Review
BibTex RIS Cite

Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri

Year 2021, Volume: 10 Issue: 1, 290 - 297, 25.06.2021
https://doi.org/10.46810/tdfd.780698

Abstract

Kütleçekim dalgalarının varlığı Haziran 1916'da A. Einstein tarafından yazılan bir makalede öngörülmüştür. Söz konusu dalgalar ivmelenmiş kütleli cisimlerin sebep olduğu uzay-zaman eğriliğindeki tedirginmelerdir. 1960'lardan itibaren, bilim insanları bu dalgaları gözlemleyebilmek için çeşitli teknikler geliştirmişlerdir. Öngörüde bulunduktan yaklaşık 100 yıl geçmişken; 2015 yılının 14 Eylül günü Lazer Girişimölçerli Kütleçekim Dalga Gözlemevlerinin iki detektörü, eşzamanlı olarak bir enine kütleçekim dalga sinyali ölçmüşlerdir. Bir asırı bulan teorik ve teknolojik çalışmalar, özellikle Lazer Girişimölçerli detektörlü gözlemevlerinin bu başarısı bu derlemenin konusudur. Çalışmamızda ayrıca kütleçekim dalgalarının olası kaynaklarından ve bu dalgaları ölçmek için geliştirilen tekniklerden bahsedeceğiz. Bu teknikler evreni araştırmak için yeni bir pencere ve astronomik gözlemler için yeni bir çağın başlangıcı olmuştur.

References

  • Einstein A. Approximative integration of the field equations of gravitation. Sitzungsber Preuss Akad Wiss Berlin (Math Phys). 1916;1916(688-696):1.
  • Einstein A. About Gravity Waves. Sitzungsber Preuss Akad Wiss Berlin (Math Phys). 1918:154.
  • Flanagan EE, Hughes SA. The basics of gravitational wave theory. New Journal of Physics. 2005;7(1):204.
  • Woodhouse N. Gravitational Waves. General Relativity. 2007:145-56.
  • Schwarzchild K. On the gravitational field of a point mass in Einstein’s theory. Reimer, Berlin, S. 1916.
  • Crothers SJ. A brief history of black holes. Progress in Physics. 2006;2:54.
  • Kerr RP. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical review letters. 1963;11(5):237.
  • Kerr R. Scalar invariants and groups of motions in a four dimensional Einstein space. Journal of Mathematics and Mechanics. 1963:33-54.
  • d'Inverno RA. Introducing Einstein's relativity: Clarendon Press; 1992.
  • Pitkin M, Reid S, Rowan S, Hough J. Gravitational wave detection by interferometry (ground and space). Living Reviews in Relativity. 2011;14(1):5.
  • Weber J. Evidence for discovery of gravitational radiation. Physical Review Letters. 1969;22(24):1320.
  • Hulse RA, Taylor JH. Discovery of a pulsar in a binary system. The Astrophysical Journal. 1975;195:L51-L3.
  • Damour T. 1974: the discovery of the first binary pulsar. Classical and Quantum Gravity. 2015;32(12):124009.
  • Seeds MA, Backman D. Horizons: Exploring the universe: Nelson Education; 2013.
  • Collins H. Gravity's shadow: the search for gravitational waves: University of Chicago Press; 2010.
  • Davies PCW, Davies G. The search for gravity waves: CUP Archive; 1980.
  • Schutz BF. Gravitational wave sources and their detectability. Classical and Quantum Gravity. 1989;6(12):1761.
  • Andersson N, Ferrari V, Jones D, Kokkotas K, Krishnan B, Read J, et al. Gravitational waves from neutron stars: promises and challenges. General Relativity and Gravitation. 2011;43(2):409-36.
  • Thorne KS. Gravitational-wave research: Current status and future prospects. Reviews of Modern Physics. 1980;52(2):285.
  • Blair DG. The detection of gravitational waves: Cambridge university press; 2005.
  • Hughes SA. Listening to the universe with gravitational-wave astronomy. Annals of Physics. 2003;303(1):142-78.
  • Raab FJ. Progress Toward a Laser Interferometer Gravitational-Wave Observatory. APS. 1996:G5. 02.
  • Abbott B, Abbott R, Adhikari R, Ageev A, Allen B, Amin R, et al. Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2004;517(1-3):154-79.
  • Cho A. To catch a wave. American Association for the Advancement of Science; 2015.
  • Sanjuan J, Mueller G, Livas J, Preston A, Arsenovic P, Castellucci K, et al. LISA telescope spacer design investigations. cosp. 2010;38:10.
  • Moore CJ, Cole RH, Berry CP. Gravitational-wave sensitivity curves. Classical and Quantum Gravity. 2014;32(1):015014.
  • Easther R, Lim EA. Stochastic gravitational wave production after inflation. Journal of Cosmology and Astroparticle Physics. 2006;2006(04):010.
  • Saulson PR. Fundamentals of interferometric gravitational wave detectors: World Scientific; 1994.
  • Aufmuth P, Danzmann K. Gravitational wave detectors. New Journal of Physics. 2005;7(1):202.
  • Harry GM, Collaboration LS. Advanced LIGO: the next generation of gravitational wave detectors. Classical and Quantum Gravity. 2010;27(8):084006.
  • Owen BJ, Lindblom L, Cutler C, Schutz BF, Vecchio A, Andersson N. Gravitational waves from hot young rapidly rotating neutron stars. Physical Review D. 1998;58(8):084020.
  • Gogoberidze G, Kahniashvili T, Kosowsky A. Spectrum of gravitational radiation from primordial turbulence. Physical Review D. 2007;76(8):083002.
  • Smartt SJ. Progenitors of core-collapse supernovae. Annual Review of Astronomy and Astrophysics. 2009;47.
  • Malbon RK, Baugh C, Frenk C, Lacey C. Black hole growth in hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society. 2007;382(4):1394-414.
  • Konoplya R, Zhidenko A. Detection of gravitational waves from black holes: Is there a window for alternative theories? Physics Letters B. 2016;756:350-3.
  • Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, et al. LIGO: the laser interferometer gravitational-wave observatory. Reports on Progress in Physics. 2009;72(7):076901.
  • Danzmann K, Chen J, Nelson P, Niebauer T, Rüdiger A, Schilling R, et al. The GEO—project a long-baseline laser interferometer for the detection of gravitational waves. Relativistic Gravity Research with Emphasis on Experiments and Observations: Springer; 1992. p. 184-209.
  • Estabrook FB, Wahlquist HD. Response of Doppler spacecraft tracking to gravitational radiation. General Relativity and Gravitation. 1975;6(5):439-47.
  • Thorne KS, Braginskii V. Gravitational-wave bursts from the nuclei of distant galaxies and quasars-Proposal for detection using Doppler tracking of interplanetary spacecraft. The Astrophysical Journal. 1976;204:L1-L6.
  • Bertotti B, Carr B. The prospects of detecting gravitational background radiation by Doppler tracking interplanetary spacecraft. The Astrophysical Journal. 1980;236:1000-11.
  • Fafone V. Resonant-mass detectors: status and perspectives. Classical and Quantum Gravity. 2004;21(5):S377.
  • Michelson PF, Taber RC. Can a resonant-mass gravitational-wave detector have wideband sensitivity? Physical Review D. 1984;29(10):2149.
  • Aguiar OD. Past, present and future of the Resonant-Mass gravitational wave detectors. Research in Astronomy and Astrophysics. 2011;11(1):1.
  • Astone P. Resonant mass detectors: present status. Classical and Quantum Gravity. 2002;19(7):1227.
  • Boughn SP, Fairbank W, Mapoles E, McAshan M, Michelson P, Giffard R, et al. Observations with a low-temperature, resonant mass, gravitational radiation detector. The Astrophysical Journal. 1982;261:L19-L22.
  • Hollenhorst JN. Quantum limits on resonant-mass gravitational-radiation detectors. Physical Review D. 1979;19(6):1669.
  • Astone P, Bassan M, Bonifazi P, Carelli P, Coccia E, Cosmelli C, et al. Search for gravitational radiation with the Allegro and Explorer detectors. Physical review D. 1999;59(12):122001.
  • Cerdonio M, Bonaldi M, Carlesso D, Cavallini E, Caruso S, Colombo A, et al. The ultracryogenic gravitational-wave detector AURIGA. Classical and Quantum Gravity. 1997;14(6):1491.
  • Astone P, Bassan M, Bonifazi P, Carelli P, Castellano M, Cavallari G, et al. Long-term operation of the Rome" Explorer" cryogenic gravitational wave detector. Physical Review D. 1993;47(2):362.
  • Astone P, Bassan M, Bonifazi P, Carelli P, Coccia E, Cosmelli C, et al. The gravitational wave detector NAUTILUS operating at T= 0.1 K. Astroparticle Physics. 1997;7(3):231-43.
  • Astone P, Bassan M, Blair D, Bonifazi P, Carelli P, Coccia E, et al. Search for coincident excitation of the widely spaced resonant gravitational wave detectors EXPLORER, NAUTILUS and NIOBE. Astroparticle Physics. 1999;10(1):83-92.
  • Astone P, Babusci D, Bassan M, Bonifazi P, Carelli P, Cavallari G, et al. Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001. Classical and Quantum Gravity. 2002;19(21):5449.
  • Thorne KS, Will CM. Theoretical frameworks for testing relativistic gravity. I. Foundations. The Astrophysical Journal. 1971;163:595.
  • Weiss R. Gravitational radiation. Reviews of Modern Physics. 1999;71(2):S187.
  • Barish BC, Weiss R. LIGO and the detection of gravitational waves. Physics Today. 1999;52:44-50.
  • Castelvecchi D. Gravitational wave detection wins physics Nobel. Nature News. 2017;550(7674):19.
  • Drever R, Hought J, Munley A, Lee S-A, Spero R, Whitcomb S, et al. Gravitational wave detectors using laser interferometers and optical cavities: Ideas, principles and prospects. Quantum Optics, Experimental Gravity, and Measurement Theory: Springer; 1983. p. 503-14.
  • Luo J, Chen L-S, Duan H-Z, Gong Y-G, Hu S, Ji J, et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity. 2016;33(3):035010.
  • Bartolo N, Caprini C, Domcke V, Figueroa DG, Garcia-Bellido J, Guzzetti MC, et al. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves. Journal of Cosmology and Astroparticle Physics. 2016;2016(12):026.
  • Caprini C, Hindmarsh M, Huber S, Konstandin T, Kozaczuk J, Nardini G, et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. Journal of cosmology and astroparticle physics. 2016;2016(04):001.
  • Spero R, Whitcomb S. The laser interferometer gravitational-wave observatory (LIGO). Optics and Photonics News. 1995;6(7):35-9.
  • Abramovici A, Althouse WE, Drever RW, Gürsel Y, Kawamura S, Raab FJ, et al. LIGO: The laser interferometer gravitational-wave observatory. science. 1992;256(5055):325-33.
  • Michelson AA, Morley EW. On the Relative Motion of the Earth and of the Luminiferous Ether. Sidereal Messenger, vol 6, pp 306-310. 1887;6:306-10.
  • Accadia T, Acernese F, Alshourbagy M, Amico P, Antonucci F, Aoudia S, et al. Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation. 2012;7(03):P03012.
  • Rakhmanov M, Romano J, Whelan JT. High-frequency corrections to the detector response and their effect on searches for gravitational waves. Classical and Quantum Gravity. 2008;25(18):184017.
  • Ando M, Arai K, Takahashi R, Heinzel G, Kawamura S, Tatsumi D, et al. Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. Physical Review Letters. 2001;86(18):3950.
  • Zhang B. Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars. The Astrophysical Journal Letters. 2013;763(1):L22.
  • Voss R, Tauris TM. Galactic distribution of merging neutron stars and black holes–prospects for short gamma-ray burst progenitors and LIGO/VIRGO. Monthly Notices of the Royal Astronomical Society. 2003;342(4):1169-84.
  • Thorne KS. Probing black holes and relativistic stars with gravitational waves. Black Holes And The Structure Of The Universe: World Scientific; 2000. p. 81-118.
  • Fritschel P. Advanced LIGO systems design. LIGO Tech Note T-010075-00-D, http://docuserv ligo caltech edu. 2001.
  • Rüdiger A, Danzmann K. The GEO 600 Gravitational Wave Detector Status, Research, Development. Gyros, Clocks, Interferometers: Testing Relativistic Graviy in Space: Springer; 2001. p. 131-40.
  • Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr B, et al. The GEO 600 gravitational wave detector. Classical and Quantum Gravity. 2002;19(7):1377.
  • Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity. 2014;32(2):024001.
  • Bradaschia C, Del Fabbro R, Di Virgilio A, Giazotto A, Kautzky H, Montelatici V, et al. The VIRGO project: a wide band antenna for gravitational wave detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1990;289(3):518-25.
  • Tsubono K, editor 300-m laser interferometer gravitational wave detector (TAMA300) in Japan. First Edoardo Amaldi conference on gravitational wave experiments; 1995: World Scientific.
  • Takahashi R, collaboration T. Status of TAMA300. Classical and Quantum Gravity. 2004;21(5):S403.
  • Danzmann K, Team LS. LISA: laser interferometer space antenna for gravitational wave measurements. Classical and Quantum Gravity. 1996;13(11A):A247.
  • Hough J. LISA-Laser Interferometer Space Antenna for gravitational wave measurements. gwe. 1995:50.
  • Prodi G, Martinucci V, Mezzena R, Vinante A, Vitale S, Heng I, et al. Initial operation of the International Gravitational Event collaboration. International Journal of Modern Physics D. 2000;9(03):237-45.
  • Astone P, Babusci D, Baggio L, Bassan M, Blair D, Bonaldi M, et al. Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Physical Review D. 2003;68(2):022001.
  • Astone P, Babusci D, Baggio L, Bassan M, Bignotto M, Bonaldi M, et al. Results of the IGEC-2 search for gravitational wave bursts during 2005. Physical Review D. 2007;76(10):102001.
  • Allen Z, Astone P, Baggio L, Busby D, Bassan M, Blair D, et al. First search for gravitational wave bursts with a network of detectors. Physical review letters. 2000;85(24):5046.
  • Whitcomb SE. Ground-based gravitational-wave detection: now and future. Classical and Quantum Gravity. 2008;25(11):114013.
  • Blackburn L, Cadonati L, Caride S, Caudill S, Chatterji S, Christensen N, et al. The LSC glitch group: monitoring noise transients during the fifth LIGO science run. Classical and Quantum Gravity. 2008;25(18):184004.
  • Gustafson E, Shoemaker D, Strain K, Weiss R. LSC white paper on detector research and development. LIGO Document T990080-00-D. 1999.
  • Collaboration LS, Collaboration V. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. PHYSICAL REVIEW X Phys Rev X. 2019;9:031040.
  • Abbott B, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X. 2019;9(3):031040.
  • Abbott BP, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, et al. Observation of gravitational waves from a binary black hole merger. Physical review letters. 2016;116(6):061102.
  • Fox KC. The big bang theory: What it is, where it came from, and why it works: John Wiley & Sons; 2002.
  • Linde A, Linde D, Mezhlumian A. From the Big Bang theory to the theory of a stationary universe. Physical Review D. 1994;49(4):1783.
  • Caprini C, Figueroa DG. Cosmological backgrounds of gravitational waves. Classical and Quantum Gravity. 2018;35(16):163001.
  • Bauswein A, Just O, Janka H-T, Stergioulas N. Neutron-star radius constraints from GW170817 and future detections. The Astrophysical Journal Letters. 2017;850(2):L34.
  • Carson Z, Seymour BC, Yagi K. Future prospects for probing scalar–tensor theories with gravitational waves from mixed binaries. Classical and Quantum Gravity. 2020;37(6):065008.
Year 2021, Volume: 10 Issue: 1, 290 - 297, 25.06.2021
https://doi.org/10.46810/tdfd.780698

Abstract

References

  • Einstein A. Approximative integration of the field equations of gravitation. Sitzungsber Preuss Akad Wiss Berlin (Math Phys). 1916;1916(688-696):1.
  • Einstein A. About Gravity Waves. Sitzungsber Preuss Akad Wiss Berlin (Math Phys). 1918:154.
  • Flanagan EE, Hughes SA. The basics of gravitational wave theory. New Journal of Physics. 2005;7(1):204.
  • Woodhouse N. Gravitational Waves. General Relativity. 2007:145-56.
  • Schwarzchild K. On the gravitational field of a point mass in Einstein’s theory. Reimer, Berlin, S. 1916.
  • Crothers SJ. A brief history of black holes. Progress in Physics. 2006;2:54.
  • Kerr RP. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical review letters. 1963;11(5):237.
  • Kerr R. Scalar invariants and groups of motions in a four dimensional Einstein space. Journal of Mathematics and Mechanics. 1963:33-54.
  • d'Inverno RA. Introducing Einstein's relativity: Clarendon Press; 1992.
  • Pitkin M, Reid S, Rowan S, Hough J. Gravitational wave detection by interferometry (ground and space). Living Reviews in Relativity. 2011;14(1):5.
  • Weber J. Evidence for discovery of gravitational radiation. Physical Review Letters. 1969;22(24):1320.
  • Hulse RA, Taylor JH. Discovery of a pulsar in a binary system. The Astrophysical Journal. 1975;195:L51-L3.
  • Damour T. 1974: the discovery of the first binary pulsar. Classical and Quantum Gravity. 2015;32(12):124009.
  • Seeds MA, Backman D. Horizons: Exploring the universe: Nelson Education; 2013.
  • Collins H. Gravity's shadow: the search for gravitational waves: University of Chicago Press; 2010.
  • Davies PCW, Davies G. The search for gravity waves: CUP Archive; 1980.
  • Schutz BF. Gravitational wave sources and their detectability. Classical and Quantum Gravity. 1989;6(12):1761.
  • Andersson N, Ferrari V, Jones D, Kokkotas K, Krishnan B, Read J, et al. Gravitational waves from neutron stars: promises and challenges. General Relativity and Gravitation. 2011;43(2):409-36.
  • Thorne KS. Gravitational-wave research: Current status and future prospects. Reviews of Modern Physics. 1980;52(2):285.
  • Blair DG. The detection of gravitational waves: Cambridge university press; 2005.
  • Hughes SA. Listening to the universe with gravitational-wave astronomy. Annals of Physics. 2003;303(1):142-78.
  • Raab FJ. Progress Toward a Laser Interferometer Gravitational-Wave Observatory. APS. 1996:G5. 02.
  • Abbott B, Abbott R, Adhikari R, Ageev A, Allen B, Amin R, et al. Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2004;517(1-3):154-79.
  • Cho A. To catch a wave. American Association for the Advancement of Science; 2015.
  • Sanjuan J, Mueller G, Livas J, Preston A, Arsenovic P, Castellucci K, et al. LISA telescope spacer design investigations. cosp. 2010;38:10.
  • Moore CJ, Cole RH, Berry CP. Gravitational-wave sensitivity curves. Classical and Quantum Gravity. 2014;32(1):015014.
  • Easther R, Lim EA. Stochastic gravitational wave production after inflation. Journal of Cosmology and Astroparticle Physics. 2006;2006(04):010.
  • Saulson PR. Fundamentals of interferometric gravitational wave detectors: World Scientific; 1994.
  • Aufmuth P, Danzmann K. Gravitational wave detectors. New Journal of Physics. 2005;7(1):202.
  • Harry GM, Collaboration LS. Advanced LIGO: the next generation of gravitational wave detectors. Classical and Quantum Gravity. 2010;27(8):084006.
  • Owen BJ, Lindblom L, Cutler C, Schutz BF, Vecchio A, Andersson N. Gravitational waves from hot young rapidly rotating neutron stars. Physical Review D. 1998;58(8):084020.
  • Gogoberidze G, Kahniashvili T, Kosowsky A. Spectrum of gravitational radiation from primordial turbulence. Physical Review D. 2007;76(8):083002.
  • Smartt SJ. Progenitors of core-collapse supernovae. Annual Review of Astronomy and Astrophysics. 2009;47.
  • Malbon RK, Baugh C, Frenk C, Lacey C. Black hole growth in hierarchical galaxy formation. Monthly Notices of the Royal Astronomical Society. 2007;382(4):1394-414.
  • Konoplya R, Zhidenko A. Detection of gravitational waves from black holes: Is there a window for alternative theories? Physics Letters B. 2016;756:350-3.
  • Abbott B, Abbott R, Adhikari R, Ajith P, Allen B, Allen G, et al. LIGO: the laser interferometer gravitational-wave observatory. Reports on Progress in Physics. 2009;72(7):076901.
  • Danzmann K, Chen J, Nelson P, Niebauer T, Rüdiger A, Schilling R, et al. The GEO—project a long-baseline laser interferometer for the detection of gravitational waves. Relativistic Gravity Research with Emphasis on Experiments and Observations: Springer; 1992. p. 184-209.
  • Estabrook FB, Wahlquist HD. Response of Doppler spacecraft tracking to gravitational radiation. General Relativity and Gravitation. 1975;6(5):439-47.
  • Thorne KS, Braginskii V. Gravitational-wave bursts from the nuclei of distant galaxies and quasars-Proposal for detection using Doppler tracking of interplanetary spacecraft. The Astrophysical Journal. 1976;204:L1-L6.
  • Bertotti B, Carr B. The prospects of detecting gravitational background radiation by Doppler tracking interplanetary spacecraft. The Astrophysical Journal. 1980;236:1000-11.
  • Fafone V. Resonant-mass detectors: status and perspectives. Classical and Quantum Gravity. 2004;21(5):S377.
  • Michelson PF, Taber RC. Can a resonant-mass gravitational-wave detector have wideband sensitivity? Physical Review D. 1984;29(10):2149.
  • Aguiar OD. Past, present and future of the Resonant-Mass gravitational wave detectors. Research in Astronomy and Astrophysics. 2011;11(1):1.
  • Astone P. Resonant mass detectors: present status. Classical and Quantum Gravity. 2002;19(7):1227.
  • Boughn SP, Fairbank W, Mapoles E, McAshan M, Michelson P, Giffard R, et al. Observations with a low-temperature, resonant mass, gravitational radiation detector. The Astrophysical Journal. 1982;261:L19-L22.
  • Hollenhorst JN. Quantum limits on resonant-mass gravitational-radiation detectors. Physical Review D. 1979;19(6):1669.
  • Astone P, Bassan M, Bonifazi P, Carelli P, Coccia E, Cosmelli C, et al. Search for gravitational radiation with the Allegro and Explorer detectors. Physical review D. 1999;59(12):122001.
  • Cerdonio M, Bonaldi M, Carlesso D, Cavallini E, Caruso S, Colombo A, et al. The ultracryogenic gravitational-wave detector AURIGA. Classical and Quantum Gravity. 1997;14(6):1491.
  • Astone P, Bassan M, Bonifazi P, Carelli P, Castellano M, Cavallari G, et al. Long-term operation of the Rome" Explorer" cryogenic gravitational wave detector. Physical Review D. 1993;47(2):362.
  • Astone P, Bassan M, Bonifazi P, Carelli P, Coccia E, Cosmelli C, et al. The gravitational wave detector NAUTILUS operating at T= 0.1 K. Astroparticle Physics. 1997;7(3):231-43.
  • Astone P, Bassan M, Blair D, Bonifazi P, Carelli P, Coccia E, et al. Search for coincident excitation of the widely spaced resonant gravitational wave detectors EXPLORER, NAUTILUS and NIOBE. Astroparticle Physics. 1999;10(1):83-92.
  • Astone P, Babusci D, Bassan M, Bonifazi P, Carelli P, Cavallari G, et al. Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001. Classical and Quantum Gravity. 2002;19(21):5449.
  • Thorne KS, Will CM. Theoretical frameworks for testing relativistic gravity. I. Foundations. The Astrophysical Journal. 1971;163:595.
  • Weiss R. Gravitational radiation. Reviews of Modern Physics. 1999;71(2):S187.
  • Barish BC, Weiss R. LIGO and the detection of gravitational waves. Physics Today. 1999;52:44-50.
  • Castelvecchi D. Gravitational wave detection wins physics Nobel. Nature News. 2017;550(7674):19.
  • Drever R, Hought J, Munley A, Lee S-A, Spero R, Whitcomb S, et al. Gravitational wave detectors using laser interferometers and optical cavities: Ideas, principles and prospects. Quantum Optics, Experimental Gravity, and Measurement Theory: Springer; 1983. p. 503-14.
  • Luo J, Chen L-S, Duan H-Z, Gong Y-G, Hu S, Ji J, et al. TianQin: a space-borne gravitational wave detector. Classical and Quantum Gravity. 2016;33(3):035010.
  • Bartolo N, Caprini C, Domcke V, Figueroa DG, Garcia-Bellido J, Guzzetti MC, et al. Science with the space-based interferometer LISA. IV: Probing inflation with gravitational waves. Journal of Cosmology and Astroparticle Physics. 2016;2016(12):026.
  • Caprini C, Hindmarsh M, Huber S, Konstandin T, Kozaczuk J, Nardini G, et al. Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions. Journal of cosmology and astroparticle physics. 2016;2016(04):001.
  • Spero R, Whitcomb S. The laser interferometer gravitational-wave observatory (LIGO). Optics and Photonics News. 1995;6(7):35-9.
  • Abramovici A, Althouse WE, Drever RW, Gürsel Y, Kawamura S, Raab FJ, et al. LIGO: The laser interferometer gravitational-wave observatory. science. 1992;256(5055):325-33.
  • Michelson AA, Morley EW. On the Relative Motion of the Earth and of the Luminiferous Ether. Sidereal Messenger, vol 6, pp 306-310. 1887;6:306-10.
  • Accadia T, Acernese F, Alshourbagy M, Amico P, Antonucci F, Aoudia S, et al. Virgo: a laser interferometer to detect gravitational waves. Journal of Instrumentation. 2012;7(03):P03012.
  • Rakhmanov M, Romano J, Whelan JT. High-frequency corrections to the detector response and their effect on searches for gravitational waves. Classical and Quantum Gravity. 2008;25(18):184017.
  • Ando M, Arai K, Takahashi R, Heinzel G, Kawamura S, Tatsumi D, et al. Stable operation of a 300-m laser interferometer with sufficient sensitivity to detect gravitational-wave events within our galaxy. Physical Review Letters. 2001;86(18):3950.
  • Zhang B. Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars. The Astrophysical Journal Letters. 2013;763(1):L22.
  • Voss R, Tauris TM. Galactic distribution of merging neutron stars and black holes–prospects for short gamma-ray burst progenitors and LIGO/VIRGO. Monthly Notices of the Royal Astronomical Society. 2003;342(4):1169-84.
  • Thorne KS. Probing black holes and relativistic stars with gravitational waves. Black Holes And The Structure Of The Universe: World Scientific; 2000. p. 81-118.
  • Fritschel P. Advanced LIGO systems design. LIGO Tech Note T-010075-00-D, http://docuserv ligo caltech edu. 2001.
  • Rüdiger A, Danzmann K. The GEO 600 Gravitational Wave Detector Status, Research, Development. Gyros, Clocks, Interferometers: Testing Relativistic Graviy in Space: Springer; 2001. p. 131-40.
  • Willke B, Aufmuth P, Aulbert C, Babak S, Balasubramanian R, Barr B, et al. The GEO 600 gravitational wave detector. Classical and Quantum Gravity. 2002;19(7):1377.
  • Acernese F, Agathos M, Agatsuma K, Aisa D, Allemandou N, Allocca A, et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Classical and Quantum Gravity. 2014;32(2):024001.
  • Bradaschia C, Del Fabbro R, Di Virgilio A, Giazotto A, Kautzky H, Montelatici V, et al. The VIRGO project: a wide band antenna for gravitational wave detection. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1990;289(3):518-25.
  • Tsubono K, editor 300-m laser interferometer gravitational wave detector (TAMA300) in Japan. First Edoardo Amaldi conference on gravitational wave experiments; 1995: World Scientific.
  • Takahashi R, collaboration T. Status of TAMA300. Classical and Quantum Gravity. 2004;21(5):S403.
  • Danzmann K, Team LS. LISA: laser interferometer space antenna for gravitational wave measurements. Classical and Quantum Gravity. 1996;13(11A):A247.
  • Hough J. LISA-Laser Interferometer Space Antenna for gravitational wave measurements. gwe. 1995:50.
  • Prodi G, Martinucci V, Mezzena R, Vinante A, Vitale S, Heng I, et al. Initial operation of the International Gravitational Event collaboration. International Journal of Modern Physics D. 2000;9(03):237-45.
  • Astone P, Babusci D, Baggio L, Bassan M, Blair D, Bonaldi M, et al. Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Physical Review D. 2003;68(2):022001.
  • Astone P, Babusci D, Baggio L, Bassan M, Bignotto M, Bonaldi M, et al. Results of the IGEC-2 search for gravitational wave bursts during 2005. Physical Review D. 2007;76(10):102001.
  • Allen Z, Astone P, Baggio L, Busby D, Bassan M, Blair D, et al. First search for gravitational wave bursts with a network of detectors. Physical review letters. 2000;85(24):5046.
  • Whitcomb SE. Ground-based gravitational-wave detection: now and future. Classical and Quantum Gravity. 2008;25(11):114013.
  • Blackburn L, Cadonati L, Caride S, Caudill S, Chatterji S, Christensen N, et al. The LSC glitch group: monitoring noise transients during the fifth LIGO science run. Classical and Quantum Gravity. 2008;25(18):184004.
  • Gustafson E, Shoemaker D, Strain K, Weiss R. LSC white paper on detector research and development. LIGO Document T990080-00-D. 1999.
  • Collaboration LS, Collaboration V. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. PHYSICAL REVIEW X Phys Rev X. 2019;9:031040.
  • Abbott B, Abbott R, Abbott T, Abraham S, Acernese F, Ackley K, et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Physical Review X. 2019;9(3):031040.
  • Abbott BP, Abbott R, Abbott T, Abernathy M, Acernese F, Ackley K, et al. Observation of gravitational waves from a binary black hole merger. Physical review letters. 2016;116(6):061102.
  • Fox KC. The big bang theory: What it is, where it came from, and why it works: John Wiley & Sons; 2002.
  • Linde A, Linde D, Mezhlumian A. From the Big Bang theory to the theory of a stationary universe. Physical Review D. 1994;49(4):1783.
  • Caprini C, Figueroa DG. Cosmological backgrounds of gravitational waves. Classical and Quantum Gravity. 2018;35(16):163001.
  • Bauswein A, Just O, Janka H-T, Stergioulas N. Neutron-star radius constraints from GW170817 and future detections. The Astrophysical Journal Letters. 2017;850(2):L34.
  • Carson Z, Seymour BC, Yagi K. Future prospects for probing scalar–tensor theories with gravitational waves from mixed binaries. Classical and Quantum Gravity. 2020;37(6):065008.
There are 93 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Figen Binbay 0000-0002-1390-4151

İlhan Candan 0000-0001-9489-5324

Publication Date June 25, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Binbay, F., & Candan, İ. (2021). Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri. Türk Doğa Ve Fen Dergisi, 10(1), 290-297. https://doi.org/10.46810/tdfd.780698
AMA Binbay F, Candan İ. Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri. TJNS. June 2021;10(1):290-297. doi:10.46810/tdfd.780698
Chicago Binbay, Figen, and İlhan Candan. “Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri”. Türk Doğa Ve Fen Dergisi 10, no. 1 (June 2021): 290-97. https://doi.org/10.46810/tdfd.780698.
EndNote Binbay F, Candan İ (June 1, 2021) Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri. Türk Doğa ve Fen Dergisi 10 1 290–297.
IEEE F. Binbay and İ. Candan, “Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri”, TJNS, vol. 10, no. 1, pp. 290–297, 2021, doi: 10.46810/tdfd.780698.
ISNAD Binbay, Figen - Candan, İlhan. “Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri”. Türk Doğa ve Fen Dergisi 10/1 (June 2021), 290-297. https://doi.org/10.46810/tdfd.780698.
JAMA Binbay F, Candan İ. Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri. TJNS. 2021;10:290–297.
MLA Binbay, Figen and İlhan Candan. “Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 1, 2021, pp. 290-7, doi:10.46810/tdfd.780698.
Vancouver Binbay F, Candan İ. Astronomik Gözlemlerde Yeni Bir Çağ: Kütleçekim Dalga Detektörleri. TJNS. 2021;10(1):290-7.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.