Research Article
BibTex RIS Cite

Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi

Year 2021, Volume: 10 Issue: 2, 258 - 264, 31.12.2021
https://doi.org/10.46810/tdfd.995969

Abstract

İnhibitör kullanımı, metalik malzemeleri korozyondan korumak için tercih edilen en yaygın yöntemlerden bir tanesidir. Korozyon inhibitörü olarak organik maddeler yaygın olarak kullanılmaktadır. Bununla birlikte bu tür maddelerin yüksek maliyetleri ve toksik özellikleri kullanımlarını kısıtlar. Yapılan son çalışmalar, çevre dostu doğal ürünler ya da bu ürünlerden elde edilen atıkların korozyon inhibitörü olarak kullanılabildiklerini göstermektedir.
Bu çalışmada, çevre dostu doğal bir atık olan Hurma (Phoenix dactylifera) çekirdeği ekstresinin (PDSE) bakırın 0,5 M H2SO4 çözeltisindeki korozyonuna inhibisyon etkisi araştırılmıştır. Bu amaçla, açık devre potansiyelinin zamanla değişimi (Eocp-t), lineer polarizasyon direnci (LPR), elektrokimyasal impedans spektroskopisi (EIS) ve potansiyodinamik polarizasyon (PP) teknikleri kullanılmıştır. İnhibitörlü ortamda bekletilen bakırın yüzeyi SEM ve temas açısı kullanılarak karakterize edilmiştir. İnhibitör içeren ortamda bakırın yüzey yükü, sıfır yük potansiyeli (PZC) tekniği ile belirlenmiş ve bir adsorpsiyon mekanizması önerilmiştir. Sonuçlar, PDSE’nin 0,5 M H2SO4 çözeltisinde bakırın korozyonunu yavaşlattığını göstermiştir

Supporting Institution

Bingöl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

GMYO.2021.00.001

Thanks

Bu çalışma, Bingöl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (Proje Numarası: GMYO.2021.00.001) tarafından finansal olarak desteklenmiştir. Bingöl Üniversitesi Bilimsel Araştırmalar ve Projeler Birimine, Bingöl Üniversitesi Merkezi Araştırma Laboratuvarına ve İş Sağlığı ve Güvenliği Bölümüne teşekkür ederiz.

References

  • [1] Özgün Ö, Erçetin A. Microstructural and mechanical properties of Cr-C reinforced Cu matrix composites produced through powder metallurgy method, Tr J Nature Sci. 2017;6(2):1-6.
  • [2] Ercetin A, Aslantaş K. Production of WCu electrical contact material via conventional powder metallurgy method: Characterization, mechanical and electrical properties. Tr J Nature Sci. 2017;6(1):37-42.
  • [3] Şahin AE, Yumuşak çeliğin asidik ortamdaki korozyon davranışına 5-(4-dimetilaminobenzyliden)-rodanin molekülünün etkisi. Mühendislik Bilimleri ve Tasarım Dergisi 2019;7:803–810.
  • [4] Solmaz R, Şahin AE, Geçibesler İH, Kardaş G. Investigation of the ınhibition effect of cucurbita moschata pumpkin shell on mild steel corrosion, Physical Sciences, 2019;14(2):1–10
  • [5] Erbil M. Korozyon (İlkeler- Önlemler), Ankara, 2012.
  • [6] Erbil M. Demirin korozyonu üzerine bazı yeni inhibitörlerin etkinliklerinin araştırılması. Ankara Üniversitesi Doçentlik Tezi, Ankara,117s, 1980.
  • [7] Erbil M. Korozyon inhibitörleri ve inhibitör etkinliklerinin saptanması, Segem, Ankara, 14, 1984.
  • [8] Üneri S. Korozyon inhibitörlerinin prensipleri ve pratiği. Segem, Ankara,121, 1984 Üneri S., Korozyon ve Önlenmesi, SEGEM, Ankara1998.
  • [9] Solmaz R, Şahin AE, Döner A, Kardaş G. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution. Corrosion Science 2011;53:3231–3240.
  • [10] Solmaz R, Altunbaş E, Kardaş G. Investigation of adsorption and corrosion inhibition effect of 1,1’-thiocarbonyldiimidazole on mild steel in hydrochloric acid solution. Prot Met Phys Chem Surfaces. 2011;47(2):264-271.
  • [11] Liu L, Lu S, Wu YQ, Xie JY, Xing J. Corrosion inhibition behavior of four benzimidazole derivatives and benzotriazole on copper surface. Anti-Corrosion Methods Mater. 2020;67(6):565-575
  • [12] Ekilik V V, Berezhnaya AG, Svyataya MN. Acridine derivatives as inhibitors of copper dissolution. Russ J Appl Chem. 2001;74(9):1500-1505.
  • [13] Xiang Q, He J. Combining theoretical and experimental researches to insight the anti-corrosion nature of Citrus reticulata leaves extract. J Mol Liq. 2021;325.
  • [14] Batah A, Anejjar A, Bammou L, Belkhaouda M, Salghi R. Effect of apricot almond oil as green inhibitor for steel corrosion in hydrochloric media. Portugaliae Electrochimica Acta. 2020;38:201-214.
  • [15] Khaburs’kyi YM, Corrosion Resistance properties of the extracts pf plants raw materials in solutions of hydrochloric acid, Materials Science, 2015;51:131-137.
  • [16] Ongun Yüce A. Asidik Çözeltide yumuşak çeliğin korozyonu üzerine yeşil inhibitör olarak morus nigra pendula yaprak ekstraktının inhibisyon etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Derg. 2019;34:183-192.
  • [17] Zhang X, Li W, Yu G. Evaluation of Idesia polycarpa Maxim fruits extract as a natural green corrosion inhibitor for copper in 0.5 M sulfuric acid solution. J Mol Liq. 2018;318: 114080.
  • [18] Tan B, Xiang B, Zhang S, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. J Colloid Interface Sci. 2021;582:918-931.
  • [19] Rehan AA. Corrosion Control by water-soluble extracts fromleaves of economic plants. Mat.-wiss. u. Werkstofftech.2003;34:232 – 237.
  • [20] Tan B, Xiang B, Zhang S, Qiang Y, L Xu, Chen S, He J. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. Journal of Colloid and Interface Science 2021;582:918–931.
  • [21] Şahin AE, Solmaz R, Geçibesler İH, Kardaş G. Adsorption Ability Stability And Corrosion İnhibition Mechanism of Phoenix Dactylifera Extrat on Mild Steel, Materials Research Express, 2020;7:1–11.
  • [22] Solmaz R, Altunbas E, Kardas G. Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl) phenol Schiff base on mild steel, Mater. Chem. Phys.2011;125:796–801.
  • [23] Song SM, Park CE, Yun K, Hwang CS, Oh SY, Park JM. Journal of Adhesion Science and Technology, 1998;12:541-561.
  • [24] Zhang J, Li H. 2-(2-chlorophenyl)-1H-benzimidazole as a new corrosion ınhibitor for copper in sulfuric acid. Int. J. Electrochem. Sci., 2020;15:5362 – 5372.
  • [25] Vengatesh G, Sundaravadivelu M. Combining theoretical and experimental researches to insight the anti-corrosion nature of Citrus reticulata leaves extra. Journal of Molecular Liquids 2021;325:115218.
  • [26] Shalabia K, El-Gammala OA, Abdallah YM. Adsorption and inhibition effect of tetraaza-tetradentate macrocycle ligand and its Ni (II), Cu (II) complexes on the corrosion of Cu10Ni alloy in 3.5% NaCl solutions. Colloids and Surfaces A 2021;609:125653.
  • [27] Solmaz R, Altunbaş Şahin E, Döner A, Kardaş G, The Investigation Of synergistic ınhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution, Corrosion Science, 2011;53:3231–3240.

Investigation of the Inhibition Effect of Palm (Phoenix dactylifera) Seed to the Corrosion of Copper

Year 2021, Volume: 10 Issue: 2, 258 - 264, 31.12.2021
https://doi.org/10.46810/tdfd.995969

Abstract

The use of inhibitors is one of the most common methods preferred to protect metallic materials from corrosion. Organic substances as the corrosion inhibitors are widely used. However, high costs and toxic properties of organic substances restrict their use. Recent studies show that the wastes obtained from environmentally friendly natural products or products can be used as corrosion inhibitors. In this study, the inhibition of the effect of palm (phoenix dactylifera) seed (PDSE), which is an eco-friendly natural waste, on the corrosion of copper in 0.5 M H2SO4 solution was investigated. For this aim, the change of open circuit potential as a function of exposure time (Eocp-t), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP) techniques were used. The surface of copper, which was exposed to the inhibited media was characterized by the SEM and contact angle measurements. The surface charge of copper in the inhibitor containing solution was determined by zero charge potential (PZC) technique and an adsorption mechanism was proposed. The results showed that PDSE slow the corrosion rate of copper in 0.5 M H2SO4 solution.

Project Number

GMYO.2021.00.001

References

  • [1] Özgün Ö, Erçetin A. Microstructural and mechanical properties of Cr-C reinforced Cu matrix composites produced through powder metallurgy method, Tr J Nature Sci. 2017;6(2):1-6.
  • [2] Ercetin A, Aslantaş K. Production of WCu electrical contact material via conventional powder metallurgy method: Characterization, mechanical and electrical properties. Tr J Nature Sci. 2017;6(1):37-42.
  • [3] Şahin AE, Yumuşak çeliğin asidik ortamdaki korozyon davranışına 5-(4-dimetilaminobenzyliden)-rodanin molekülünün etkisi. Mühendislik Bilimleri ve Tasarım Dergisi 2019;7:803–810.
  • [4] Solmaz R, Şahin AE, Geçibesler İH, Kardaş G. Investigation of the ınhibition effect of cucurbita moschata pumpkin shell on mild steel corrosion, Physical Sciences, 2019;14(2):1–10
  • [5] Erbil M. Korozyon (İlkeler- Önlemler), Ankara, 2012.
  • [6] Erbil M. Demirin korozyonu üzerine bazı yeni inhibitörlerin etkinliklerinin araştırılması. Ankara Üniversitesi Doçentlik Tezi, Ankara,117s, 1980.
  • [7] Erbil M. Korozyon inhibitörleri ve inhibitör etkinliklerinin saptanması, Segem, Ankara, 14, 1984.
  • [8] Üneri S. Korozyon inhibitörlerinin prensipleri ve pratiği. Segem, Ankara,121, 1984 Üneri S., Korozyon ve Önlenmesi, SEGEM, Ankara1998.
  • [9] Solmaz R, Şahin AE, Döner A, Kardaş G. The investigation of synergistic inhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution. Corrosion Science 2011;53:3231–3240.
  • [10] Solmaz R, Altunbaş E, Kardaş G. Investigation of adsorption and corrosion inhibition effect of 1,1’-thiocarbonyldiimidazole on mild steel in hydrochloric acid solution. Prot Met Phys Chem Surfaces. 2011;47(2):264-271.
  • [11] Liu L, Lu S, Wu YQ, Xie JY, Xing J. Corrosion inhibition behavior of four benzimidazole derivatives and benzotriazole on copper surface. Anti-Corrosion Methods Mater. 2020;67(6):565-575
  • [12] Ekilik V V, Berezhnaya AG, Svyataya MN. Acridine derivatives as inhibitors of copper dissolution. Russ J Appl Chem. 2001;74(9):1500-1505.
  • [13] Xiang Q, He J. Combining theoretical and experimental researches to insight the anti-corrosion nature of Citrus reticulata leaves extract. J Mol Liq. 2021;325.
  • [14] Batah A, Anejjar A, Bammou L, Belkhaouda M, Salghi R. Effect of apricot almond oil as green inhibitor for steel corrosion in hydrochloric media. Portugaliae Electrochimica Acta. 2020;38:201-214.
  • [15] Khaburs’kyi YM, Corrosion Resistance properties of the extracts pf plants raw materials in solutions of hydrochloric acid, Materials Science, 2015;51:131-137.
  • [16] Ongun Yüce A. Asidik Çözeltide yumuşak çeliğin korozyonu üzerine yeşil inhibitör olarak morus nigra pendula yaprak ekstraktının inhibisyon etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Derg. 2019;34:183-192.
  • [17] Zhang X, Li W, Yu G. Evaluation of Idesia polycarpa Maxim fruits extract as a natural green corrosion inhibitor for copper in 0.5 M sulfuric acid solution. J Mol Liq. 2018;318: 114080.
  • [18] Tan B, Xiang B, Zhang S, et al. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. J Colloid Interface Sci. 2021;582:918-931.
  • [19] Rehan AA. Corrosion Control by water-soluble extracts fromleaves of economic plants. Mat.-wiss. u. Werkstofftech.2003;34:232 – 237.
  • [20] Tan B, Xiang B, Zhang S, Qiang Y, L Xu, Chen S, He J. Papaya leaves extract as a novel eco-friendly corrosion inhibitor for Cu in H2SO4 medium. Journal of Colloid and Interface Science 2021;582:918–931.
  • [21] Şahin AE, Solmaz R, Geçibesler İH, Kardaş G. Adsorption Ability Stability And Corrosion İnhibition Mechanism of Phoenix Dactylifera Extrat on Mild Steel, Materials Research Express, 2020;7:1–11.
  • [22] Solmaz R, Altunbas E, Kardas G. Adsorption and corrosion inhibition effect of 2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl) phenol Schiff base on mild steel, Mater. Chem. Phys.2011;125:796–801.
  • [23] Song SM, Park CE, Yun K, Hwang CS, Oh SY, Park JM. Journal of Adhesion Science and Technology, 1998;12:541-561.
  • [24] Zhang J, Li H. 2-(2-chlorophenyl)-1H-benzimidazole as a new corrosion ınhibitor for copper in sulfuric acid. Int. J. Electrochem. Sci., 2020;15:5362 – 5372.
  • [25] Vengatesh G, Sundaravadivelu M. Combining theoretical and experimental researches to insight the anti-corrosion nature of Citrus reticulata leaves extra. Journal of Molecular Liquids 2021;325:115218.
  • [26] Shalabia K, El-Gammala OA, Abdallah YM. Adsorption and inhibition effect of tetraaza-tetradentate macrocycle ligand and its Ni (II), Cu (II) complexes on the corrosion of Cu10Ni alloy in 3.5% NaCl solutions. Colloids and Surfaces A 2021;609:125653.
  • [27] Solmaz R, Altunbaş Şahin E, Döner A, Kardaş G, The Investigation Of synergistic ınhibition effect of rhodanine and iodide ion on the corrosion of copper in sulphuric acid solution, Corrosion Science, 2011;53:3231–3240.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ece Altunbaş Şahin 0000-0002-3201-0487

Yeşim Aydın Dursun 0000-0003-2052-8817

Mehmet Tunç 0000-0002-3757-2315

İbrahim Geçibesler 0000-0002-4473-2671

Ramazan Solmaz 0000-0002-9295-1203

Project Number GMYO.2021.00.001
Publication Date December 31, 2021
Published in Issue Year 2021 Volume: 10 Issue: 2

Cite

APA Altunbaş Şahin, E., Aydın Dursun, Y., Tunç, M., Geçibesler, İ., et al. (2021). Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi. Türk Doğa Ve Fen Dergisi, 10(2), 258-264. https://doi.org/10.46810/tdfd.995969
AMA Altunbaş Şahin E, Aydın Dursun Y, Tunç M, Geçibesler İ, Solmaz R. Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi. TJNS. December 2021;10(2):258-264. doi:10.46810/tdfd.995969
Chicago Altunbaş Şahin, Ece, Yeşim Aydın Dursun, Mehmet Tunç, İbrahim Geçibesler, and Ramazan Solmaz. “Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix Dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi”. Türk Doğa Ve Fen Dergisi 10, no. 2 (December 2021): 258-64. https://doi.org/10.46810/tdfd.995969.
EndNote Altunbaş Şahin E, Aydın Dursun Y, Tunç M, Geçibesler İ, Solmaz R (December 1, 2021) Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi. Türk Doğa ve Fen Dergisi 10 2 258–264.
IEEE E. Altunbaş Şahin, Y. Aydın Dursun, M. Tunç, İ. Geçibesler, and R. Solmaz, “Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi”, TJNS, vol. 10, no. 2, pp. 258–264, 2021, doi: 10.46810/tdfd.995969.
ISNAD Altunbaş Şahin, Ece et al. “Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix Dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi”. Türk Doğa ve Fen Dergisi 10/2 (December 2021), 258-264. https://doi.org/10.46810/tdfd.995969.
JAMA Altunbaş Şahin E, Aydın Dursun Y, Tunç M, Geçibesler İ, Solmaz R. Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi. TJNS. 2021;10:258–264.
MLA Altunbaş Şahin, Ece et al. “Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix Dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi”. Türk Doğa Ve Fen Dergisi, vol. 10, no. 2, 2021, pp. 258-64, doi:10.46810/tdfd.995969.
Vancouver Altunbaş Şahin E, Aydın Dursun Y, Tunç M, Geçibesler İ, Solmaz R. Bakırın Asidik Ortamdaki Korozyonuna Hurma (Phoenix dactylifera) Çekirdeğinin İnhibisyon Etkisinin İncelenmesi. TJNS. 2021;10(2):258-64.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.