Research Article
BibTex RIS Cite

Investigation of the Magnetic and Mechanical Properties of Nano-Y2O3 Doped Bismuth Based Superconductor Materials

Year 2023, Volume: 12 Issue: 1, 153 - 162, 27.03.2023
https://doi.org/10.46810/tdfd.1205088

Abstract

The effects of nano-Y2O3 addition on the structural, superconducting, magnetic and mechanical properties of Bi-2223 superconducting system were investigated in this study. Bulk polycrystalline samples with general formula of Bi1.8Pb0.4Sr2Ca 2Cu3O10 + δ + (Y2O3) with ( x; weighted % 0.0-0.2-0.4-0.8-1.0) were prepared by solid state reaction method. X-ray diffraction (XRD), Scanning Electron microscope (SEM), Energy dispersive X-ray spectroscopy (EDX) mesurement, Vibrating sample mesurement (VSM), Resistance- temperature (ρ-T) mesurement and Vickers microhardness mesurement (VHM) were also used for samples structural characterizations. XRD patterns showed that both Bi -2223 and Bi-2212 phases are coexist in the samples. While a lattice parameter increased, c lattice parameter decreased with increasing of nano-Y addition. In SEM photographs, it is seen that granular structure is plate-like in all samples and increase in the amount of additive, presence of point particles on the layered particles is seen more clearly. Hole concentration values that calculated from ρ-T mesurement, ranges from 0.113 to 0.160. While amount of nano-Y increased, critical transition temperatures decreased. VSM results showed that critical current density values increase with the addition of Nano-Y. VHM results showed that the hardness value increased until x= 0.4% additive sample and decreased after this value.

Thanks

We would like to thank Dr. Özlem Bilgili (Dokuz Eylül University Physics Department) and Lecturer Hasan Durmuş (İzmir University of Economics) for their valuable ideas and suggestions during our study.

References

  • Kim CJ. Superconductor Levitation Concepts and Experiments (e Book). Springer Nature; 2019. https://doi.org/10.1007/978-981-13-6768-7
  • Abou-Aly A, Abdel Gawad MMH, Awad R, G-Eldeen I. Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. J. Supercond. Nov. Magn.2011; 24, (7): 2077-84.
  • Awad R. Study of the Influence of MgO Nano-Oxide Addition on the Electrical and Mechanical Properties of (Cu0.25Tl0.75)-1234 Superconducting Phase. J Supercond. Nov. Magn. 2008; 21: 461–6
  • Öztornacı U, Özkurt B. The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1.8Sr2 AuxCa1.1Cu2.1Oy (Bi-2212) ceramics. Ceram. İnter. 2017; 43 (5): 4545-50.
  • Mawassi R, Marhaba S, Roumié M Awad R, Korek M, Hassan I. Improvement of Superconducting Parameters of Bi 1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-Ag. J. Supercond. Nov. Magn. 2014; 27:1131–42.
  • Yahya NAA, Al-Gaashani R, Abd-Shukor R. Synthesis and characterization of PbO–CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor. Appl. Phys. A. 2017;123-68.
  • Jia ZY, Tang H, Yang ZQ, Xing YT, Wang YZ, Qiao GW. Effects of nano-ZrO particles on the superconductivity of Pb-doped BSCCO. Phys. C. 2000; 337:130–2.
  • Yıldırım G, Dogruer M, Karaboga F, Terzioglu C. Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles. J. All. Comp. 2014; 584: 344-51.
  • Mohammed LA, Jasim KA. The substitutions of Strontium by yttrium and their effects on Bi2Sr2-xYxCa2Cu3O10+δ superconducting compound. Journal of Physics: Conference Series. 2021. 1879 (032069)
  • Dong Y, Sun A, Xu B, Zhang H, Zhang M. Effect of the BSCCO superconducting properties by tiny Y2O3 addition. Mod. Phys. Let. B. 2016; 30 (26): 1650328/1-9.
  • Khalil SM. Effect of Y3+ substitution for Ca on the transport and mechanical properties of Bi2Sr2Ca1−xYxCu2O8+δ system. J. Phys. Chem. Sol. 2003; 64 (5): 855-61.
  • Sedky A. The impact of Y substitution on the 110 K high Tc phase in Bi (Pb):2223 superconductor. J. Phys. Chem. Sol. 2009;70: 483-88.
  • Suazlina MA, Yusainee SYS, Azhan H, Abd-Shukor R, Mustaqim R. The Effects of Nanoparticle Addition in Bi-2212 Superconductors. 2014; 69 (2): 49–52.
  • Oboudi SF. Synthesis and Magnetic Properties of Bi1.7Pb 0.3Sr2Ca2Cu3O10+δ Added with Nano Y. J. Supercond. Nov. Magn. 2017; 30: 1473–82.
  • Durmus H, Kocabas K. The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. J. Mater. Sci. Mater. Electr. 33 (21): 17079–89.
  • Çorduk T, Bilgili O, Kemal K. Investigation of effects of MgO nanoparticles addition on the superconducting properties of Bi-2223 superconductors. J. Mater. Sci. Mater. Electr. 2017; 28 (11): 14689–95.
  • Cevizci B, Bilgili O, Kemal K. The influence of Ag substitution on structural and mechanical properties of (Bi, Pb)-2223 ceramics. J.Mater. Sci. Mater. Elect. 2016; 27 (12), 13171-78.
  • Bilgili O, Yurdaskal M. Effects of Graphene Oxide Doping on Magnetic and Structural Properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy Superconductor. J.Elect. Mat.2021; 50: 4999–5006.
  • Yildirim G, Dogruer M, Karaboga F, Terzioglu C. Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles. J. All. Comp.2014; 584: 344–51.
  • Bilgili O. Structural and Electrical Properties of Nanosized Sm2O3 Doped Bi1.6Pb0.4Sr2Ca2Cu3Oy Superconductors .J. Low. Temp. Phys.2021; 204: 5-6.
  • Shamray VF, Mikhailova AB, Mitin AV. Crystal structure and superconductivity of Bi-2223. Cryst Rep.2009; 54: 584–590.
  • Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mat. Phys. Klas. 1918; 2: 98-100.
  • Langford J I, Wilson A J C Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst.1978; 11: 102-113.
  • Abou-Aly A I, Abdel Gawad M M H, Awad R, G-Eldeen I. Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. J. Supercond. Nov. Magn. 2011; 24: 2077–84.
  • Bean CP. Magnetization Of Hard Superconductors. Phys. Rev. Lett. 1962; 8 (6): 250-3.
  • Yahya NAA, Abd-Shukor R. Effect of Different Nanosized MgO on the Transport Critical Current Density of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor. J. Supercond. Nov. Magn. 2014; 27: 329-35.
  • Turk N, Gundogmus H, Akyol M, Yakıncı D, Ekicibil A, Ozcelik B. Effect of Tungsten (W) Substitution on the Physical Properties of Bi-(2223) Superconductors. J. Supercond. Nov. Magn. 2014; 27: 711–16.
  • Persland M R, Tallon J L, Buckley R G, Liu R S, Floer N E. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Phys. C. 1191; 176 (1–3): 95–105.
  • Bilgili O, Selamet Y, Kocabas K. Effects of Li Substitution in Bi-2223 Superconductors. J. Supercond. Nov. Magn. 2008; 21: 439–49.
  • Saritekin N K, Tutuncu A T. Improving Superconductivity, Microstructure, and Mechanical Properties by Substituting Different Ionic Pb Elements to Bi and Ca Elements in Bi 2223 Superconductors. J. Supercond. Nov. Magn. 2022; 35: 2259–73.
  • Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charac.2013; 85: 111-123.
  • Safran S, Ozturk H, Bulut F, Ozturk O. The influence of re-pelletization and heat treatment on physical, superconducting, magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method. Ceram. Inter. 2017; 43: 15586–92.
  • Li H, Bradt R C. The effect of indentation-induced cracking on the apparent microhardness. J.Mat. Sci. 1966; 31: 1065-70.
  • Ozturk O, Asikuzun E, Tasci A T, Gokcen T, Ada H, Koralay H, Cavdar S. Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. J.Mater. Sci. Mater. Elect. 2018; 29: 3957–66.
  • Jones DRH, Ashby MF. Engineering Materials 1: An Introduction to Properties, Applications and Design. Chapter 3 - The Elastic Moduli. 5 th ed. Elsevier Science press; 2019. p.29-53.
  • Jones DRH, Ashby MF. Engineering Materials 1: An Introduction to Properties, Applications and Design. Chapter 8 - Yield Strength, Tensile Strength, and Ductility. 5 th ed. Elsevier Science press; 2019. p.115-133.

Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi

Year 2023, Volume: 12 Issue: 1, 153 - 162, 27.03.2023
https://doi.org/10.46810/tdfd.1205088

Abstract

Bu çalışmada nano-Y2O3 ilavesinin Bi-2223 süperiletken sisteminin yapısal, süperiletken, manyetik ve mekanik özellikleri üzerindeki etkileri araştırılmıştır. Bi1.8Pb0.4Sr2Ca 2Cu3O10 + δ + (Y2O3) ile ( x; ağırlıkça % 0,0-0,2-0,4-0,8-1,0) genel formülüne sahip polikristal örnekler katıhal reaksiyon yöntemiyle hazırlandı. Örneklerin yapısal karakterizasyonları için X-ışını kırınımı (XRD), Taramalı Elektron mikroskobu (SEM), Enerji dağılımlı X-ışını spektroskopisi (EDX) ölçümü, Titreşimli numune ölçümü (VSM), Direnç-sıcaklık (ρ-T) ölçümü ve Vickers mikrosertlik ölçümü (VHM) yapılmıştır. XRD desenleri, örneklerde hem Bi -2223 hem de Bi2212 fazlarının bir arada bulunduğunu gösterdi. Nano-Y ilavesinin artmasıyla a örgü parametresi artarken, c örgü parametresi azalmıştır. SEM fotoğraflarında tüm örneklerde tanecik yapısının plaka benzeri olduğu görülmekte ve katkı miktarındaki artmasıyla tabakalı yapı üzerinde nokta şeklinde partiküllerin varlığı daha net görülmektedir. ρ-T ölçümünden hesaplanan delik konsantrasyonu değerleri 0,113 ile 0,160 arasında değişmektedir. Nano-Y miktarı artarken kritik geçiş sıcaklıkları azalmıştır. VSM sonuçları Nano-Y eklenmesiyle kritik akım yoğunluğu değerlerinin arttığını göstermektedir. VHM sonuçları, sertlik değerinin x= % 0,4 katkılı örneğe kadar arttığını ve bu değerden sonra azaldığını göstermiştir.

References

  • Kim CJ. Superconductor Levitation Concepts and Experiments (e Book). Springer Nature; 2019. https://doi.org/10.1007/978-981-13-6768-7
  • Abou-Aly A, Abdel Gawad MMH, Awad R, G-Eldeen I. Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. J. Supercond. Nov. Magn.2011; 24, (7): 2077-84.
  • Awad R. Study of the Influence of MgO Nano-Oxide Addition on the Electrical and Mechanical Properties of (Cu0.25Tl0.75)-1234 Superconducting Phase. J Supercond. Nov. Magn. 2008; 21: 461–6
  • Öztornacı U, Özkurt B. The effect of nano-sized metallic Au addition on structural and magnetic properties of Bi1.8Sr2 AuxCa1.1Cu2.1Oy (Bi-2212) ceramics. Ceram. İnter. 2017; 43 (5): 4545-50.
  • Mawassi R, Marhaba S, Roumié M Awad R, Korek M, Hassan I. Improvement of Superconducting Parameters of Bi 1.8Pb0.4Sr2Ca2Cu3O10+δ Added with Nano-Ag. J. Supercond. Nov. Magn. 2014; 27:1131–42.
  • Yahya NAA, Al-Gaashani R, Abd-Shukor R. Synthesis and characterization of PbO–CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor. Appl. Phys. A. 2017;123-68.
  • Jia ZY, Tang H, Yang ZQ, Xing YT, Wang YZ, Qiao GW. Effects of nano-ZrO particles on the superconductivity of Pb-doped BSCCO. Phys. C. 2000; 337:130–2.
  • Yıldırım G, Dogruer M, Karaboga F, Terzioglu C. Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles. J. All. Comp. 2014; 584: 344-51.
  • Mohammed LA, Jasim KA. The substitutions of Strontium by yttrium and their effects on Bi2Sr2-xYxCa2Cu3O10+δ superconducting compound. Journal of Physics: Conference Series. 2021. 1879 (032069)
  • Dong Y, Sun A, Xu B, Zhang H, Zhang M. Effect of the BSCCO superconducting properties by tiny Y2O3 addition. Mod. Phys. Let. B. 2016; 30 (26): 1650328/1-9.
  • Khalil SM. Effect of Y3+ substitution for Ca on the transport and mechanical properties of Bi2Sr2Ca1−xYxCu2O8+δ system. J. Phys. Chem. Sol. 2003; 64 (5): 855-61.
  • Sedky A. The impact of Y substitution on the 110 K high Tc phase in Bi (Pb):2223 superconductor. J. Phys. Chem. Sol. 2009;70: 483-88.
  • Suazlina MA, Yusainee SYS, Azhan H, Abd-Shukor R, Mustaqim R. The Effects of Nanoparticle Addition in Bi-2212 Superconductors. 2014; 69 (2): 49–52.
  • Oboudi SF. Synthesis and Magnetic Properties of Bi1.7Pb 0.3Sr2Ca2Cu3O10+δ Added with Nano Y. J. Supercond. Nov. Magn. 2017; 30: 1473–82.
  • Durmus H, Kocabas K. The influence of Mn nanoparticles on superconducting properties and pinning mechanism of MgB2. J. Mater. Sci. Mater. Electr. 33 (21): 17079–89.
  • Çorduk T, Bilgili O, Kemal K. Investigation of effects of MgO nanoparticles addition on the superconducting properties of Bi-2223 superconductors. J. Mater. Sci. Mater. Electr. 2017; 28 (11): 14689–95.
  • Cevizci B, Bilgili O, Kemal K. The influence of Ag substitution on structural and mechanical properties of (Bi, Pb)-2223 ceramics. J.Mater. Sci. Mater. Elect. 2016; 27 (12), 13171-78.
  • Bilgili O, Yurdaskal M. Effects of Graphene Oxide Doping on Magnetic and Structural Properties of Bi1.6Pb0.4Sr2Ca2Cu3Oy Superconductor. J.Elect. Mat.2021; 50: 4999–5006.
  • Yildirim G, Dogruer M, Karaboga F, Terzioglu C. Formation of nucleation centers for vortices in Bi-2223 superconducting core by dispersed Sn nanoparticles. J. All. Comp.2014; 584: 344–51.
  • Bilgili O. Structural and Electrical Properties of Nanosized Sm2O3 Doped Bi1.6Pb0.4Sr2Ca2Cu3Oy Superconductors .J. Low. Temp. Phys.2021; 204: 5-6.
  • Shamray VF, Mikhailova AB, Mitin AV. Crystal structure and superconductivity of Bi-2223. Cryst Rep.2009; 54: 584–590.
  • Scherrer P. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mat. Phys. Klas. 1918; 2: 98-100.
  • Langford J I, Wilson A J C Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst.1978; 11: 102-113.
  • Abou-Aly A I, Abdel Gawad M M H, Awad R, G-Eldeen I. Improving the Physical Properties of (Bi, Pb)-2223 Phase by SnO2 Nano-particles Addition. J. Supercond. Nov. Magn. 2011; 24: 2077–84.
  • Bean CP. Magnetization Of Hard Superconductors. Phys. Rev. Lett. 1962; 8 (6): 250-3.
  • Yahya NAA, Abd-Shukor R. Effect of Different Nanosized MgO on the Transport Critical Current Density of Bi1.6Pb0.4Sr2Ca2Cu3O10 Superconductor. J. Supercond. Nov. Magn. 2014; 27: 329-35.
  • Turk N, Gundogmus H, Akyol M, Yakıncı D, Ekicibil A, Ozcelik B. Effect of Tungsten (W) Substitution on the Physical Properties of Bi-(2223) Superconductors. J. Supercond. Nov. Magn. 2014; 27: 711–16.
  • Persland M R, Tallon J L, Buckley R G, Liu R S, Floer N E. General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors. Phys. C. 1191; 176 (1–3): 95–105.
  • Bilgili O, Selamet Y, Kocabas K. Effects of Li Substitution in Bi-2223 Superconductors. J. Supercond. Nov. Magn. 2008; 21: 439–49.
  • Saritekin N K, Tutuncu A T. Improving Superconductivity, Microstructure, and Mechanical Properties by Substituting Different Ionic Pb Elements to Bi and Ca Elements in Bi 2223 Superconductors. J. Supercond. Nov. Magn. 2022; 35: 2259–73.
  • Uvarov V, Popov I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charac.2013; 85: 111-123.
  • Safran S, Ozturk H, Bulut F, Ozturk O. The influence of re-pelletization and heat treatment on physical, superconducting, magnetic and micro-mechanical properties of bulk BSCCO samples prepared by ammonium nitrate precipitation method. Ceram. Inter. 2017; 43: 15586–92.
  • Li H, Bradt R C. The effect of indentation-induced cracking on the apparent microhardness. J.Mat. Sci. 1966; 31: 1065-70.
  • Ozturk O, Asikuzun E, Tasci A T, Gokcen T, Ada H, Koralay H, Cavdar S. Comparison of Vickers microhardness of undoped and Ru doped BSCCO glass ceramic materials. J.Mater. Sci. Mater. Elect. 2018; 29: 3957–66.
  • Jones DRH, Ashby MF. Engineering Materials 1: An Introduction to Properties, Applications and Design. Chapter 3 - The Elastic Moduli. 5 th ed. Elsevier Science press; 2019. p.29-53.
  • Jones DRH, Ashby MF. Engineering Materials 1: An Introduction to Properties, Applications and Design. Chapter 8 - Yield Strength, Tensile Strength, and Ductility. 5 th ed. Elsevier Science press; 2019. p.115-133.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emine Burcu Cevizci 0000-0002-1738-4130

Kemal Kocabaş 0000-0002-4443-0059

Sedt Kurnaz 0000-0003-3657-2628

Publication Date March 27, 2023
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Cevizci, E. B., Kocabaş, K., & Kurnaz, S. (2023). Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi. Türk Doğa Ve Fen Dergisi, 12(1), 153-162. https://doi.org/10.46810/tdfd.1205088
AMA Cevizci EB, Kocabaş K, Kurnaz S. Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi. TJNS. March 2023;12(1):153-162. doi:10.46810/tdfd.1205088
Chicago Cevizci, Emine Burcu, Kemal Kocabaş, and Sedt Kurnaz. “Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik Ve Mekanik Özelliklerinin İncelenmesi”. Türk Doğa Ve Fen Dergisi 12, no. 1 (March 2023): 153-62. https://doi.org/10.46810/tdfd.1205088.
EndNote Cevizci EB, Kocabaş K, Kurnaz S (March 1, 2023) Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi. Türk Doğa ve Fen Dergisi 12 1 153–162.
IEEE E. B. Cevizci, K. Kocabaş, and S. Kurnaz, “Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi”, TJNS, vol. 12, no. 1, pp. 153–162, 2023, doi: 10.46810/tdfd.1205088.
ISNAD Cevizci, Emine Burcu et al. “Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik Ve Mekanik Özelliklerinin İncelenmesi”. Türk Doğa ve Fen Dergisi 12/1 (March 2023), 153-162. https://doi.org/10.46810/tdfd.1205088.
JAMA Cevizci EB, Kocabaş K, Kurnaz S. Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi. TJNS. 2023;12:153–162.
MLA Cevizci, Emine Burcu et al. “Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik Ve Mekanik Özelliklerinin İncelenmesi”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 1, 2023, pp. 153-62, doi:10.46810/tdfd.1205088.
Vancouver Cevizci EB, Kocabaş K, Kurnaz S. Nano-Y2O3 Katkılı Bizmut Esaslı Süperiletken Malzemelerin Manyetik ve Mekanik Özelliklerinin İncelenmesi. TJNS. 2023;12(1):153-62.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.