Research Article
BibTex RIS Cite

Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors

Year 2021, Volume: 10 Issue: 2, 199 - 205, 31.12.2021
https://doi.org/10.46810/tdfd.953992

Abstract

In this study, it is aimed to develop carbon cloth-based (CC) ZnFe2O4 doped super capacitor electrode. For this purpose, cotton fabric was first carbonized in a nitrogen atmosphere at 800 °C and turned into a conductive substrate. Then, metal oxide with ZnFe2O4 spinel structure was synthesized from the chlorinated compounds of Zn and Fe elements by hydrothermal method on carbon fabric surfaces. In the results of the XRD analysis of the produced electrodes, it was determined that the ZnFe2O4 structure was successfully synthesized, but some Fe3O4 and ZnO structures were formed. In the SEM analysis, it was observed that the synthesized structures were formed to completely cover the CC surfaces. Three-electrode system and 3 M KOH were used for the electrochemical performance of the electrodes. Specific capacitance measurements were performed starting from 5 mV/s scanning speed to 100 mV/s scanning speed. According to the results obtained, it was determined that the highest capacitance value was 66 F/g at 5 mV/s speed, the energy density was 2.95 Wh/kg, and the amount of stored charge was 159 C. As a result, it can be said that flexible supercapacitors have been successfully developed, but higher capacitance values can be achieved by optimizing the production conditions.

Supporting Institution

Karabük Üniversitesi

Project Number

KBÜBAP-21-ABP-047

Thanks

This study was carried out within the scope of Karabük University Scientific Research Projects Coordination Unit KBÜBAP-21-ABP-047. In addition, Karabük University MARGEM laboratories were used. We thank the units that supported the study.

References

  • [1] Wang J, Li X, Zi Y, Wang S, Li Z, Zheng L, et al. A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv Mater 2015;27:4830–6.
  • [2] Zhang Q, Zhang Z, Liang Q, Gao F, Yi F, Ma M, et al. Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy 2019;55:151–63. https://doi.org/10.1016/j.nanoen.2018.10.078.
  • [3] Song Y, Cheng X, Chen H, Huang J, Chen X, Han M, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A 2016;4:14298–306.
  • [4] El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 2013;4:1–9.
  • [5] Jost K, Dion G, Gogotsi Y. Textile energy storage in perspective. J Mater Chem A 2014;2:10776–87.
  • [6] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001;39:937–50.
  • [7] Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta 2000;45:2483–98.
  • [8] Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 2010;5:651–4.
  • [9] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nanosci Technol Collect Rev Nat J 2010:320–9.
  • [10] Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 2017;8:536. https://doi.org/10.1038/s41467-017-00550-3.
  • [11] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem Mater 2017;29:7633–44. https://doi.org/10.1021/acs.chemmater.7b02847.
  • [12] Hu L, Cui Y. Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 2012;5:6423–35.
  • [13] Li Y, Wang L, Qu Y, Wang B, Yu J, Song D, et al. Unique 3D bilayer nanostructure basic cobalt carbonate@NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material. Ionics 2020;26:1397–406. https://doi.org/10.1007/s11581-019-03310-z.
  • [14] Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, et al. Recent progress on flexible and wearable supercapacitors. Small 2017;13:1701827.
  • [15] Wang ZL, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 2015;8:2250–82.
  • [16] Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew Sustain Energy Rev 2019;101:123–45.
  • [17] Gueon D, Moon JH. MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustain Chem Eng 2017;5:2445–53.
  • [18] Shi K, Giapis KP. Scalable fabrication of supercapacitors by nozzle-free electrospinning. ACS Appl Energy Mater 2018;1:296–300.
  • [19] Zhao E, Qin C, Jung H-R, Berdichevsky G, Nese A, Marder S, et al. Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 2016;10:3977–84.
  • [20] Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, et al. Progress of electrochemical capacitor electrode materials: A review. Int J Hydrog Energy 2009;34:4889–99.
  • [21] Lemine AS, Zagho MM, Altahtamouni TM, Bensalah N. Graphene a promising electrode material for supercapacitors—A review. Int J Energy Res 2018;42:4284–300.
  • [22] Vadiyar MM, Kolekar SS, Chang J-Y, Ye Z, Ghule AV. Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor. ACS Appl Mater Interfaces 2017;9:26016–28.
  • [23] Yu Z-Y, Chen L-F, Yu S-H. Growth of NiFe 2 O 4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2014;2:10889–94.
  • [24] Zhu M, Meng D, Wang C, Diao G. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl Mater Interfaces 2013;5:6030–7.
  • [25] Yang S, Han Z, Sun J, Yang X, Hu X, Li C, et al. Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochimica Acta 2018;268:20–6.
  • [26] Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X. Self-sacrifice template fabrication of hierarchical mesoporous Bi-Component-Active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater 2015;25:238–46.
  • [27] Vadiyar MM, Kolekar SS, Deshpande NG, Chang J-Y, Kashale AA, Ghule AV. Binder-free chemical synthesis of ZnFe 2 O 4 thin films for asymmetric supercapacitor with improved performance. Ionics 2017;23:741–9.
  • [28] Li Y, Wang L, Qu Y, Wang B, Yu J, Song D, et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material. Ionics 2020;26:1397–406.
  • [29] Gopi CVM, Vinodh R, Sambasivam S, Obaidat IM, Singh S, Kim H-J. Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem Eng J 2020;381:122640.
  • [30] Korkmaz S, Tezel FM, Kariper İA. Facile synthesis and characterization of graphene oxide/tungsten oxide thin film supercapacitor for electrochemical energy storage. Phys E Low-Dimens Syst Nanostructures 2020;116:113718. https://doi.org/10.1016/j.physe.2019.113718.
  • [31] Yao C, Zeng Q, Goya GF, Torres T, Liu J, Wu H, et al. ZnFe2O4 Nanocrystals:  Synthesis and Magnetic Properties. J Phys Chem C 2007;111:12274–8. https://doi.org/10.1021/jp0732763.
  • [32] Ruíz-Baltazar A, Esparza R, Rosas G, Pérez R. Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles. J Nanomater 2015;2015:e240948. https://doi.org/10.1155/2015/240948.
  • [33] Briche S, Belaiche M. Photocatalytic study of nanoferrites elaborated by sol-gel process for environmental applications. 2016 Int. Renew. Sustain. Energy Conf. IRSEC, 2016, p. 789–92. https://doi.org/10.1109/IRSEC.2016.7983986.
  • [34] Mishra N, Shinde S, Vishwakarma R, Kadam S, Sharon M, Sharon M. MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. AIP Conf Proc 2013;1538:228–36. https://doi.org/10.1063/1.4810063.

Süper Kapasitörler için ZnFe2O4 Katkılı Karbon Kumaş Bazlı Esnek Yapılı Kompozit Elektrotların Üretimi

Year 2021, Volume: 10 Issue: 2, 199 - 205, 31.12.2021
https://doi.org/10.46810/tdfd.953992

Abstract

Bu çalışmada karbon kumaş (CC) bazlı ZnFe2O4 katkılı süper kapasitör elektrotu geliştirilmesi amaçlanmıştır. Bu amaçla ilk olarak pamuklu kumaş 800 °C’de azot atmosferinde karbonize edilerek iletken substrat haline getirilmiştir. Daha sonra Zn ve Fe elementlerinin klorlu bileşiklerinden hidrotermal yöntemle karbon kumaş yüzeylerinde ZnFe2O4 spinel yapılı metal oksit sentezlenmiştir. Üretilen elektrotların XRD analizi sonuçlarında ZnFe2O4 yapısının başarılı bir şekilde sentezlendiği ancak bir miktar Fe3O4 ve ZnO yapılarının meydana geldiği tespit edilmiştir. SEM analizinde ise sentezlenen yapıların CC yüzeylerini tamamen kaplayacak şekilde meydana geldiği gözlenmiştir. Elektrotların elektrokimyasal performansları için üç elektrotlu sistemi ve 3 M KOH kullanılmıştır. Spesifik kapasitans ölçümleri 5 mV/s tarama hızından başlanmış 100 mV/s tarama hızına kadar gerçekleştirilmiştir. Elde edilen sonuçlara göre en yüksek kapasitans değerinin 5 mV/s hızda 66 F/g, enerji yoğunluğunun 2.95 Wh/kg ve depolanan yük miktarı ise 159 C olarak tespit edilmiştir. Sonuç olarak başarılı bir şekilde esnek yapılı süper kapasitörlerin geliştirildiği ancak üretim koşullarında optimizasyon yapılarak daha yüksek kapasitans değerlerine ulaşılabileceği söylenebilir.

Project Number

KBÜBAP-21-ABP-047

References

  • [1] Wang J, Li X, Zi Y, Wang S, Li Z, Zheng L, et al. A flexible fiber-based supercapacitor–triboelectric-nanogenerator power system for wearable electronics. Adv Mater 2015;27:4830–6.
  • [2] Zhang Q, Zhang Z, Liang Q, Gao F, Yi F, Ma M, et al. Green hybrid power system based on triboelectric nanogenerator for wearable/portable electronics. Nano Energy 2019;55:151–63. https://doi.org/10.1016/j.nanoen.2018.10.078.
  • [3] Song Y, Cheng X, Chen H, Huang J, Chen X, Han M, et al. Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator. J Mater Chem A 2016;4:14298–306.
  • [4] El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 2013;4:1–9.
  • [5] Jost K, Dion G, Gogotsi Y. Textile energy storage in perspective. J Mater Chem A 2014;2:10776–87.
  • [6] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001;39:937–50.
  • [7] Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta 2000;45:2483–98.
  • [8] Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat Nanotechnol 2010;5:651–4.
  • [9] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nanosci Technol Collect Rev Nat J 2010:320–9.
  • [10] Ko Y, Kwon M, Bae WK, Lee B, Lee SW, Cho J. Flexible supercapacitor electrodes based on real metal-like cellulose papers. Nat Commun 2017;8:536. https://doi.org/10.1038/s41467-017-00550-3.
  • [11] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem Mater 2017;29:7633–44. https://doi.org/10.1021/acs.chemmater.7b02847.
  • [12] Hu L, Cui Y. Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 2012;5:6423–35.
  • [13] Li Y, Wang L, Qu Y, Wang B, Yu J, Song D, et al. Unique 3D bilayer nanostructure basic cobalt carbonate@NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material. Ionics 2020;26:1397–406. https://doi.org/10.1007/s11581-019-03310-z.
  • [14] Xue Q, Sun J, Huang Y, Zhu M, Pei Z, Li H, et al. Recent progress on flexible and wearable supercapacitors. Small 2017;13:1701827.
  • [15] Wang ZL, Chen J, Lin L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 2015;8:2250–82.
  • [16] Muzaffar A, Ahamed MB, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew Sustain Energy Rev 2019;101:123–45.
  • [17] Gueon D, Moon JH. MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors. ACS Sustain Chem Eng 2017;5:2445–53.
  • [18] Shi K, Giapis KP. Scalable fabrication of supercapacitors by nozzle-free electrospinning. ACS Appl Energy Mater 2018;1:296–300.
  • [19] Zhao E, Qin C, Jung H-R, Berdichevsky G, Nese A, Marder S, et al. Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 2016;10:3977–84.
  • [20] Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, et al. Progress of electrochemical capacitor electrode materials: A review. Int J Hydrog Energy 2009;34:4889–99.
  • [21] Lemine AS, Zagho MM, Altahtamouni TM, Bensalah N. Graphene a promising electrode material for supercapacitors—A review. Int J Energy Res 2018;42:4284–300.
  • [22] Vadiyar MM, Kolekar SS, Chang J-Y, Ye Z, Ghule AV. Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor. ACS Appl Mater Interfaces 2017;9:26016–28.
  • [23] Yu Z-Y, Chen L-F, Yu S-H. Growth of NiFe 2 O 4 nanoparticles on carbon cloth for high performance flexible supercapacitors. J Mater Chem A 2014;2:10889–94.
  • [24] Zhu M, Meng D, Wang C, Diao G. Facile fabrication of hierarchically porous CuFe2O4 nanospheres with enhanced capacitance property. ACS Appl Mater Interfaces 2013;5:6030–7.
  • [25] Yang S, Han Z, Sun J, Yang X, Hu X, Li C, et al. Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochimica Acta 2018;268:20–6.
  • [26] Hou L, Lian L, Zhang L, Pang G, Yuan C, Zhang X. Self-sacrifice template fabrication of hierarchical mesoporous Bi-Component-Active ZnO/ZnFe2O4 sub-microcubes as superior anode towards high-performance lithium-ion battery. Adv Funct Mater 2015;25:238–46.
  • [27] Vadiyar MM, Kolekar SS, Deshpande NG, Chang J-Y, Kashale AA, Ghule AV. Binder-free chemical synthesis of ZnFe 2 O 4 thin films for asymmetric supercapacitor with improved performance. Ionics 2017;23:741–9.
  • [28] Li Y, Wang L, Qu Y, Wang B, Yu J, Song D, et al. Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material. Ionics 2020;26:1397–406.
  • [29] Gopi CVM, Vinodh R, Sambasivam S, Obaidat IM, Singh S, Kim H-J. Co9S8-Ni3S2/CuMn2O4-NiMn2O4 and MnFe2O4-ZnFe2O4/graphene as binder-free cathode and anode materials for high energy density supercapacitors. Chem Eng J 2020;381:122640.
  • [30] Korkmaz S, Tezel FM, Kariper İA. Facile synthesis and characterization of graphene oxide/tungsten oxide thin film supercapacitor for electrochemical energy storage. Phys E Low-Dimens Syst Nanostructures 2020;116:113718. https://doi.org/10.1016/j.physe.2019.113718.
  • [31] Yao C, Zeng Q, Goya GF, Torres T, Liu J, Wu H, et al. ZnFe2O4 Nanocrystals:  Synthesis and Magnetic Properties. J Phys Chem C 2007;111:12274–8. https://doi.org/10.1021/jp0732763.
  • [32] Ruíz-Baltazar A, Esparza R, Rosas G, Pérez R. Effect of the Surfactant on the Growth and Oxidation of Iron Nanoparticles. J Nanomater 2015;2015:e240948. https://doi.org/10.1155/2015/240948.
  • [33] Briche S, Belaiche M. Photocatalytic study of nanoferrites elaborated by sol-gel process for environmental applications. 2016 Int. Renew. Sustain. Energy Conf. IRSEC, 2016, p. 789–92. https://doi.org/10.1109/IRSEC.2016.7983986.
  • [34] Mishra N, Shinde S, Vishwakarma R, Kadam S, Sharon M, Sharon M. MWCNTs synthesized from waste polypropylene plastics and its application in super-capacitors. AIP Conf Proc 2013;1538:228–36. https://doi.org/10.1063/1.4810063.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Safa Polat 0000-0002-3835-8425

Project Number KBÜBAP-21-ABP-047
Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Polat, S. (2021). Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors. Türk Doğa Ve Fen Dergisi, 10(2), 199-205. https://doi.org/10.46810/tdfd.953992
AMA Polat S. Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors. TJNS. December 2021;10(2):199-205. doi:10.46810/tdfd.953992
Chicago Polat, Safa. “Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 199-205. https://doi.org/10.46810/tdfd.953992.
EndNote Polat S (December 1, 2021) Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors. Türk Doğa ve Fen Dergisi 10 2 199–205.
IEEE S. Polat, “Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors”, TJNS, vol. 10, no. 2, pp. 199–205, 2021, doi: 10.46810/tdfd.953992.
ISNAD Polat, Safa. “Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 199-205. https://doi.org/10.46810/tdfd.953992.
JAMA Polat S. Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors. TJNS. 2021;10:199–205.
MLA Polat, Safa. “Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 199-05, doi:10.46810/tdfd.953992.
Vancouver Polat S. Production of ZnFe2O4 Doped Carbon Cloth-Based Flexible Composite Electrodes for Supercapacitors. TJNS. 2021;10(2):199-205.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.