Research Article
BibTex RIS Cite

INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS

Year 2022, Volume: 11 Issue: 3, 118 - 122, 29.09.2022
https://doi.org/10.46810/tdfd.1158730

Abstract

In this study, the magnetoresistance properties of multilayered structures consisting of five different combinations of Pt and Co thin layers were studied in the room temperature range. Thin films were prepared by using magnetron sputtering techniques in ultra-high vacuum conditions. It has been found that the percentage of MR decreases as the thickness of the spacer layer thickness increases. For 3 nm thickness, 0.16% MR ratio is obtained, while for 4 and 5 nm these values are 0.15% and 0.10% respectively. In addition, as reference layer thickness increases, MR values are 0.10%, 0.11% and 0.15%, respectively. These results show that the prepared thin film sets can be used in technological applications such as MR based sensors and spin field transistors.

References

  • Grünberg P, Layered magnetic structures: history, highlights, applications, Phys. Today 2001; 54: 31–38.
  • Chung K H, Kim S N, Lim S H, Magnetic parameters in giant magnetoresistance spin valve and their roles in magnetoresistance sensitivity, Thin Solid Films. 2018; 650: 44–50.
  • Prudnikov A, Li M, De Graef M, Sokalski V, Towards simultaneous control of interlayer exchange coupling and the interfacial Dzyaloshinskii-Moriya interaction in Ru-based synthetic antiferromagnets, IEEE Magn. Lett. 2018; 1–4.
  • Grünberg P, Schreiber R, Pang Y, Brodsky M B, Sowers H, Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 1986; 57: 2442.
  • Baibich M N, Broto J M, Fert A, et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988; 61: 2472.
  • Binash G, Grunberg P, Saurenbach F, Zinn W, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989; 39: 4828.
  • Barthelemy A, Fert A, Theory of the magnetoresistance in magnetic multilayers: Analytical expressions from a semiclassical approach. Phys. Rev. B 1991; 43: 13124.
  • Parkin S S P, Giant Magnetoresistance in Magnetic Nanostructures. Annu. Rev. Mater. Sci. 1995; 25: 357.
  • Parkin S, More N, Roche K P, Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 1990; 23: 130.
  • Bland J A C, Heinrich B, Ultrathin Magnetic Structures IV, Springer, Berlin, 2005; p. 257.
  • Bader S D, Parkin S S P, Spintronics. Annu. Rev. Condens. Matter Phys. 2010; 1: 71.
  • Huang F, Kief M T, Mankey G J, Willis R F, Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 1994; 49: 3962.
  • Li Y, Baberschke K, Dimensional crossover in ultrathin Ni(111) films on W(110). Phys. Rev. Lett. 1992; 68: 1208.
  • Vaz C A F, Bland J A C, Lauhoff G, Magnetism in ultrathin film structures. Rep. Prog. Phys. 2008; 71: 056501.
  • Heinrich B, Cochran J F, Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions. Adv. Phys. 1993; 42: 523.
  • Heinrich B, Monchesky T, Urban R, Role of interfaces in higher order angular terms of magnetic anisotropies: ultrathin film structures. J. Magn. Magn. Mater. 2001; 236: 339.
  • Johnson M T, Bloemen P J H, Den Broeder F J A, De Vries J J, Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 1996; 59: 1409.
  • Pelissetto A, Vicari E, Critical phenomena and renormalization-group theory. Phys. Rep. 2002; 368: 549.
  • Kalaycı T, Deger C, Akbulut S, Yildiz F, Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]6/Pt/Co/Pt multilayer structure. J. Magn. Magn. Mater. 2017; 436: 11-16.
  • Wenbo Z, Weichuan H, Chuanchuan L, Chuangming H, Zhiwei C, Yuewei Y, and Xiaoguang L, Electric-Field-Controlled Nonvolatile Magnetization Rotation and Magnetoresistance Effect in Co/Cu/Ni Spin Valves on Piezoelectric Substrates. ACS Appl. Mater. Interfaces 2018; 10: 21390−21397.
  • Avci C O, Lambert C, Sala G, Gambardella P, A two-terminal spin valve device controlled by spin–orbit torques with enhanced giant magnetoresistance. Appl. Phys. Lett. 2021; 119: 032406.
  • Dieny B, Speriosu V S, Metin S, Parkin S S P, Gurney B A, Magnetotransport properties of magnetically soft spinvalve structures. J. Appl. Phys. 1991; 69: 4774.
Year 2022, Volume: 11 Issue: 3, 118 - 122, 29.09.2022
https://doi.org/10.46810/tdfd.1158730

Abstract

References

  • Grünberg P, Layered magnetic structures: history, highlights, applications, Phys. Today 2001; 54: 31–38.
  • Chung K H, Kim S N, Lim S H, Magnetic parameters in giant magnetoresistance spin valve and their roles in magnetoresistance sensitivity, Thin Solid Films. 2018; 650: 44–50.
  • Prudnikov A, Li M, De Graef M, Sokalski V, Towards simultaneous control of interlayer exchange coupling and the interfacial Dzyaloshinskii-Moriya interaction in Ru-based synthetic antiferromagnets, IEEE Magn. Lett. 2018; 1–4.
  • Grünberg P, Schreiber R, Pang Y, Brodsky M B, Sowers H, Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 1986; 57: 2442.
  • Baibich M N, Broto J M, Fert A, et al., Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988; 61: 2472.
  • Binash G, Grunberg P, Saurenbach F, Zinn W, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989; 39: 4828.
  • Barthelemy A, Fert A, Theory of the magnetoresistance in magnetic multilayers: Analytical expressions from a semiclassical approach. Phys. Rev. B 1991; 43: 13124.
  • Parkin S S P, Giant Magnetoresistance in Magnetic Nanostructures. Annu. Rev. Mater. Sci. 1995; 25: 357.
  • Parkin S, More N, Roche K P, Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 1990; 23: 130.
  • Bland J A C, Heinrich B, Ultrathin Magnetic Structures IV, Springer, Berlin, 2005; p. 257.
  • Bader S D, Parkin S S P, Spintronics. Annu. Rev. Condens. Matter Phys. 2010; 1: 71.
  • Huang F, Kief M T, Mankey G J, Willis R F, Magnetism in the few-monolayers limit: A surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni alloys on Cu(100) and Cu(111). Phys. Rev. B 1994; 49: 3962.
  • Li Y, Baberschke K, Dimensional crossover in ultrathin Ni(111) films on W(110). Phys. Rev. Lett. 1992; 68: 1208.
  • Vaz C A F, Bland J A C, Lauhoff G, Magnetism in ultrathin film structures. Rep. Prog. Phys. 2008; 71: 056501.
  • Heinrich B, Cochran J F, Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions. Adv. Phys. 1993; 42: 523.
  • Heinrich B, Monchesky T, Urban R, Role of interfaces in higher order angular terms of magnetic anisotropies: ultrathin film structures. J. Magn. Magn. Mater. 2001; 236: 339.
  • Johnson M T, Bloemen P J H, Den Broeder F J A, De Vries J J, Magnetic anisotropy in metallic multilayers. Rep. Prog. Phys. 1996; 59: 1409.
  • Pelissetto A, Vicari E, Critical phenomena and renormalization-group theory. Phys. Rep. 2002; 368: 549.
  • Kalaycı T, Deger C, Akbulut S, Yildiz F, Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]6/Pt/Co/Pt multilayer structure. J. Magn. Magn. Mater. 2017; 436: 11-16.
  • Wenbo Z, Weichuan H, Chuanchuan L, Chuangming H, Zhiwei C, Yuewei Y, and Xiaoguang L, Electric-Field-Controlled Nonvolatile Magnetization Rotation and Magnetoresistance Effect in Co/Cu/Ni Spin Valves on Piezoelectric Substrates. ACS Appl. Mater. Interfaces 2018; 10: 21390−21397.
  • Avci C O, Lambert C, Sala G, Gambardella P, A two-terminal spin valve device controlled by spin–orbit torques with enhanced giant magnetoresistance. Appl. Phys. Lett. 2021; 119: 032406.
  • Dieny B, Speriosu V S, Metin S, Parkin S S P, Gurney B A, Magnetotransport properties of magnetically soft spinvalve structures. J. Appl. Phys. 1991; 69: 4774.
There are 22 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Taner Kalaycı 0000-0002-6374-2373

Publication Date September 29, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

APA Kalaycı, T. (2022). INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS. Türk Doğa Ve Fen Dergisi, 11(3), 118-122. https://doi.org/10.46810/tdfd.1158730
AMA Kalaycı T. INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS. TJNS. September 2022;11(3):118-122. doi:10.46810/tdfd.1158730
Chicago Kalaycı, Taner. “INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS”. Türk Doğa Ve Fen Dergisi 11, no. 3 (September 2022): 118-22. https://doi.org/10.46810/tdfd.1158730.
EndNote Kalaycı T (September 1, 2022) INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS. Türk Doğa ve Fen Dergisi 11 3 118–122.
IEEE T. Kalaycı, “INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS”, TJNS, vol. 11, no. 3, pp. 118–122, 2022, doi: 10.46810/tdfd.1158730.
ISNAD Kalaycı, Taner. “INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS”. Türk Doğa ve Fen Dergisi 11/3 (September 2022), 118-122. https://doi.org/10.46810/tdfd.1158730.
JAMA Kalaycı T. INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS. TJNS. 2022;11:118–122.
MLA Kalaycı, Taner. “INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS”. Türk Doğa Ve Fen Dergisi, vol. 11, no. 3, 2022, pp. 118-22, doi:10.46810/tdfd.1158730.
Vancouver Kalaycı T. INFLUENCE OF LAYER THICKNESS ON MAGNETORESISTANCE PROPERTIES OF MULTILAYERED THIN FILMS. TJNS. 2022;11(3):118-22.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.