Research Article
BibTex RIS Cite

Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi

Year 2021, Volume: 10 Issue: 1, 275 - 283, 25.06.2021
https://doi.org/10.46810/tdfd.934492

Abstract

Bu çalışmada kullanılan Al/TiO2/p-Si Schottky Diyotu (SD) termal buharlaştırma yöntemi kullanılarak oluşturuldu. Aygıtın elektriksel özellikleri geniş sıcaklık ve aydınlanma şiddeti aralığında gerçekleştirildi. Sıcaklığa bağlı ölçümler 20 K adım aralıklarla 100 K ve 320 K aralığında gerçekleştirildi. Aygıt için elde edilen diyot parametreleri literatürdeki çeşitli yöntemlerle elde edilen benzer yapılarla karşılaştırıldı. Yerli oksit tabaka, kirlilikler, tüketim bölgesi kalınlığı gibi nedenlerden dolayı arayüzey durumlarının değerinin yüksek olduğu sonucuna varıldı. Işık şiddetine bağlı olarak gerçekleştirilen ölçümlerde idealite faktörü değerinin artarken engel yüksekliği değerinin azaldığı görüldü. Ayrıca yapının fotoakım-zaman grafiği çizilerek ışığa tepkisi incelendi.

References

  • 1. Çiçek O, Tecimer HU, Tan SO, Tecimer H, Altindal Ş, Uslu I. Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Composites Part B: Engineering. 2016;98:260–8.
  • 2. Uslu H, Altındal Ş, Tunc T, Uslu İ, Mammadov TS. The Illumination Intensity and Applied Bias Voltage on Dielectric Properties of Au/Polyvinyl Alcohol (Co, Zn-Doped)/n-Si Schottky Barrier Diodes. Journal of Applied Polymer Science. 2011;120:322–8.
  • 3. Soylu M, Yakuphanoglu F. Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films. 2011;519(6):1950–4.
  • 4. Zhang SX, Kundaliya DC, Yu W, Dhar S, Young SY, Salamanca-Riba LG, et al. Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase. Journal of Applied Physics. 2007;102(1):1–5.
  • 5. Leng YX, Huang N, Yang P, Chen JY, Sun H, Wang J, et al. Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition. Thin Solid Films. 2002;420–421:408–13.
  • 6. Truong L, Fedorenko YG, Afanaśev V V., Stesmans A. Admittance spectroscopy of traps at the interfaces of (1 0 0)Si with Al2O3, ZrO2, and HfO2. Microelectronics Reliability. 2005;45(5–6):823–6.
  • 7. Guo HY, Ye ZG. Electric characterization of HfO2 thin films prepared by chemical solution deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2005;120(1–3):68–71.
  • 8. Coey JMD. D0Ferromagnetism. Solid State Sciences. 2005;7(6):660–7.
  • 9. Altuntas H, Bengi A, Aydemir U, Asar T, Cetin SS, Kars I, et al. Electrical characterization of current conduction in Au/TiO2/n-Si at wide temperature range. Materials Science in Semiconductor Processing. 2009;12(6):224–32.
  • 10. Mathews NR, Morales ER, Cortés-Jacome MA, Toledo Antonio JA. TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties. Solar Energy. 2009;83(9):1499–508.
  • 11. Li W, Ni C, Lin H, Huang CP, Shah SI. Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics. 2004;96(11):6663–8.
  • 12. Karabulut A, Orak İ, Türüt A. The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid-State Electronics. 2018;144:39–48.
  • 13. Bengi A, Aydemir U, Altindal Ş, Özen Y, Özçelik S. A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. Journal of Alloys and Compounds. 2010;505(2):628–33.
  • 14. Kaya A, Sevgili, Altindal, Öztürk MK. Current-conduction mechanism in Au/n-4H-SiC Schottky barrier diodes. Indian Journal of Pure and Applied Physics. 2015;53(1):56–65.
  • 15. Özdemir MC, Sevgili Ö, Orak I, Turut A. Determining the potential barrier presented by the interfacial layer from the temperature induced I–V characteristics in Al/p-Si Structure with native oxide layer. Materials Science in Semiconductor Processing. 2021;125:105629.
  • 16. Sze SM. Physics of Semiconductor Devices. 2nd ed. New York: Willey; 1981. 362–380.
  • 17. Karabulut A. Barrier height modification in Au/Ti/n-GaAs devices with a HfO2 interfacial layer formed by atomic layer deposition. Bulletin of Materials Science. 2019;42(1):1–11.
  • 18. Çiçek O, Altındal Ş, Azizian-Kalandaragh Y. A Highly Sensitive Temperature Sensor Based on Au/Graphene-PVP/n-Si Type Schottky Diodes and the Possible Conduction Mechanisms in the Wide Range Temperatures. IEEE Sensors Journal. 2020;20(23):14081–9.
  • 19. Orak İ. The performances photodiode and diode of ZnO thin film by atomic layer deposition technique. Solid State Communications. 2016;247:17–22.
  • 20. Bakkaloğlu ÖF, Ejderha K, Efeoğlu H, Karataş Ş, Türüt A. Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures. Journal of Molecular Structure. 2021;1224:129057.
  • 21. Kınacı B, Şebnem Çetin S, Bengi A, Özçelik S. The temperature dependent analysis of Au/TiO2 (rutile)/n-Si (MIS) SBDs using current–voltage–temperature (I–V–T) characteristics. Materials Science in Semiconductor Processing. 2012;15(5):531–5.
  • 22. Pakma O, Serin N, Serin T, Altındal Ş. The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures. Journal of Applied Physics. 2008;104(1):014501.
  • 23. Erdal MO, Kocyigit A, Yıldırım M. Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices. Materials Science in Semiconductor Processing. 2019;103:104620.
  • 24. Kumar A, Sharma KK, Chand S, Kumar A. Investigation of barrier inhomogeneities in I-V and C-V characteristics of Ni/n-TiO2/p-Si/Al heterostructure in wide temperature range. Superlattices and Microstructures. 2018;122:304–15.
  • 25. Card HC, Rhoderick EH. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics. 1971;4:1589–601.
  • 26. Sevgili Ö. On the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage. Journal of Materials Science: Materials in Electronics. 2021; 32,10112–22
  • 27. Demirezen S, Altındal Yerişkin S. A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of doping concentration. Polymer Bulletin. 2020;77(1):49–71.
  • 28. Rajagopal Reddy V, Choi C-J. Microstructural, chemical and electrical characteristics of Au/magnetite (Fe3O4)/n-GaN MIS junction with a magnetite interlayer. Vacuum. 2019;164:233–41.
  • 29. Boughdachi S, Azizian-Kalandaragh Y, Badali Y, Altındal Ş. Facile ultrasound-assisted and microwave-assisted methods for preparation of Bi2S3-PVA nanostructures: exploring their pertinent structural and optical properties and comparative studies on the electrical, properties of Au/(Bi2S3-PVA)/n-Si Schottky struct. Journal of Materials Science: Materials in Electronics. 2017;28(23):17948–60.
  • 30. Reddy VR. Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films. 2014;556:300–6.
  • 31. Bube RH. Photoconductivity of Solids. New York: Wiley; 1960.
  • 32. Yakuphanoglu F, Şenkal BF. A hybrid p-Si/poly(1,4-diaminoanthraquinone) photoconductive diode for optical sensor applications. Synthetic Metals. 2009;159(3):311–4.
  • 33. Yakuphanoglu F. Transparent metal oxide films based sensors for solar tracking applications. Composites Part B: Engineering. 2016;92:151–9.
  • 34. Gupta RK, Yakuphanoglu F. Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Solar Energy. 2012;86(5):1539–45.

Investigation of Dependent on Temperature and Illumination Density Electrical Properties of Al/TiO2/P-Si Schottky Diode Prepared by Thermal Evaporation

Year 2021, Volume: 10 Issue: 1, 275 - 283, 25.06.2021
https://doi.org/10.46810/tdfd.934492

Abstract

The Al/TiO2/p-Si Schottky Diode (SD) used in this study was fabricated using the thermal evaporation method. The electrical properties of the devices were realized in a wide range of temperature and illumination intensity. Temperature dependent measurements were carried out at between 320 K and 100 K step by 20 K. The diode parameters obtained in this study were compared with similar structures obtained by various methods in the literature. It was concluded that the value of the interface states was high due to reasons such as the local oxide layer, impurities, thickness of depletion layer. In the measurements performed depending on the illumination intensity, it was observed that the value of the ideality factor increased while the value of the barrier height decreased. In addition, the photocurrent-time plot of the structure was drawn and its response to light was examined.

References

  • 1. Çiçek O, Tecimer HU, Tan SO, Tecimer H, Altindal Ş, Uslu I. Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions. Composites Part B: Engineering. 2016;98:260–8.
  • 2. Uslu H, Altındal Ş, Tunc T, Uslu İ, Mammadov TS. The Illumination Intensity and Applied Bias Voltage on Dielectric Properties of Au/Polyvinyl Alcohol (Co, Zn-Doped)/n-Si Schottky Barrier Diodes. Journal of Applied Polymer Science. 2011;120:322–8.
  • 3. Soylu M, Yakuphanoglu F. Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell. Thin Solid Films. 2011;519(6):1950–4.
  • 4. Zhang SX, Kundaliya DC, Yu W, Dhar S, Young SY, Salamanca-Riba LG, et al. Niobium doped TiO2: Intrinsic transparent metallic anatase versus highly resistive rutile phase. Journal of Applied Physics. 2007;102(1):1–5.
  • 5. Leng YX, Huang N, Yang P, Chen JY, Sun H, Wang J, et al. Influence of oxygen pressure on the properties and biocompatibility of titanium oxide fabricated by metal plasma ion implantation and deposition. Thin Solid Films. 2002;420–421:408–13.
  • 6. Truong L, Fedorenko YG, Afanaśev V V., Stesmans A. Admittance spectroscopy of traps at the interfaces of (1 0 0)Si with Al2O3, ZrO2, and HfO2. Microelectronics Reliability. 2005;45(5–6):823–6.
  • 7. Guo HY, Ye ZG. Electric characterization of HfO2 thin films prepared by chemical solution deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2005;120(1–3):68–71.
  • 8. Coey JMD. D0Ferromagnetism. Solid State Sciences. 2005;7(6):660–7.
  • 9. Altuntas H, Bengi A, Aydemir U, Asar T, Cetin SS, Kars I, et al. Electrical characterization of current conduction in Au/TiO2/n-Si at wide temperature range. Materials Science in Semiconductor Processing. 2009;12(6):224–32.
  • 10. Mathews NR, Morales ER, Cortés-Jacome MA, Toledo Antonio JA. TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties. Solar Energy. 2009;83(9):1499–508.
  • 11. Li W, Ni C, Lin H, Huang CP, Shah SI. Size dependence of thermal stability of TiO2 nanoparticles. Journal of Applied Physics. 2004;96(11):6663–8.
  • 12. Karabulut A, Orak İ, Türüt A. The photovoltaic impact of atomic layer deposited TiO2 interfacial layer on Si-based photodiodes. Solid-State Electronics. 2018;144:39–48.
  • 13. Bengi A, Aydemir U, Altindal Ş, Özen Y, Özçelik S. A comparative study on the electrical characteristics of Au/n-Si structures with anatase and rutile phase TiO2 interfacial insulator layer. Journal of Alloys and Compounds. 2010;505(2):628–33.
  • 14. Kaya A, Sevgili, Altindal, Öztürk MK. Current-conduction mechanism in Au/n-4H-SiC Schottky barrier diodes. Indian Journal of Pure and Applied Physics. 2015;53(1):56–65.
  • 15. Özdemir MC, Sevgili Ö, Orak I, Turut A. Determining the potential barrier presented by the interfacial layer from the temperature induced I–V characteristics in Al/p-Si Structure with native oxide layer. Materials Science in Semiconductor Processing. 2021;125:105629.
  • 16. Sze SM. Physics of Semiconductor Devices. 2nd ed. New York: Willey; 1981. 362–380.
  • 17. Karabulut A. Barrier height modification in Au/Ti/n-GaAs devices with a HfO2 interfacial layer formed by atomic layer deposition. Bulletin of Materials Science. 2019;42(1):1–11.
  • 18. Çiçek O, Altındal Ş, Azizian-Kalandaragh Y. A Highly Sensitive Temperature Sensor Based on Au/Graphene-PVP/n-Si Type Schottky Diodes and the Possible Conduction Mechanisms in the Wide Range Temperatures. IEEE Sensors Journal. 2020;20(23):14081–9.
  • 19. Orak İ. The performances photodiode and diode of ZnO thin film by atomic layer deposition technique. Solid State Communications. 2016;247:17–22.
  • 20. Bakkaloğlu ÖF, Ejderha K, Efeoğlu H, Karataş Ş, Türüt A. Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures. Journal of Molecular Structure. 2021;1224:129057.
  • 21. Kınacı B, Şebnem Çetin S, Bengi A, Özçelik S. The temperature dependent analysis of Au/TiO2 (rutile)/n-Si (MIS) SBDs using current–voltage–temperature (I–V–T) characteristics. Materials Science in Semiconductor Processing. 2012;15(5):531–5.
  • 22. Pakma O, Serin N, Serin T, Altındal Ş. The double Gaussian distribution of barrier heights in Al/TiO2/p-Si (metal-insulator-semiconductor) structures at low temperatures. Journal of Applied Physics. 2008;104(1):014501.
  • 23. Erdal MO, Kocyigit A, Yıldırım M. Temperature dependent current-voltage characteristics of Al/TiO2/n-Si and Al/Cu:TiO2/n-Si devices. Materials Science in Semiconductor Processing. 2019;103:104620.
  • 24. Kumar A, Sharma KK, Chand S, Kumar A. Investigation of barrier inhomogeneities in I-V and C-V characteristics of Ni/n-TiO2/p-Si/Al heterostructure in wide temperature range. Superlattices and Microstructures. 2018;122:304–15.
  • 25. Card HC, Rhoderick EH. Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics. 1971;4:1589–601.
  • 26. Sevgili Ö. On the examination of temperature-dependent possible current-conduction mechanisms of Au/(nanocarbon-PVP)/n-Si Schottky barrier diodes in wide range of voltage. Journal of Materials Science: Materials in Electronics. 2021; 32,10112–22
  • 27. Demirezen S, Altındal Yerişkin S. A detailed comparative study on electrical and photovoltaic characteristics of Al/p-Si photodiodes with coumarin-doped PVA interfacial layer: the effect of doping concentration. Polymer Bulletin. 2020;77(1):49–71.
  • 28. Rajagopal Reddy V, Choi C-J. Microstructural, chemical and electrical characteristics of Au/magnetite (Fe3O4)/n-GaN MIS junction with a magnetite interlayer. Vacuum. 2019;164:233–41.
  • 29. Boughdachi S, Azizian-Kalandaragh Y, Badali Y, Altındal Ş. Facile ultrasound-assisted and microwave-assisted methods for preparation of Bi2S3-PVA nanostructures: exploring their pertinent structural and optical properties and comparative studies on the electrical, properties of Au/(Bi2S3-PVA)/n-Si Schottky struct. Journal of Materials Science: Materials in Electronics. 2017;28(23):17948–60.
  • 30. Reddy VR. Electrical properties of Au/polyvinylidene fluoride/n-InP Schottky diode with polymer interlayer. Thin Solid Films. 2014;556:300–6.
  • 31. Bube RH. Photoconductivity of Solids. New York: Wiley; 1960.
  • 32. Yakuphanoglu F, Şenkal BF. A hybrid p-Si/poly(1,4-diaminoanthraquinone) photoconductive diode for optical sensor applications. Synthetic Metals. 2009;159(3):311–4.
  • 33. Yakuphanoglu F. Transparent metal oxide films based sensors for solar tracking applications. Composites Part B: Engineering. 2016;92:151–9.
  • 34. Gupta RK, Yakuphanoglu F. Photoconductive Schottky diode based on Al/p-Si/SnS2/Ag for optical sensor applications. Solar Energy. 2012;86(5):1539–45.
There are 34 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Ömer Sevgili 0000-0003-1740-1444

Publication Date June 25, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

APA Sevgili, Ö. (2021). Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi. Türk Doğa Ve Fen Dergisi, 10(1), 275-283. https://doi.org/10.46810/tdfd.934492
AMA Sevgili Ö. Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi. TJNS. June 2021;10(1):275-283. doi:10.46810/tdfd.934492
Chicago Sevgili, Ömer. “Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/P-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık Ve Aydınlanma Şiddetine Bağlı İncelenmesi”. Türk Doğa Ve Fen Dergisi 10, no. 1 (June 2021): 275-83. https://doi.org/10.46810/tdfd.934492.
EndNote Sevgili Ö (June 1, 2021) Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi. Türk Doğa ve Fen Dergisi 10 1 275–283.
IEEE Ö. Sevgili, “Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi”, TJNS, vol. 10, no. 1, pp. 275–283, 2021, doi: 10.46810/tdfd.934492.
ISNAD Sevgili, Ömer. “Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/P-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık Ve Aydınlanma Şiddetine Bağlı İncelenmesi”. Türk Doğa ve Fen Dergisi 10/1 (June 2021), 275-283. https://doi.org/10.46810/tdfd.934492.
JAMA Sevgili Ö. Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi. TJNS. 2021;10:275–283.
MLA Sevgili, Ömer. “Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/P-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık Ve Aydınlanma Şiddetine Bağlı İncelenmesi”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 1, 2021, pp. 275-83, doi:10.46810/tdfd.934492.
Vancouver Sevgili Ö. Termal Buharlaştırma Yöntemiyle Hazırlanan Al/TiO2/p-Si Schottky Diyotun Elektriksel Özelliklerinin Sıcaklık ve Aydınlanma Şiddetine Bağlı İncelenmesi. TJNS. 2021;10(1):275-83.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.