Research Article
BibTex RIS Cite

CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı

Year 2020, Volume: 9 Issue: 2, 24 - 34, 30.12.2020
https://doi.org/10.46810/tdfd.766470

Abstract

Bu çalışma, farklı boyutlarda CuTi (B11) kristal nanotellerinin [001] yönündeki esneklik-kırılma mekanizmasını ve deformasyonunu gözlemek için ayrıntılı bir analiz sunmaktadır. Germe oranı ve boyut gibi değişkenlerin nanotelin mekanik özellikleri üzerine etkileri etkileşmelerin gömülü atom potansiyeli ile tanımlandığı moleküler dinamik benzetimleri ile incelenmiştir. Uygulanan dış değişkenlerin CuTi nanotellerinin elastik ve plastik deformasyonları üzerindeki etkileri iki temel başlık altında özetlenmiştir. Nanotelin elastik tepkisinin yüksek germe oranı ve küçük boyut ile arttığı gözlenmiştir. Elastisite Modülünün germe oranı ile de karakterize edilebilmesine rağmen nanotel boyutu istenen dayanıklılık mekanizmasını belirlemede daha etkin role sahiptir. Diğer yandan, düşük germe oranı ve küçük boyutun CuTi nanotellerin kırılma dayanımını ve esnekliğini azalttığı izlenmiştir.

References

  • Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 2005;4:525–9.
  • Geng L, Yan F, Dong C, An C. Design and Regulation of Novel MnFe2O4@C Nanowires as High Performance Electrode for Supercapacitor. Nanomaterials 2019;9:777.
  • Lieber CM. Nanoscale Science and Technology: Building a Big Future from Small Things. MRS Bull 2003;28:486–91.
  • Wen X, Xie Y, Choi CL, Wan KC, Li X-Y, Yang S. Copper-Based Nanowire Materials: Templated Syntheses, Characterizations, and Applications. Langmuir 2005;21:4729–37.
  • Sofiah AGN, Samykano M, Kadirgama K, Mohan RV, Lah NAC. Metallic nanowires: Mechanical properties – Theory and experiment. Appl Mater Today 2018;11:320–37.
  • Iijima S, Qin LC, Hong BH, Bae SC, Youn SJ, Kim KS. Electron Microscopic Characterization of Silver Nanowire Arrays. Science (80- ) 2002;296:611a – 611.
  • Hu L, Chen G. Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications. Nano Lett 2007;7:3249–52.
  • Zhu T, Li J. Ultra-strength materials. Prog Mater Sci 2010;55:710–57.
  • Nagarjuna S, Srinivas M, Balasubramanian K, Sarma DS. The alloy content and grain size dependence of flow stress in CuTi alloys. Acta Mater 1996;44:2285–93.
  • Nagarjuna S, Srinivas M. High temperature tensile behaviour of a Cu–1.5 wt.% Ti alloy. Mater Sci Eng A 2002;335:89–93.
  • [Semboshi S, Nishida T, Numakura H. Microstructure and mechanical properties of Cu–3at.% Ti alloy aged in a hydrogen atmosphere. Mater Sci Eng A 2009;517:105–13.
  • Semboshi S, Takasugi T. Fabrication of high-strength and high-conductivity Cu–Ti alloy wire by aging in a hydrogen atmosphere. J Alloys Compd 2013;580:S397–400.
  • Liang H, Upmanyu M, Huang H. Size-dependent elasticity of nanowires: Nonlinear effects. Phys Rev B - Condens Matter Mater Phys 2005.
  • Chen S, Duan Y-H, Huang B, Hu W-C. Structural properties, phase stability, elastic properties and electronic structures of Cu–Ti intermetallics. Philos Mag 2015;95:3535–53.
  • Vauth S, Mayr SG. Atomic dynamics in molecular dynamics simulations of glassy CuTi thin films. Appl Phys Lett 2005;86:061913.
  • Dalgic SSS, Celtek M. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation. J Optoelectron Adv Mater 2011;13:1563–9.
  • Rogachev SA, Politano O, Baras F, Rogachev AS. Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study. J Non Cryst Solids 2019;505:202–10.
  • Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys 1995;117:1–19.
  • Çeltek M, Şengül S. Effects of cooling rate on the atomic structure and glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations. Turkish J Phys 2019;43:11–25.
  • Çeltek M, Şengül S, Dömekeli Ü. Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. Süleyman Demirel Üniversitesi Fen Bilim Enstitüsü Derg 2019;23:954–62.
  • Celtek M. The effect of atomic concentration on the structural evolution of Zr100-xCox alloys during rapid solidification process. J Non Cryst Solids 2019;513:84–96.
  • Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 2004;69:144113.
  • Çeltek M, Dömekeli Ü, Şengül S. Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması. Bitlis Eren Üniversitesi Fen Bilim Derg 2019;8:413–27.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984;81:511–9.
  • Thompson AP, Plimpton SJ, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys 2009;131:154107.
  • Eremenko VN, Buyanov YI, Prima SB. Phase diagram of the system titanium-copper. Sov Powder Metall Met Ceram 1966;5:494–502.
  • Kim YC, Bae DH, Kim WT, Kim DH. Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. J Non Cryst Solids 2003;325:242–50.
  • Kleppa OJ, Watanabe S. Thermochemistry of alloys of transition metals: Part III. Copper-Silver, -Titanium, Zirconium, and -Hafnium at 1373 K. Metall Trans B 1982;13:391–401.
  • Guder V, Sengul S. Tensile strength and failure mechanism of hcp zirconium nanowires: Effect of diameter, temperature and strain rate. Comput Mater Sci 2020;177:109551.
  • Nysten B, Fretigny C, Cuenot S. Elastic modulus of nanomaterials: resonant contact-AFM measurement and reduced-size effects (Invited Paper). In: Geer RE, Meyendorf N, Baaklini GY, Michel B, editors. Testing, Reliab. Appl. Micro- Nano-Material Syst. III, 2005, p. 78.
  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, et al. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys Rev B 2006;73:235409.
  • Nilsson SG, Borrisé X, Montelius L. Size effect on Young’s modulus of thin chromium cantilevers. Appl Phys Lett 2004;85:3555–7.
  • Li X, Ono T, Wang Y, Esashi M. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus. Appl Phys Lett 2003;83:3081–3.
  • Nam C-Y, Jaroenapibal P, Tham D, Luzzi DE, Evoy S, Fischer JE. Diameter-Dependent Electromechanical Properties of GaN Nanowires. Nano Lett 2006;6:153–8.
  • Liu KH, Wang WL, Xu Z, Liao L, Bai XD, Wang EG. In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl Phys Lett 2006;89:221908.
  • Liang W, Zhou M. Size and Strain Rate Effects in Tensile Deformation of Cu Nanowires. 2003 Nanotechnol. Conf. Trade Show - Nanotech, vol. 2, 2003, p. 452–5.
  • Sainath G, Choudhary BK, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires. Comput Mater Sci 2015;104:76–83.
  • Diao J, Gall K, Dunn ML, Zimmerman JA. Atomistic simulations of the yielding of gold nanowires. Acta Mater 2006;54:643–53.
  • Zhu T, Li J, Samanta A, Leach A, Gall K. Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation. Phys Rev Lett 2008;100:025502.
  • Jennings AT, Weinberger CR, Lee S-W, Aitken ZH, Meza L, Greer JR. Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Mater 2013;61:2244–59.
  • Weertman JR. Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 1993;166:161–7.
  • Chokshi AH, Rosen A, Karch J, Gleiter H. On the validity of the hall-petch relationship in nanocrystalline materials. Scr Metall 1989;23:1679–83.
  • Hall EO. The Deformation and Ageing of Mild Steel: II Characteristics of the Lüders Deformation. Proc Phys Soc Sect B 1951;64:742–7.
  • Gupta SK, McEwan A, Lukačević I. Elasticity of DNA nanowires. Phys Lett Sect A Gen At Solid State Phys 2016.
  • Sarkar J, Das DK. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu–Ag core–shell nanowire using molecular dynamics simulations. J Nanoparticle Res 2018;20:9.
Year 2020, Volume: 9 Issue: 2, 24 - 34, 30.12.2020
https://doi.org/10.46810/tdfd.766470

Abstract

References

  • Wu B, Heidelberg A, Boland JJ. Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 2005;4:525–9.
  • Geng L, Yan F, Dong C, An C. Design and Regulation of Novel MnFe2O4@C Nanowires as High Performance Electrode for Supercapacitor. Nanomaterials 2019;9:777.
  • Lieber CM. Nanoscale Science and Technology: Building a Big Future from Small Things. MRS Bull 2003;28:486–91.
  • Wen X, Xie Y, Choi CL, Wan KC, Li X-Y, Yang S. Copper-Based Nanowire Materials: Templated Syntheses, Characterizations, and Applications. Langmuir 2005;21:4729–37.
  • Sofiah AGN, Samykano M, Kadirgama K, Mohan RV, Lah NAC. Metallic nanowires: Mechanical properties – Theory and experiment. Appl Mater Today 2018;11:320–37.
  • Iijima S, Qin LC, Hong BH, Bae SC, Youn SJ, Kim KS. Electron Microscopic Characterization of Silver Nanowire Arrays. Science (80- ) 2002;296:611a – 611.
  • Hu L, Chen G. Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications. Nano Lett 2007;7:3249–52.
  • Zhu T, Li J. Ultra-strength materials. Prog Mater Sci 2010;55:710–57.
  • Nagarjuna S, Srinivas M, Balasubramanian K, Sarma DS. The alloy content and grain size dependence of flow stress in CuTi alloys. Acta Mater 1996;44:2285–93.
  • Nagarjuna S, Srinivas M. High temperature tensile behaviour of a Cu–1.5 wt.% Ti alloy. Mater Sci Eng A 2002;335:89–93.
  • [Semboshi S, Nishida T, Numakura H. Microstructure and mechanical properties of Cu–3at.% Ti alloy aged in a hydrogen atmosphere. Mater Sci Eng A 2009;517:105–13.
  • Semboshi S, Takasugi T. Fabrication of high-strength and high-conductivity Cu–Ti alloy wire by aging in a hydrogen atmosphere. J Alloys Compd 2013;580:S397–400.
  • Liang H, Upmanyu M, Huang H. Size-dependent elasticity of nanowires: Nonlinear effects. Phys Rev B - Condens Matter Mater Phys 2005.
  • Chen S, Duan Y-H, Huang B, Hu W-C. Structural properties, phase stability, elastic properties and electronic structures of Cu–Ti intermetallics. Philos Mag 2015;95:3535–53.
  • Vauth S, Mayr SG. Atomic dynamics in molecular dynamics simulations of glassy CuTi thin films. Appl Phys Lett 2005;86:061913.
  • Dalgic SSS, Celtek M. Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation. J Optoelectron Adv Mater 2011;13:1563–9.
  • Rogachev SA, Politano O, Baras F, Rogachev AS. Explosive crystallization in amorphous CuTi thin films: a molecular dynamics study. J Non Cryst Solids 2019;505:202–10.
  • Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comput Phys 1995;117:1–19.
  • Çeltek M, Şengül S. Effects of cooling rate on the atomic structure and glass formation process of Co90Zr10 metallic glass investigated by molecular dynamics simulations. Turkish J Phys 2019;43:11–25.
  • Çeltek M, Şengül S, Dömekeli Ü. Hızlı Soğutma Sürecinde Dörtlü Zr48Cu36Ag8Al8 İri Hacimli Metalik Camının Atomik Yapısının Gelişimi. Süleyman Demirel Üniversitesi Fen Bilim Enstitüsü Derg 2019;23:954–62.
  • Celtek M. The effect of atomic concentration on the structural evolution of Zr100-xCox alloys during rapid solidification process. J Non Cryst Solids 2019;513:84–96.
  • Zhou XW, Johnson RA, Wadley HNG. Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys Rev B 2004;69:144113.
  • Çeltek M, Dömekeli Ü, Şengül S. Moleküler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal Gelişimi ve Erime Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması. Bitlis Eren Üniversitesi Fen Bilim Derg 2019;8:413–27.
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984;81:511–9.
  • Thompson AP, Plimpton SJ, Mattson W. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J Chem Phys 2009;131:154107.
  • Eremenko VN, Buyanov YI, Prima SB. Phase diagram of the system titanium-copper. Sov Powder Metall Met Ceram 1966;5:494–502.
  • Kim YC, Bae DH, Kim WT, Kim DH. Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. J Non Cryst Solids 2003;325:242–50.
  • Kleppa OJ, Watanabe S. Thermochemistry of alloys of transition metals: Part III. Copper-Silver, -Titanium, Zirconium, and -Hafnium at 1373 K. Metall Trans B 1982;13:391–401.
  • Guder V, Sengul S. Tensile strength and failure mechanism of hcp zirconium nanowires: Effect of diameter, temperature and strain rate. Comput Mater Sci 2020;177:109551.
  • Nysten B, Fretigny C, Cuenot S. Elastic modulus of nanomaterials: resonant contact-AFM measurement and reduced-size effects (Invited Paper). In: Geer RE, Meyendorf N, Baaklini GY, Michel B, editors. Testing, Reliab. Appl. Micro- Nano-Material Syst. III, 2005, p. 78.
  • Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, et al. Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys Rev B 2006;73:235409.
  • Nilsson SG, Borrisé X, Montelius L. Size effect on Young’s modulus of thin chromium cantilevers. Appl Phys Lett 2004;85:3555–7.
  • Li X, Ono T, Wang Y, Esashi M. Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus. Appl Phys Lett 2003;83:3081–3.
  • Nam C-Y, Jaroenapibal P, Tham D, Luzzi DE, Evoy S, Fischer JE. Diameter-Dependent Electromechanical Properties of GaN Nanowires. Nano Lett 2006;6:153–8.
  • Liu KH, Wang WL, Xu Z, Liao L, Bai XD, Wang EG. In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl Phys Lett 2006;89:221908.
  • Liang W, Zhou M. Size and Strain Rate Effects in Tensile Deformation of Cu Nanowires. 2003 Nanotechnol. Conf. Trade Show - Nanotech, vol. 2, 2003, p. 452–5.
  • Sainath G, Choudhary BK, Jayakumar T. Molecular dynamics simulation studies on the size dependent tensile deformation and fracture behaviour of body centred cubic iron nanowires. Comput Mater Sci 2015;104:76–83.
  • Diao J, Gall K, Dunn ML, Zimmerman JA. Atomistic simulations of the yielding of gold nanowires. Acta Mater 2006;54:643–53.
  • Zhu T, Li J, Samanta A, Leach A, Gall K. Temperature and Strain-Rate Dependence of Surface Dislocation Nucleation. Phys Rev Lett 2008;100:025502.
  • Jennings AT, Weinberger CR, Lee S-W, Aitken ZH, Meza L, Greer JR. Modeling dislocation nucleation strengths in pristine metallic nanowires under experimental conditions. Acta Mater 2013;61:2244–59.
  • Weertman JR. Hall-Petch strengthening in nanocrystalline metals. Mater Sci Eng A 1993;166:161–7.
  • Chokshi AH, Rosen A, Karch J, Gleiter H. On the validity of the hall-petch relationship in nanocrystalline materials. Scr Metall 1989;23:1679–83.
  • Hall EO. The Deformation and Ageing of Mild Steel: II Characteristics of the Lüders Deformation. Proc Phys Soc Sect B 1951;64:742–7.
  • Gupta SK, McEwan A, Lukačević I. Elasticity of DNA nanowires. Phys Lett Sect A Gen At Solid State Phys 2016.
  • Sarkar J, Das DK. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu–Ag core–shell nanowire using molecular dynamics simulations. J Nanoparticle Res 2018;20:9.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Vildan Güder 0000-0002-8673-2127

Murat Çeltek 0000-0001-7737-0411

Publication Date December 30, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

APA Güder, V., & Çeltek, M. (2020). CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı. Türk Doğa Ve Fen Dergisi, 9(2), 24-34. https://doi.org/10.46810/tdfd.766470
AMA Güder V, Çeltek M. CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı. TJNS. December 2020;9(2):24-34. doi:10.46810/tdfd.766470
Chicago Güder, Vildan, and Murat Çeltek. “CuTi Nanotellerinin Germe Oranı Ve Boyuta Bağlı Mekanik Davranışı”. Türk Doğa Ve Fen Dergisi 9, no. 2 (December 2020): 24-34. https://doi.org/10.46810/tdfd.766470.
EndNote Güder V, Çeltek M (December 1, 2020) CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı. Türk Doğa ve Fen Dergisi 9 2 24–34.
IEEE V. Güder and M. Çeltek, “CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı”, TJNS, vol. 9, no. 2, pp. 24–34, 2020, doi: 10.46810/tdfd.766470.
ISNAD Güder, Vildan - Çeltek, Murat. “CuTi Nanotellerinin Germe Oranı Ve Boyuta Bağlı Mekanik Davranışı”. Türk Doğa ve Fen Dergisi 9/2 (December 2020), 24-34. https://doi.org/10.46810/tdfd.766470.
JAMA Güder V, Çeltek M. CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı. TJNS. 2020;9:24–34.
MLA Güder, Vildan and Murat Çeltek. “CuTi Nanotellerinin Germe Oranı Ve Boyuta Bağlı Mekanik Davranışı”. Türk Doğa Ve Fen Dergisi, vol. 9, no. 2, 2020, pp. 24-34, doi:10.46810/tdfd.766470.
Vancouver Güder V, Çeltek M. CuTi Nanotellerinin Germe Oranı ve Boyuta Bağlı Mekanik Davranışı. TJNS. 2020;9(2):24-3.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.