Research Article
BibTex RIS Cite

Enerji Verimli Aydınlatma Tasarımı: Farklı Pencere Boyutlarında Optimum Gün Işığı Kullanımı Üzerine Bir Araştırma

Year 2023, Volume: 12 Issue: 4, 114 - 122, 28.12.2023
https://doi.org/10.46810/tdfd.1298505

Abstract

Son yıllarda sıkça konuşulan sürdürülebilirlik kavramı ile birlikte mekânsal konfor şartlarının daha fazla iyileştirilmesi tasarımcılardan daha çok talep edilmeye başlanmıştır. Enerji etkinliğinin de tasarımda daha fazla konuşuluyor olması, tasarımcıları bu konuları tasarım evresinin daha erken aşamalarında düşünmeye yönlendirmiştir. Yapay aydınlatmaya temiz, kesintisiz enerji ve uygun maliyetli bir alternatif olarak görülen gün ışığı iyi renksel geri verimi nedeniyle de bireylerin görsel açıdan konforda olmasını sağlamaktadır. Tüm bilinen bu avantajlara rağmen, önemli bir girdi olan gün ışığına etki eden parametreler göz önünde bulundurulup, yapay aydınlatmanın oluşturduğu enerji tüketim oranını en aza indirecek şekilde tasarım kriterleri oluşturulamamıştır. Bu çalışma, gün ışığından optimum seviyede faydalanmak için, ideal pencere kavramını ve diğer parametreleri kullanarak aydınlatmada enerji tasarrufu sağlamaya yönelik bir araştırma sunmaktadır. Çalışma en kötü durum senaryolarını temsil ettiklerinden bulutlu gökyüzü ve derin oda koşulları altında uygulanmıştır. Zaman alıcı matematiksel hesaplamalara alternatif olan aydınlatma simülasyon programı Velux Daylight Visualizer ile yatay, dikey, kare ve çatı pencereleri için ayrı ayrı üç boyutlu tasarım yapılıp, bu pencerelerin gün ışığı faktörüne etkileri analiz edilmiştir. Ayrıca iç ortamda bulunan farklı mobilya renklerinin etkisi de incelenmiştir. Yapılan incelemelerden sonra, çatı pencerelerinin diğerlerine kıyasla daha fazla gün ışığı ürettiği görülmüştür. Fakat çatı pencereleri katlı binalarda kullanılamayacağından yatay, dikey ve kare pencereler arasında kıyaslama yapılmış ve üst duvara yakın yerleştirilen yatay pencerelerin diğerlerine göre daha verimli olduğu sonucuna ulaşılmıştır. Buna ek olarak, açık ve koyu olarak sınanan mobilyalardan açık renkli olanların diğerine kıyasla daha çok gün ışığı ürettiği görülmüştür.

References

  • Li DHW, Tsang EKW. An analysis of daylighting performance for office buildings in Hong Kong. Build Environ. 2008 Sep 1;43(9):1446–58.
  • Kwong QJ. Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building. Journal of Building Engineering. 2020 May 1;29:101198.
  • Wagiman KR, Abdullah MN, Hassan MY, Mohammad Radzi NH. A new metric for optimal visual comfort and energy efficiency of building lighting system considering daylight using multi-objective particle swarm optimization. Journal of Building Engineering. 2021 Nov 1;43:102525.
  • Scorpio M, Ciampi G, Gentile N, Sibilio S. Effectiveness of low-cost non-invasive solutions for daylight and electric lighting integration to improve energy efficiency in historical buildings. Energy and Buildings. 2022 Sep 1;270:112281.
  • Tekbıyık G. Sürdürülebilir mimarlıkta yenilenebilir enerji kaynaklarının kullanımı, kamu binalarında uygulama yöntemleri ve örneklerinin incelenmesi [dissertation]. İstanbul: Fatih Sultan Mehmet Vakıf Üniversitesi; 2018.
  • ECS. European committee for standardization; Brussels: 2002. Light and lighting - Basic terms and criteria for specifying lighting requirements (Vol. EN 12665).
  • Wilder R, Mukhopadhyay J, Femrite T, Amende K. Evaluating Glare in Leed Certified Buildings To Inform Criteria For Daylighting Credits. Journal of Green Building. 2019 Sep 1;14(4):57–76.
  • Fakhari M, Fayaz R, Lollini R. The Impact of Evaluated Daylight to the Total Light Ratio on the Comfort Level in Office Buildings. Buildings. 2022 Dec;12(12):2161.
  • Amirkhani M, Garcia-Hansen V, Isoardi G, Allan A. An Energy Efficient Lighting Design Strategy to Enhance Visual Comfort in Offices with Windows. Energies. 2017 Aug;10(8):1126.
  • Pilechiha P, Mahdavinejad M, Pour Rahimian F, Carnemolla P, Seyedzadeh S. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency. Applied Energy. 2020 Mar 1;261:114356.
  • Soori PK, Vishwas M. Lighting control strategy for energy efficient office lighting system design. Energy and Buildings. 2013 Nov 1;66:329–37.
  • Ganandran GSB, Mahlia TMI, Ong HC, Rismanchi B, Chong WT. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional. ScientificWorldJournal. 2014;2014:745894.
  • Trifunovic J, Mikulovic J, Djurisic Z, Djuric M, Kostic M. Reductions in electricity consumption and power demand in case of the mass use of compact fluorescent lamps. Energy. 2009 Sep 1;34(9):1355–63.
  • Mangkuto RA, Rohmah M, Asri AD. Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy. 2016 Feb 15;164:211–9.
  • Hammad F, Abu-Hijleh B. The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings. 2010 Oct 1;42(10):1888–95.
  • Chow SKH, Li DHW, Lee EWM, Lam JC. Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls. Applied Energy. 2013 Dec 1;112:1016–24.
  • Hopkinson RG, Longmore J, Petherbridge P. An Empirical Formula for the Computation of the Indirect Component of Daylight Factor. Trans Illum Eng Soc. 1954 Jul 1;19(7_IEStrans):201–19.
  • Ibarra D, Reinhart CF. Daylight factor simulations–how close do simulation beginners ‘really’get. Building Simulation. 2009;196:196-203.
  • Li DHW. A review of daylight illuminance determinations and energy implications. Appl Energy. 2010 Jul 1;87(7):2109–18.
  • Vanhoutteghem L, Skarning GCJ, Hviid CA, Svendsen S. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings. 2015 Sep 1;102:149–56.
  • Mushtaha ES, Shadid R. Evaluating daylight performance of Sharjah archaeology museum in UAE with a reference of Kuwait national museum. J. Civil Eng. Urban. 2015;5: 265-271.
  • Dino IG, Üçoluk G. Multiobjective Design Optimization of Building Space Layout, Energy, and Daylighting Performance. J Comput Civ Eng. 2017 Sep 1;31(5):04017025.
  • Fang Y, Cho S. Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy. 2019 Oct 1;191:7–18.
  • De Gastines M, Pattini AE. Window energy efficiency in Argentina - Determining factors and energy savings strategies. J Clean Prod. 2020 Feb 20;247:119104.
  • Kazanasmaz ZT. Binaların doğal aydınlatma performanslarının değerlendirilmesi. V. Ulusal Aydınlatma Sempozyumu ve Sergisi, İzmir; 2009.
  • Labayrade R, Jensen HW, Jensen C. Validation of Velux Daylight Visualizer 2 against CIE 171: 2006 test cases. 11th International IBPSA Conference, International Building Performance Simulation Association. Glasgow; 2009. p. 1506-13.
  • Labayrade R, Fontoynont M, Mouret C, Avouac P, Jean MC. Assessment of Velux Daylight Visualizer 2 against CIE 171: 2006 test cases. Ecole Nationale Des Travaux Publics de l ‘Etat; 2009.
  • CIE. Test cases to assess the accuracy of lighting computer programs, Commission Internationale de l’Éclairage, 2006.
  • Kousalyadevi G, Lavanya G. Optimal investigation of daylighting and energy efficiency in industrial building using energy-efficient velux daylighting simulation. Journal of Asian Architecture and Building Engineering. 2019 Jul 4;18(4):271–84.
  • Lapisa R, Karudin A, Martias M, Krismadinata K, Ambiyar A, Romani Z, et al. Effect of skylight–roof ratio on warehouse building energy balance and thermal–visual comfort in hot-humid climate area. Asian J Civ Eng. 2020 Jul 1;21(5):915–23.
  • Dolnikova E, Katunsky D, Vertal M, Zozulak M. Influence of Roof Windows Area Changes on the Classroom Indoor Climate in the Attic Space: A Case Study. Sustainability. 2020 Jan;12(12):5046.
  • Dev G, Saifudeen A. Dynamic facade control systems for optimal daylighting, a case of Kerala. Sustainability Analytics and Modeling. 2023 Jan 1;3:100018.
  • Vishwas M, Soori PK. Simple Tool for Energy Analysis of Day Lighting and Artificial Lighting for a Typical Office Building Lighting System Design. Int J Energy Eng. 2012;2(6):332–8.
  • Akatli G, Sağiroğlu Ö. Kutsal Mekanlarda Doğal Işık Tasarımının Etimesgut Cami ve Işık Kilisesi Örnekleri Üzerinden İncelenmesi. Mimar Ve Yaşam. 2022 Apr 30;7(1):359–82.
  • Simm S, Coley D. The relationship between wall reflectance and daylight factor in real rooms. Architectural Science Review. 2011 Nov 1;54:329–34.
  • Baker N, Steemers K. Daylight design of buildings. London: James & James; 2002. 250 p.
  • Ghisi E, Tinker JA. An Ideal Window Area concept for energy efficient integration of daylight and artificial light in buildings. Building and Environment. 2005 Jan 1;40(1):51–61.
  • Rizal Y, Robandi I, Yuniarno EM. Daylight Factor Estimation Based on Data Sampling Using Distance Weighting. Energy Procedia. 2016 Nov 1;100:54–64.
  • Iesna LH. Lighting handbook, reference and application volume. New York: Illuminating Engineering Society of North America. 45-64; 2000.
  • VELUX. Velux Daylight Visualizer;2023 [Internet]. [cited 2023 Feb 30]. Available from: https://www.velux.com/what-we-do/research-and-knowledge/deic-basic-book/daylight/parameters-influencing-daylighting-performance
  • Phillips D. Daylighting: natural light in architecture. Oxford: Architectural Press; 2004. 212 p.
  • Uetani Y, Aydinli S, Joukoff A, Kendrick JD, Kittler R, Koga, Y. Spatial Distribution of Daylight–CIE Standard General Sky. Vienna, Austria; 2003.
  • Kensek K, Suk JY. Daylight factor (overcast sky) versus daylight availability (clear sky) in computer-based daylighting simulations. Journal of Creative Sustainable Architecture & Built Environment. 2011;1:3-14.
  • Henriques GC, Duarte JP, Leal V. Strategies to control daylight in a responsive skylight system. Automation in Construction. 2012 Dec 1;28:91–105.
  • Li DHW, Lau CCS, Lam JC. Evaluation of overcast-sky luminance models against measured Hong Kong data. Applied Energy. 2001 Dec 1;70(4):321–31.

Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes

Year 2023, Volume: 12 Issue: 4, 114 - 122, 28.12.2023
https://doi.org/10.46810/tdfd.1298505

Abstract

In recent years, with the frequently discussed concept of sustainability, designers have been increasingly demanded to improve spatial comfort conditions. The growing emphasis on energy efficiency in design has led designers to consider these issues at earlier stages of the design process. Daylight, seen as a clean, uninterrupted energy source and a cost-effective alternative to artificial lighting, also ensures visual comfort for individuals due to its good color rendering. Despite all these well-known benefits, design criteria have not been established to reduce the energy consumption rate caused by artificial lighting while taking into account the factors affecting daylight, an important input. This study presents an investigation aimed at achieving energy savings in lighting by using the ideal window concept and other parameters to optimally benefit from daylight. The study has been applied under cloudy sky and deep room conditions, which represent the worst-case scenarios. As an alternative to time-consuming mathematical calculations, the Velux Daylight Visualizer lighting simulation program was used to create three-dimensional designs for horizontal, vertical, square, and roof windows separately, and the effects of these windows on the daylight factor were analyzed. The impact of different furniture colors in the interior space was also examined. Following the investigations, it was observed that roof windows produced more daylight compared to others. However, since roof windows cannot be used in multi-story buildings, a comparison was made between horizontal, vertical, and square windows, and it was concluded that horizontal windows placed close to the upper wall were more efficient than the others. In addition, it was observed that lighter-colored furniture, among the light and dark furniture, produced more daylight compared to the other.

References

  • Li DHW, Tsang EKW. An analysis of daylighting performance for office buildings in Hong Kong. Build Environ. 2008 Sep 1;43(9):1446–58.
  • Kwong QJ. Light level, visual comfort and lighting energy savings potential in a green-certified high-rise building. Journal of Building Engineering. 2020 May 1;29:101198.
  • Wagiman KR, Abdullah MN, Hassan MY, Mohammad Radzi NH. A new metric for optimal visual comfort and energy efficiency of building lighting system considering daylight using multi-objective particle swarm optimization. Journal of Building Engineering. 2021 Nov 1;43:102525.
  • Scorpio M, Ciampi G, Gentile N, Sibilio S. Effectiveness of low-cost non-invasive solutions for daylight and electric lighting integration to improve energy efficiency in historical buildings. Energy and Buildings. 2022 Sep 1;270:112281.
  • Tekbıyık G. Sürdürülebilir mimarlıkta yenilenebilir enerji kaynaklarının kullanımı, kamu binalarında uygulama yöntemleri ve örneklerinin incelenmesi [dissertation]. İstanbul: Fatih Sultan Mehmet Vakıf Üniversitesi; 2018.
  • ECS. European committee for standardization; Brussels: 2002. Light and lighting - Basic terms and criteria for specifying lighting requirements (Vol. EN 12665).
  • Wilder R, Mukhopadhyay J, Femrite T, Amende K. Evaluating Glare in Leed Certified Buildings To Inform Criteria For Daylighting Credits. Journal of Green Building. 2019 Sep 1;14(4):57–76.
  • Fakhari M, Fayaz R, Lollini R. The Impact of Evaluated Daylight to the Total Light Ratio on the Comfort Level in Office Buildings. Buildings. 2022 Dec;12(12):2161.
  • Amirkhani M, Garcia-Hansen V, Isoardi G, Allan A. An Energy Efficient Lighting Design Strategy to Enhance Visual Comfort in Offices with Windows. Energies. 2017 Aug;10(8):1126.
  • Pilechiha P, Mahdavinejad M, Pour Rahimian F, Carnemolla P, Seyedzadeh S. Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency. Applied Energy. 2020 Mar 1;261:114356.
  • Soori PK, Vishwas M. Lighting control strategy for energy efficient office lighting system design. Energy and Buildings. 2013 Nov 1;66:329–37.
  • Ganandran GSB, Mahlia TMI, Ong HC, Rismanchi B, Chong WT. Cost-Benefit Analysis and Emission Reduction of Energy Efficient Lighting at the Universiti Tenaga Nasional. ScientificWorldJournal. 2014;2014:745894.
  • Trifunovic J, Mikulovic J, Djurisic Z, Djuric M, Kostic M. Reductions in electricity consumption and power demand in case of the mass use of compact fluorescent lamps. Energy. 2009 Sep 1;34(9):1355–63.
  • Mangkuto RA, Rohmah M, Asri AD. Design optimisation for window size, orientation, and wall reflectance with regard to various daylight metrics and lighting energy demand: A case study of buildings in the tropics. Applied Energy. 2016 Feb 15;164:211–9.
  • Hammad F, Abu-Hijleh B. The energy savings potential of using dynamic external louvers in an office building. Energy and Buildings. 2010 Oct 1;42(10):1888–95.
  • Chow SKH, Li DHW, Lee EWM, Lam JC. Analysis and prediction of daylighting and energy performance in atrium spaces using daylight-linked lighting controls. Applied Energy. 2013 Dec 1;112:1016–24.
  • Hopkinson RG, Longmore J, Petherbridge P. An Empirical Formula for the Computation of the Indirect Component of Daylight Factor. Trans Illum Eng Soc. 1954 Jul 1;19(7_IEStrans):201–19.
  • Ibarra D, Reinhart CF. Daylight factor simulations–how close do simulation beginners ‘really’get. Building Simulation. 2009;196:196-203.
  • Li DHW. A review of daylight illuminance determinations and energy implications. Appl Energy. 2010 Jul 1;87(7):2109–18.
  • Vanhoutteghem L, Skarning GCJ, Hviid CA, Svendsen S. Impact of façade window design on energy, daylighting and thermal comfort in nearly zero-energy houses. Energy and Buildings. 2015 Sep 1;102:149–56.
  • Mushtaha ES, Shadid R. Evaluating daylight performance of Sharjah archaeology museum in UAE with a reference of Kuwait national museum. J. Civil Eng. Urban. 2015;5: 265-271.
  • Dino IG, Üçoluk G. Multiobjective Design Optimization of Building Space Layout, Energy, and Daylighting Performance. J Comput Civ Eng. 2017 Sep 1;31(5):04017025.
  • Fang Y, Cho S. Design optimization of building geometry and fenestration for daylighting and energy performance. Solar Energy. 2019 Oct 1;191:7–18.
  • De Gastines M, Pattini AE. Window energy efficiency in Argentina - Determining factors and energy savings strategies. J Clean Prod. 2020 Feb 20;247:119104.
  • Kazanasmaz ZT. Binaların doğal aydınlatma performanslarının değerlendirilmesi. V. Ulusal Aydınlatma Sempozyumu ve Sergisi, İzmir; 2009.
  • Labayrade R, Jensen HW, Jensen C. Validation of Velux Daylight Visualizer 2 against CIE 171: 2006 test cases. 11th International IBPSA Conference, International Building Performance Simulation Association. Glasgow; 2009. p. 1506-13.
  • Labayrade R, Fontoynont M, Mouret C, Avouac P, Jean MC. Assessment of Velux Daylight Visualizer 2 against CIE 171: 2006 test cases. Ecole Nationale Des Travaux Publics de l ‘Etat; 2009.
  • CIE. Test cases to assess the accuracy of lighting computer programs, Commission Internationale de l’Éclairage, 2006.
  • Kousalyadevi G, Lavanya G. Optimal investigation of daylighting and energy efficiency in industrial building using energy-efficient velux daylighting simulation. Journal of Asian Architecture and Building Engineering. 2019 Jul 4;18(4):271–84.
  • Lapisa R, Karudin A, Martias M, Krismadinata K, Ambiyar A, Romani Z, et al. Effect of skylight–roof ratio on warehouse building energy balance and thermal–visual comfort in hot-humid climate area. Asian J Civ Eng. 2020 Jul 1;21(5):915–23.
  • Dolnikova E, Katunsky D, Vertal M, Zozulak M. Influence of Roof Windows Area Changes on the Classroom Indoor Climate in the Attic Space: A Case Study. Sustainability. 2020 Jan;12(12):5046.
  • Dev G, Saifudeen A. Dynamic facade control systems for optimal daylighting, a case of Kerala. Sustainability Analytics and Modeling. 2023 Jan 1;3:100018.
  • Vishwas M, Soori PK. Simple Tool for Energy Analysis of Day Lighting and Artificial Lighting for a Typical Office Building Lighting System Design. Int J Energy Eng. 2012;2(6):332–8.
  • Akatli G, Sağiroğlu Ö. Kutsal Mekanlarda Doğal Işık Tasarımının Etimesgut Cami ve Işık Kilisesi Örnekleri Üzerinden İncelenmesi. Mimar Ve Yaşam. 2022 Apr 30;7(1):359–82.
  • Simm S, Coley D. The relationship between wall reflectance and daylight factor in real rooms. Architectural Science Review. 2011 Nov 1;54:329–34.
  • Baker N, Steemers K. Daylight design of buildings. London: James & James; 2002. 250 p.
  • Ghisi E, Tinker JA. An Ideal Window Area concept for energy efficient integration of daylight and artificial light in buildings. Building and Environment. 2005 Jan 1;40(1):51–61.
  • Rizal Y, Robandi I, Yuniarno EM. Daylight Factor Estimation Based on Data Sampling Using Distance Weighting. Energy Procedia. 2016 Nov 1;100:54–64.
  • Iesna LH. Lighting handbook, reference and application volume. New York: Illuminating Engineering Society of North America. 45-64; 2000.
  • VELUX. Velux Daylight Visualizer;2023 [Internet]. [cited 2023 Feb 30]. Available from: https://www.velux.com/what-we-do/research-and-knowledge/deic-basic-book/daylight/parameters-influencing-daylighting-performance
  • Phillips D. Daylighting: natural light in architecture. Oxford: Architectural Press; 2004. 212 p.
  • Uetani Y, Aydinli S, Joukoff A, Kendrick JD, Kittler R, Koga, Y. Spatial Distribution of Daylight–CIE Standard General Sky. Vienna, Austria; 2003.
  • Kensek K, Suk JY. Daylight factor (overcast sky) versus daylight availability (clear sky) in computer-based daylighting simulations. Journal of Creative Sustainable Architecture & Built Environment. 2011;1:3-14.
  • Henriques GC, Duarte JP, Leal V. Strategies to control daylight in a responsive skylight system. Automation in Construction. 2012 Dec 1;28:91–105.
  • Li DHW, Lau CCS, Lam JC. Evaluation of overcast-sky luminance models against measured Hong Kong data. Applied Energy. 2001 Dec 1;70(4):321–31.
There are 45 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aylin Durak 0009-0002-6227-5870

Ahmet Çifci 0000-0001-7679-9945

Early Pub Date December 28, 2023
Publication Date December 28, 2023
Published in Issue Year 2023 Volume: 12 Issue: 4

Cite

APA Durak, A., & Çifci, A. (2023). Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes. Türk Doğa Ve Fen Dergisi, 12(4), 114-122. https://doi.org/10.46810/tdfd.1298505
AMA Durak A, Çifci A. Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes. TJNS. December 2023;12(4):114-122. doi:10.46810/tdfd.1298505
Chicago Durak, Aylin, and Ahmet Çifci. “Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes”. Türk Doğa Ve Fen Dergisi 12, no. 4 (December 2023): 114-22. https://doi.org/10.46810/tdfd.1298505.
EndNote Durak A, Çifci A (December 1, 2023) Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes. Türk Doğa ve Fen Dergisi 12 4 114–122.
IEEE A. Durak and A. Çifci, “Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes”, TJNS, vol. 12, no. 4, pp. 114–122, 2023, doi: 10.46810/tdfd.1298505.
ISNAD Durak, Aylin - Çifci, Ahmet. “Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes”. Türk Doğa ve Fen Dergisi 12/4 (December 2023), 114-122. https://doi.org/10.46810/tdfd.1298505.
JAMA Durak A, Çifci A. Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes. TJNS. 2023;12:114–122.
MLA Durak, Aylin and Ahmet Çifci. “Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 4, 2023, pp. 114-22, doi:10.46810/tdfd.1298505.
Vancouver Durak A, Çifci A. Energy-Efficient Lighting Design: An Investigation of Optimal Daylight Use in Different Window Sizes. TJNS. 2023;12(4):114-22.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.