Effect of Boron Wastes on the Engineering Properties of Perlite Based Brick
Year 2020,
Volume: 9 Issue: 2, 50 - 56, 30.12.2020
Selçuk Çimen
,
Hakan Çağlar
,
Arzu Çağlar
,
Ömer Can
Abstract
The industrial development brings about the formation of wastes. These wastes can be reused in other sectors as byproducts to mitigate the harmful effects they have on the environment. One of the areas where these wastes are evaluated is in brick manufacturing for the construction sector. This study focuses on the use of industrial boron waste to improve physical and mechanical properties of bricks locally produced using perlite. In this study brick samples were produced by using boron wastes at ratios of 5%, 10%, 15% and 20% while keeping perlite materials constant at 5%. The samples were heated at 900 ° C. Physical and mechanical tests were performed on brick samples obtained after heating in the oven. Specific gravity, water-saturated unit volume, porosity and freezing-dissolution tests were performed to determine physical properties. In order to determine the mechanical properties, compressive strength and bending tensile strength tests were conducted to the brick samples. As a result, it is observed that the usage of perlite and boron wastes as additives in the production of bricks has desirable effects on improving physical and mechanical properties of bricks.
References
- [1] Karaman S. Color Formation in Building Bricks. KSU. J. Sci. Eng. 2006; 9: 125–129
- [2] Marotta T, Coffey JC., Brown CL., LaPlante C. Basic Construction Materials, 8th ed. Pearson Prentice Hall, 2010.
- [3] Sonmez E, Yorulmaz S. Investigation of Usability of Kırka Boraks Enterprise Waste Clays in Brick Making. In: Industrial Raw Materials Symposium. İzmir, 1995: p. 163–168
- [4] Çelik AG. Investigation on characteristic properties of potassium borate and sodium borate blended perlite bricks. J. Clean Prod. 2015; 102:88–95.
- [5] Çelik AG, Depci T, Kilic AM. New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials. Constr. Build. Mater. 2014; 62: 59–66.
- [6] Yamık A, Tosun IY, Gunes N. ve Topal E. Soda Leaching of Kırka Boraks Wastes. In: Industrial Raw Materials Symposium. İzmir; 1995: p. 43–48.
- [7] Uslu T, Arol AI. Use of boron waste as an additive in red bricks. Waste Manag. 2004; 24(2): 2017-220.
- [8] Kavas T. Use of boron waste as a fluxing agent in production of red mud brick. Build Environ. 2006; 41:1779–1783.
[9] Abali Y, Yurdusev MA, Zeybek MS, Kumanlioǧlu AA. Using phosphogypsume and boron concentrator wastes in light brick production. Constr. Build. Mater. 2007; 21:52–56.
- [10] Christogerou A, Kavas T, Pontikes Y, et al. Use of boron wastes in the production of heavy clay ceramics. Ceram. Int. 2009; 35:447–452.
- [11] Rashad AM. A synopsis about perlite as building material - A best practice guide for Civil Engineer. Constr. Build. Mater. 2016; 121: 338–353.
- [12] Topçu IB, Işikdaǧ B. Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Environ. 2007; 42: 3540–3546.
- [13] Velasco PM, Moralez OMP, Giro MAM, Velasco LM. Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr. Build. Mater. 2014; 63:97–107.
- [14] Cicek B, Karadagli E, Duman F. Valorisation of boron mining wastes in the production of wall and floor tiles. Constr. Build. Mater. 2018; 179: 232–244.
- [15] TS EN 771-1+A1 “Types of masonry - Characteristics - Part 1: Clay masonry units.”, 2015; Ankara, Turkey.
- [16] TS EN 772-4 “Masonry Units- Test Methods - Part 4: Determination of the Total and Visible Porosity of Natural Stone Masonry Units and Volumetric and Porous Volume Mass.”, 2000; Ankara, Turkey.
- [17] TS EN 772-11 "Methods of test for masonry units - Part 11: Determination of water absorption of aggregate concrete, autoclaved aerated concrete, manufactured stone and natural stone masonry units due to capillary action and the initial rate of water absorb.", 2012; Ankara, Turkey.
- [18] TS CEN / TS 12390-9 “Testing hardened concrete - Part 9: Freeze-thaw resistance - Scaling.”, 2017; Ankara, Turkey.
- [19] TS 772-1 “Masonry Units - Test Methods - Part 1: Determination of Compressive Strength.”, 2012; Ankara, Turkey.
- [20] TS EN 772-6 “Masonry Units - Test Methods - Part 6: Determination of Tensile Strength of Concrete Masonry Units in Bending.”, 2004; Ankara, Turkey.
- [21] Demirboǧa R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003; 33:723–727.
- [22] Ceylan A, Ebeoğlugil MF. An Investigation of the Usage of Expanded Perlite and Clay Mixture Bearing Light and Heat Isolated Brick Manufacturing. J Sci Technol Dumlupınar Univ. 2002: 91–98.
- [23] Elbeyli Y., Kalpakli Y., Gülen J., et al. Utilization of borax waste as an additive in building brick production. In: Proceedings of the International Boron Symposium. Eskişehir, 2004: p 23–25.
Bor Atıklarının Perlit Esaslı Tuğlanın Mühendislik Özelliklerine Etkisi
Year 2020,
Volume: 9 Issue: 2, 50 - 56, 30.12.2020
Selçuk Çimen
,
Hakan Çağlar
,
Arzu Çağlar
,
Ömer Can
Abstract
Endüstrinin gelişmesi atıkların oluşumunu beraberinde getirmektedir. Bu atıkların uygun sektörlerde kullanılması atıkların çevreye vereceği zararı minimize etmektedir. Bu atıkların değerlendirildiği alanlardan biri de inşaat sektörünün tuğla koludur. Bu çalışmada yerel malzemelerimizden olan perlit ve kıymetli endüstri atığı olan bor atığının tuğla yapı malzemesi özelliklerinin iyileştirilmesi üzerinde durulmuştur. Çalışmada tuğla bünyesine %5 perlit malzemesi sabit tutularak, %5, %10, %15 ve %20 oranlarında bor atığı ikame ederek tuğla numuneleri üretilmiştir. Üretilen numuneler 900 ° C'de pişirilmiştir. Pişirilme sonucunda elde edilen tuğla numunelerine fiziksel ve mekanik deneyler uygulanmıştır. Fiziksel farklılıklarının tespiti için özgül ağırlık, suya doygun birim hacim ağırlık, porozite ve donma-çözünme deneyleri yapılmıştır. Mekanik özelliklerinin tespiti için ise tuğla numunelerine basınç dayanımı ve eğilmede çekme dayanımı deneyleri uygulanmıştır. Sonuç olarak; perlit ve bor atığı katkısının uygun oranlarda tuğla üretiminde kullanılabileceği, kullanılması durumunda tuğla özelliklerine herhangi bir sakıncası olmadığı ve olumlu yönde etki sağladığı görülmüştür.
References
- [1] Karaman S. Color Formation in Building Bricks. KSU. J. Sci. Eng. 2006; 9: 125–129
- [2] Marotta T, Coffey JC., Brown CL., LaPlante C. Basic Construction Materials, 8th ed. Pearson Prentice Hall, 2010.
- [3] Sonmez E, Yorulmaz S. Investigation of Usability of Kırka Boraks Enterprise Waste Clays in Brick Making. In: Industrial Raw Materials Symposium. İzmir, 1995: p. 163–168
- [4] Çelik AG. Investigation on characteristic properties of potassium borate and sodium borate blended perlite bricks. J. Clean Prod. 2015; 102:88–95.
- [5] Çelik AG, Depci T, Kilic AM. New lightweight colemanite-added perlite brick and comparison of its physicomechanical properties with other commercial lightweight materials. Constr. Build. Mater. 2014; 62: 59–66.
- [6] Yamık A, Tosun IY, Gunes N. ve Topal E. Soda Leaching of Kırka Boraks Wastes. In: Industrial Raw Materials Symposium. İzmir; 1995: p. 43–48.
- [7] Uslu T, Arol AI. Use of boron waste as an additive in red bricks. Waste Manag. 2004; 24(2): 2017-220.
- [8] Kavas T. Use of boron waste as a fluxing agent in production of red mud brick. Build Environ. 2006; 41:1779–1783.
[9] Abali Y, Yurdusev MA, Zeybek MS, Kumanlioǧlu AA. Using phosphogypsume and boron concentrator wastes in light brick production. Constr. Build. Mater. 2007; 21:52–56.
- [10] Christogerou A, Kavas T, Pontikes Y, et al. Use of boron wastes in the production of heavy clay ceramics. Ceram. Int. 2009; 35:447–452.
- [11] Rashad AM. A synopsis about perlite as building material - A best practice guide for Civil Engineer. Constr. Build. Mater. 2016; 121: 338–353.
- [12] Topçu IB, Işikdaǧ B. Manufacture of high heat conductivity resistant clay bricks containing perlite. Build. Environ. 2007; 42: 3540–3546.
- [13] Velasco PM, Moralez OMP, Giro MAM, Velasco LM. Fired clay bricks manufactured by adding wastes as sustainable construction material - A review. Constr. Build. Mater. 2014; 63:97–107.
- [14] Cicek B, Karadagli E, Duman F. Valorisation of boron mining wastes in the production of wall and floor tiles. Constr. Build. Mater. 2018; 179: 232–244.
- [15] TS EN 771-1+A1 “Types of masonry - Characteristics - Part 1: Clay masonry units.”, 2015; Ankara, Turkey.
- [16] TS EN 772-4 “Masonry Units- Test Methods - Part 4: Determination of the Total and Visible Porosity of Natural Stone Masonry Units and Volumetric and Porous Volume Mass.”, 2000; Ankara, Turkey.
- [17] TS EN 772-11 "Methods of test for masonry units - Part 11: Determination of water absorption of aggregate concrete, autoclaved aerated concrete, manufactured stone and natural stone masonry units due to capillary action and the initial rate of water absorb.", 2012; Ankara, Turkey.
- [18] TS CEN / TS 12390-9 “Testing hardened concrete - Part 9: Freeze-thaw resistance - Scaling.”, 2017; Ankara, Turkey.
- [19] TS 772-1 “Masonry Units - Test Methods - Part 1: Determination of Compressive Strength.”, 2012; Ankara, Turkey.
- [20] TS EN 772-6 “Masonry Units - Test Methods - Part 6: Determination of Tensile Strength of Concrete Masonry Units in Bending.”, 2004; Ankara, Turkey.
- [21] Demirboǧa R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem. Concr. Res. 2003; 33:723–727.
- [22] Ceylan A, Ebeoğlugil MF. An Investigation of the Usage of Expanded Perlite and Clay Mixture Bearing Light and Heat Isolated Brick Manufacturing. J Sci Technol Dumlupınar Univ. 2002: 91–98.
- [23] Elbeyli Y., Kalpakli Y., Gülen J., et al. Utilization of borax waste as an additive in building brick production. In: Proceedings of the International Boron Symposium. Eskişehir, 2004: p 23–25.