zhang L, Huang Z, Ge J, Li Z. Nitrogen-doped Carbon Dots Mediated Fluorescent on-off Assay for Rapid and Highly Sensitive Pyrophosphate and Alkaline Phosphatase Detection. Sci Rep 2017:1–9. https://doi.org/10.1038/s41598-017-06356-z.
  • [23] Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim JJ, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors Actuators, B Chem 2017;246:497–509. https://doi.org/10.1016/j.snb.2017.02.119.

Hidrotermal Sentez Yöntemi ile N-Katkılı Karbon Kuantum Noktaları Sentezi ve Optik Özelliklerinin Araştırılması

Year 2021, , 206 - 211, 31.12.2021
https://doi.org/10.46810/tdfd.956504

Abstract

Karbon kuantum noktaları; biyouyumluluk, ayarlanabilir floresan özellikler, basit ve ekonomik sentez yöntemleri gibi avantajlarından dolayı son yıllarda popüler hale gelen karbon tabanlı bir nanomalzemedir. Bu çalışmada mandalina suyu, soğan kabuğu ve etilendiamin kullanılarak hidrotermal sentez yöntemi ile N-katkılı karbon kuantum noktaları sentezi araştırılmıştır. Sentezlenen karbon kuantum noktalarının yapıları ve optik özellikleri fotolüminesans (PL), X-ray Difraktometresi (XRD), Kızılötesi (IR) ve UV-vis spektrometresi ile aydınlatılmıştır. Elektrokimyasal özellikleri ise dönüşümlü voltametri (CV) tekniği ile incelenmiştir. N-katkılı karbon kuantum noktalarının stabilitesi (1,10,15 ve 26. günlerde) ve pH bağımlı emisyon özellikleri araştırılmıştır. UV-vis spektrumunda 285 nm ve 347 nm’ de görülen pikler C=O ve C=N bağlarının varlığını kanıtlamıştır. N-katkılı karbon kuantum noktalarının yapısındaki amin grupları nedeniyle absorpsiyon pikinde kırmızıya kayma olduğu gözlemlenmiştir. XRD analizi sonucunda N katkılı karbon kuantum noktalarının amorf yapıda olduğu görüldü. N-katkılı karbon kuantum noktalarının FTIR spektrumu, sırasıyla 3240 ve 2923 cm-1' de N-H titreşim gerilmesini ve C-H bükülme piklerini gösterir. Yapıda görülen bu fonksiyonel gruplar, N-CQD'nin hidrojen bağı ile bağlandığını göstermiştir. 1574 cm-1 ve 1336 cm-1'de C=O titreşim uzama pikleri ve C-N titreşim uzama pikleri gözlenmektedir. Bir sonraki adımda N-CQD’lerin elektrokimyasal davranışı dönüşümlü voltametri tekniği ile incelenmiştir. Elektrot yüzeyinde madde (kütle) taşınımını anlamak ve netleştirmek için farklı tarama hızları (10-1000 mV/s) kullanılmıştır.

Project Number

2019/5-21 M and 2020/7-9 D

References

  • [1] Tejwan N, Saha SK, Das J. Multifaceted applications of green carbon dots synthesized from renewable sources. Adv Colloid Interface Sci 2019:102046. https://doi.org/10.1016/j.cis.2019.102046.
  • [2] Wang X, Feng Y, Dong P, Huang J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front Chem 2019;7. https://doi.org/10.3389/fchem.2019.00671.
  • [3] Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem 2018;8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.
  • [4] Chan KK, Yap SHK, Yong K-T. Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications. Nano-Micro Lett 2018;10:72. https://doi.org/10.1007/s40820-018-0223-3.
  • [5] Jayaweera S, Yin K, Hu X, Ng WJ. Fluorescent N/Al Co-Doped Carbon Dots from Cellulose Biomass for Sensitive Detection of Manganese (VII). J Fluoresc 2019. https://doi.org/10.1007/s10895-019-02452-7.
  • [6] Kailasa SK, Ha S, Baek SH, Phan LMT, Kim S, Kwak K, et al. Tuning of carbon dots emission color for sensing of Fe 3+ ion and bioimaging applications. Mater Sci Eng C 2019;98:834–42. https://doi.org/10.1016/j.msec.2019.01.002.
  • [7] Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 2013;52:15673–8. https://doi.org/10.1021/ie402421s.
  • [8] Sciortino A, Cannizzo A, Messina F. Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. C 2018. https://doi.org/10.3390/c4040067.
  • [9] Woo J, Song Y, Ahn J, Kim H. Green one-pot preparation of carbon dots (CD)-embedded cellulose transparent film for Fe3+ indicator using ionic liquid. Cellulose 2020;27:4609–21. https://doi.org/10.1007/s10570-020-03099-5.
  • [10] Molaei MJ. Principles, mechanisms, and application of carbon quantum dots in sensors: A review. Anal Methods 2020;12:1266–87. https://doi.org/10.1039/c9ay02696g.
  • [11] Liu L, Li Y, Zhan L, Liu Y, Huang C. One-step synthesis of fluorescent hydroxyls-coated carbon dots with hydrothermal reaction and its application to optical sensing of metal ions. Sci China Chem 2011;54:1342–7. https://doi.org/10.1007/s11426-011-4351-6.
  • [12] Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria. Spectrochim Acta - Part A Mol Biomol Spectrosc 2018;203:481–93. https://doi.org/10.1016/j.saa.2018.06.021.
  • [13] Nair A, Haponiuk JT, Thomas S, Gopi S. Natural carbon-based quantum dots and their applications in drug delivery: A review. Biomed Pharmacother 2020;132:110834. https://doi.org/10.1016/j.biopha.2020.110834.
  • [14] Papaioannou N, Titirici MM, Sapelkin A. Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega 2019;4:21658–65. https://doi.org/10.1021/acsomega.9b01798.
  • [15] Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon N Y 2016;104:169–78. https://doi.org/10.1016/j.carbon.2016.04.003.
  • [16] Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim JJ, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors Actuators, B Chem 2017;246:497–509. https://doi.org/10.1016/j.snb.2017.02.119.
  • [17] Bandi R, Dadigala R, Gangapuram BR, Sabir FK, Alle M, Lee SH, et al. N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(III) and copper(II). Microchim Acta 2020;187:1–10. https://doi.org/10.1007/s00604-019-4017-1.
  • [18] Muthusankar G, Devi RK, Gopu G. Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: An efficient probe for the simultaneous determination of anticancer and antibiotic drugs. Biosens Bioelectron 2020;150:111947. https://doi.org/10.1016/j.bios.2019.111947.
  • [19] Wu P, Li W, Wu Q, Liu Y, Liu S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment. RSC Adv 2017;7:44144–53. https://doi.org/10.1039/c7ra08400e.
  • [20] Pu ZF, Wen QL, Yang YJ, Cui XM, Ling J, Liu P, et al. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions. vol. 229. Elsevier B.V; 2020. https://doi.org/10.1016/j.saa.2019.117944.
  • [21] Andrade PF, Nakazato G, Durán N. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria. J Phys Conf Ser 2017;838. https://doi.org/10.1088/1742-6596/838/1/012028.
  • [22] Hu Y, Geng X, Zhang L, Huang Z, Ge J, Li Z. Nitrogen-doped Carbon Dots Mediated Fluorescent on-off Assay for Rapid and Highly Sensitive Pyrophosphate and Alkaline Phosphatase Detection. Sci Rep 2017:1–9. https://doi.org/10.1038/s41598-017-06356-z.
  • [23] Atchudan R, Edison TNJI, Chakradhar D, Perumal S, Shim JJ, Lee YR. Facile green synthesis of nitrogen-doped carbon dots using Chionanthus retusus fruit extract and investigation of their suitability for metal ion sensing and biological applications. Sensors Actuators, B Chem 2017;246:497–509. https://doi.org/10.1016/j.snb.2017.02.119.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Sadiye Kübra Başkaya 0000-0001-7940-3571

Mustafa Çeşme 0000-0002-2020-5965

Project Number 2019/5-21 M and 2020/7-9 D
Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Başkaya, S. K., & Çeşme, M. (2021). Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. Türk Doğa Ve Fen Dergisi, 10(2), 206-211. https://doi.org/10.46810/tdfd.956504
AMA Başkaya SK, Çeşme M. Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. TDFD. December 2021;10(2):206-211. doi:10.46810/tdfd.956504
Chicago Başkaya, Sadiye Kübra, and Mustafa Çeşme. “Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 206-11. https://doi.org/10.46810/tdfd.956504.
EndNote Başkaya SK, Çeşme M (December 1, 2021) Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. Türk Doğa ve Fen Dergisi 10 2 206–211.
IEEE S. K. Başkaya and M. Çeşme, “Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties”, TDFD, vol. 10, no. 2, pp. 206–211, 2021, doi: 10.46810/tdfd.956504.
ISNAD Başkaya, Sadiye Kübra - Çeşme, Mustafa. “Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 206-211. https://doi.org/10.46810/tdfd.956504.
JAMA Başkaya SK, Çeşme M. Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. TDFD. 2021;10:206–211.
MLA Başkaya, Sadiye Kübra and Mustafa Çeşme. “Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 206-11, doi:10.46810/tdfd.956504.
Vancouver Başkaya SK, Çeşme M. Synthesis of N-Doped Carbon Quantum Dots by Hydrothermal Synthesis Method and Investigation of Optical Properties. TDFD. 2021;10(2):206-11.