Research Article
BibTex RIS Cite

Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799

Year 2024, Volume: 13 Issue: 2, 95 - 105, 28.06.2024
https://doi.org/10.46810/tdfd.1474399

Abstract

Vasküler endotelyal büyüme faktörü (VEGF165), anjiyogenezdeki rolünden dolayı çeşitli fizyolojik süreçler ve kanser gibi patolojik hastalıklar ile ilişkili önemli bir biyobelirteçtir. Bu nedenle, yüksek verimde rekombinant VEGF165 elde etmek için etkili bir yöntem gereklidir. Bu çalışmada, Kluyveromyces lactis (K. lactis) GG799 hücrelerinde rekombinant VEGF165 ekspresyonunu artırmak amacıyla büyüme ortamının optimize edilmesi amaçlanmıştır. Farklı ortam bileşenlerinin taranması sonucunda galaktoz, tripton ve maya ekstraktı en etkili bileşenler olarak belirlenmiştir. Box-Behnken tasarımı kullanılarak seçilen ortam bileşenleri optimize edilmiş ve biyokütle konsantrasyonunda %31'lik kayda değer bir artış sağlanmıştır. 45 g L-1 galaktoz, 30 g L-1 tripton ve 5 g L-1 maya ekstraktı içeren optimize ortam ile 0,26 gDCW L-1 h-1 biyokütle üretkenliğine (P) ulaşılmıştır. Ayrıca VEGF165 ekspresyonu, optimize edilmemiş ortama kıyasla 1,27 kat artışla 1024,09 μg L-1 değerine ulaşmıştır. Elde edilen sonuçlar, önerilen optimize edilmiş ortamın K. lactis'te diğer rekombinant proteinlerin üretimine yönelik proses geliştirme stratejisi olarak bir model olabileceğini göstermektedir.

Supporting Institution

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)

Project Number

ONAP-2020-21791

Thanks

Yazarlar, Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi'ne (Proje Numarası: ONAP-2020-21791) finansal destek için teşekkür eder.

References

  • Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-64.
  • Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967-74.
  • Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623-28.
  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439-42.
  • Chintalgattu V, Nair DM, Katwa LC. Cardiac myofibroblasts: A novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol. 2003;35(3):277-86.
  • Reichardt LF, Tomaselli KJ. Extracellular matrix molecules and their receptors: Functions in neural development. Annu Rev Neurosci. 1991;14:531-70.
  • Lee SS, Joo YS, Kim WU, Min DJ, Min JK, Park SH, et al. Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2001;19:321-24.
  • Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161-68.
  • Adamis AP, Shima DT. The Role of Vascular Endothelial Growth Factor in Ocular Health and Disease. Retina. 2005;25(2):111-18.
  • Dakowicz D, Zajkowska M, Mroczko B. Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. Int J Mol Sci. 2022;23(6):3375.
  • Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. In: Claesson-Welsh L, editor. Vascular Growth Factors and Angiogenesis. Curr Top Microbiol Immunol. Springer, Berlin, Heidelberg; 1999. p. 97-132.
  • Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, et al. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med. 2021;8:738325.
  • Shen HL, Xu W, Wu ZY, Zhou LL, Qin RJ, Tang HR. Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leuk Res. 2007;31(4):515-21.
  • Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947-70.
  • Vicari D, Foy KC, Liotta EM, Kaumaya PTP. Engineered Conformation-dependent VEGF Peptide Mimics Are Effective in Inhibiting VEGF Signaling Pathways. J Biol Chem. 2011;286(15):P13612-25.
  • Kim H, Yoo SJ, Kang HA, Alper EH. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2015;15(1).1-16.
  • Milton Vieira Gomes A, Souza Carmo T, Silva Carvalho L, Mendonça Bahia FI, Skorupa Parachin N. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms. 2018;6(2):38.
  • Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol. 2016;222:104-16.
  • Panuwatsuk W, Da Silva NA. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnol Bioeng. 2003;81:712-18.
  • Pandey R, Kumar N, Prabhu AA, Dasu Veeranki V. Application of medium optimization tools for improving recombinant human interferon gamma production from Kluyveromyces lactis. Prep Biochem Biotechnol. 2018;48(3):279-87.
  • Pandey R, Venkata &, Veeranki D, Dasu Veeranki V. Optimizing secretory expression of recombinant human interferon gamma from Kluyveromyces lactis. Prep Biochem Biotechnol. 2018;48(2):202-12.
  • Prabhu AA, Mandal B, Dasu VV. Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach. Korean J Chem Eng 2017;34:1109-21.
  • Kumar S, Pakshirajan K, Venkata Dasu V. Development of medium for enhanced production of glutaminase-free l-asparaginase from pectobacterium carotovorum MTCC 1428. Appl Microbiol Biotechnol. 2009;84(3):477-86.
  • Gunst RF, Myers RH, Montgomery DC. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Technometrics 1996;38(3):285-86.
  • Kuduğ Ceylan H, Erden Tayhan S, Gökçe İ. Secretory Expression of Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis and Characterization of Its Biological Activity. Int J Pept Res Ther. 2021;27:1989-2001.
  • Álvarez-Cao ME, Rico-Díaz A, Cerdán ME, Becerra M, González-Siso MI. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microb Cell Fact. 2018;17:137.
  • C. Hun C, Sueb MS, Malek RA, Othman NZ, Elsayed EA, Ramili S, et al. Bioprocess Development for High Cell Mass Production of the Probiotic Yeast-Kluyveromyces lactis. IOSR J Pharm Biol Sci. 2013;8(3):49-59.
  • Rajoka MI, Khan S, Shahid R. Kinetics and regulation studies of the production of b-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol. 2003;41:315-20.
  • Coelho Sampaio F, da Conceição Saraiva TL, Dumont de Lima e Silva G, Teles de Faria J, Grijó Pitangui C, Aliakbarian B, et al. Batch growth of Kluyveromyces lactis cells from deproteinized whey: Response surface methodology versus Artificial neural network-Genetic algorithm approach. Biochem Eng J. 2016;109:305-11.
  • Sheetz RM, Dickson RC. Lac4 is the structural gene for beta-galactosidase in Kluyveromyces lactis. Genetics https://doi.org/10.1093/GENETICS/98.4.729
  • Leardi R (2009) Experimental design in chemistry: A tutorial. Anal Chim Acta. 1981;98(4):729-45.
  • Colussi PA, Taron CH. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol. 2005;71(11).
  • González-Siso MI, Freire-Picos MA, Ramil E, González-Domínguez M, Rodríguez Torres A, Cerdán ME. Respirofermentative metabolism in Kluyveromyces lactis: Insights and perspectives. Enzyme and Microbial Technology 2000;26(9-10):699-705.
  • Toivari M, Vehkomäki ML, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG. Low pH d-xylonate production with Pichia kudriavzevii. Bioresour Technol. 2013;133:555-62.
  • Boender LGM, De Hulster EAF, Van Maris AJA, Daran-Lapujade PAS, Pronk JT. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. Appl Environ Microbiol. 2009;75(17):5607-14.
  • Dickson RC, Sheetz RM, Lacy LR. Genetic regulation: yeast mutants constitutive for beta-galactosidase activity have an increased level of beta-galactosidase messenger ribonucleic acid. Mol Cell Biol. 1981;1(11):1048-56.
  • Purama RK, Goyal A. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour Technol. 2008;99(15):7108-14.
  • Zaharah SF, Fuzi M, Razali F, Jamaliah, Jahim JMd, Rahman RA, Illias RMd. Simplified feeding strategies for the fed-batch cultivation of Kluyveromyces lactis GG799 for enhanced recombinant xylanase production. Bioprocess Biosyst Eng. 2014;37:1887-98.
  • Variyana Y, Muchammad RSC, Mahfud M. Box-behnken design for the optimization using solvent-free microwave gravity extraction of garlic oil from Allium sativum L. IOP Conference Series: Materials Science and Engineering, 2019;673.

Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799

Year 2024, Volume: 13 Issue: 2, 95 - 105, 28.06.2024
https://doi.org/10.46810/tdfd.1474399

Abstract

Vascular endothelial growth factor (VEGF165) serves as a vital biomarker, linked to diverse physiological processes and pathological conditions like cancer, owing to its pivotal role in angiogenesis. Therefore, an efficient method to obtain recombinant VEGF165 in high yield is required. This study focused on optimizing a medium to enhance the biomass of Kluyveromyces lactis (K. lactis) GG799 cells that express recombinant VEGF165. Through screening various media components, galactose, tryptone, and yeast extract were identified as the most effective components. Using the Box–Behnken design, the medium components were optimized, resulting in a notable 31% increase in biomass concentration. The optimized medium, comprising 45 g L-1 galactose, 30 g L-1 tryptone, and 5 g L-1yeast extract, achieved a biomass productivity (P) of 0.26 gDCW L-1 h-1. Additionally, the expression of VEGF165 reached 1024.09 μg per L of the culture medium, representing a 1.27-fold increase compared to the unoptimized medium. These results imply that the proposed optimized medium can serve as a model for a process development strategy, providing a foundation for obtaining elevated yields of other recombinant proteins in K. lactis.

Supporting Institution

Ege University Scientific Research Projects Coordination Unit

Project Number

ONAP-2020-21791

Thanks

The authors thank the Ege University Scientific Research Projects Coordination Unit (Project Number: ONAP-2020-21791) for financial support.

References

  • Apte RS, Chen DS, Ferrara N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell. 2019;176(6):1248-64.
  • Ferrara N, Kerbel RS. Angiogenesis as a therapeutic target. Nature. 2005;438:967-74.
  • Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5:623-28.
  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature. 1996;380:439-42.
  • Chintalgattu V, Nair DM, Katwa LC. Cardiac myofibroblasts: A novel source of vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR. J Mol Cell Cardiol. 2003;35(3):277-86.
  • Reichardt LF, Tomaselli KJ. Extracellular matrix molecules and their receptors: Functions in neural development. Annu Rev Neurosci. 1991;14:531-70.
  • Lee SS, Joo YS, Kim WU, Min DJ, Min JK, Park SH, et al. Vascular endothelial growth factor levels in the serum and synovial fluid of patients with rheumatoid arthritis. Clin Exp Rheumatol. 2001;19:321-24.
  • Xia YP, Li B, Hylton D, Detmar M, Yancopoulos GD, Rudge JS. Transgenic delivery of VEGF to mouse skin leads to an inflammatory condition resembling human psoriasis. Blood. 2003;102(1):161-68.
  • Adamis AP, Shima DT. The Role of Vascular Endothelial Growth Factor in Ocular Health and Disease. Retina. 2005;25(2):111-18.
  • Dakowicz D, Zajkowska M, Mroczko B. Relationship between VEGF Family Members, Their Receptors and Cell Death in the Neoplastic Transformation of Colorectal Cancer. Int J Mol Sci. 2022;23(6):3375.
  • Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. In: Claesson-Welsh L, editor. Vascular Growth Factors and Angiogenesis. Curr Top Microbiol Immunol. Springer, Berlin, Heidelberg; 1999. p. 97-132.
  • Zhou Y, Zhu X, Cui H, Shi J, Yuan G, Shi S, et al. The Role of the VEGF Family in Coronary Heart Disease. Front Cardiovasc Med. 2021;8:738325.
  • Shen HL, Xu W, Wu ZY, Zhou LL, Qin RJ, Tang HR. Vector-based RNAi approach to isoform-specific downregulation of vascular endothelial growth factor (VEGF)165 expression in human leukemia cells. Leuk Res. 2007;31(4):515-21.
  • Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947-70.
  • Vicari D, Foy KC, Liotta EM, Kaumaya PTP. Engineered Conformation-dependent VEGF Peptide Mimics Are Effective in Inhibiting VEGF Signaling Pathways. J Biol Chem. 2011;286(15):P13612-25.
  • Kim H, Yoo SJ, Kang HA, Alper EH. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res. 2015;15(1).1-16.
  • Milton Vieira Gomes A, Souza Carmo T, Silva Carvalho L, Mendonça Bahia FI, Skorupa Parachin N. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms. 2018;6(2):38.
  • Spohner SC, Schaum V, Quitmann H, Czermak P. Kluyveromyces lactis: An emerging tool in biotechnology. J Biotechnol. 2016;222:104-16.
  • Panuwatsuk W, Da Silva NA. Application of a gratuitous induction system in Kluyveromyces lactis for the expression of intracellular and secreted proteins during fed-batch culture. Biotechnol Bioeng. 2003;81:712-18.
  • Pandey R, Kumar N, Prabhu AA, Dasu Veeranki V. Application of medium optimization tools for improving recombinant human interferon gamma production from Kluyveromyces lactis. Prep Biochem Biotechnol. 2018;48(3):279-87.
  • Pandey R, Venkata &, Veeranki D, Dasu Veeranki V. Optimizing secretory expression of recombinant human interferon gamma from Kluyveromyces lactis. Prep Biochem Biotechnol. 2018;48(2):202-12.
  • Prabhu AA, Mandal B, Dasu VV. Medium optimization for high yield production of extracellular human interferon-γ from Pichia pastoris: A statistical optimization and neural network-based approach. Korean J Chem Eng 2017;34:1109-21.
  • Kumar S, Pakshirajan K, Venkata Dasu V. Development of medium for enhanced production of glutaminase-free l-asparaginase from pectobacterium carotovorum MTCC 1428. Appl Microbiol Biotechnol. 2009;84(3):477-86.
  • Gunst RF, Myers RH, Montgomery DC. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Technometrics 1996;38(3):285-86.
  • Kuduğ Ceylan H, Erden Tayhan S, Gökçe İ. Secretory Expression of Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis and Characterization of Its Biological Activity. Int J Pept Res Ther. 2021;27:1989-2001.
  • Álvarez-Cao ME, Rico-Díaz A, Cerdán ME, Becerra M, González-Siso MI. Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase. Microb Cell Fact. 2018;17:137.
  • C. Hun C, Sueb MS, Malek RA, Othman NZ, Elsayed EA, Ramili S, et al. Bioprocess Development for High Cell Mass Production of the Probiotic Yeast-Kluyveromyces lactis. IOSR J Pharm Biol Sci. 2013;8(3):49-59.
  • Rajoka MI, Khan S, Shahid R. Kinetics and regulation studies of the production of b-galactosidase from Kluyveromyces marxianus grown on different substrates. Food Technol Biotechnol. 2003;41:315-20.
  • Coelho Sampaio F, da Conceição Saraiva TL, Dumont de Lima e Silva G, Teles de Faria J, Grijó Pitangui C, Aliakbarian B, et al. Batch growth of Kluyveromyces lactis cells from deproteinized whey: Response surface methodology versus Artificial neural network-Genetic algorithm approach. Biochem Eng J. 2016;109:305-11.
  • Sheetz RM, Dickson RC. Lac4 is the structural gene for beta-galactosidase in Kluyveromyces lactis. Genetics https://doi.org/10.1093/GENETICS/98.4.729
  • Leardi R (2009) Experimental design in chemistry: A tutorial. Anal Chim Acta. 1981;98(4):729-45.
  • Colussi PA, Taron CH. Kluyveromyces lactis LAC4 promoter variants that lack function in bacteria but retain full function in K. lactis. Appl Environ Microbiol. 2005;71(11).
  • González-Siso MI, Freire-Picos MA, Ramil E, González-Domínguez M, Rodríguez Torres A, Cerdán ME. Respirofermentative metabolism in Kluyveromyces lactis: Insights and perspectives. Enzyme and Microbial Technology 2000;26(9-10):699-705.
  • Toivari M, Vehkomäki ML, Nygård Y, Penttilä M, Ruohonen L, Wiebe MG. Low pH d-xylonate production with Pichia kudriavzevii. Bioresour Technol. 2013;133:555-62.
  • Boender LGM, De Hulster EAF, Van Maris AJA, Daran-Lapujade PAS, Pronk JT. Quantitative physiology of Saccharomyces cerevisiae at near-zero specific growth rates. Appl Environ Microbiol. 2009;75(17):5607-14.
  • Dickson RC, Sheetz RM, Lacy LR. Genetic regulation: yeast mutants constitutive for beta-galactosidase activity have an increased level of beta-galactosidase messenger ribonucleic acid. Mol Cell Biol. 1981;1(11):1048-56.
  • Purama RK, Goyal A. Screening and optimization of nutritional factors for higher dextransucrase production by Leuconostoc mesenteroides NRRL B-640 using statistical approach. Bioresour Technol. 2008;99(15):7108-14.
  • Zaharah SF, Fuzi M, Razali F, Jamaliah, Jahim JMd, Rahman RA, Illias RMd. Simplified feeding strategies for the fed-batch cultivation of Kluyveromyces lactis GG799 for enhanced recombinant xylanase production. Bioprocess Biosyst Eng. 2014;37:1887-98.
  • Variyana Y, Muchammad RSC, Mahfud M. Box-behnken design for the optimization using solvent-free microwave gravity extraction of garlic oil from Allium sativum L. IOP Conference Series: Materials Science and Engineering, 2019;673.
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Bioprocess Design, Bioprocess, Protein Engineering
Journal Section Articles
Authors

Hülya Kuduğ Ceylan 0000-0003-0365-2760

Cafer Meydan 0000-0001-6201-4860

Ayşe Nalbantsoy 0000-0002-9108-4451

Murat Elibol 0000-0002-6756-6290

Project Number ONAP-2020-21791
Early Pub Date June 28, 2024
Publication Date June 28, 2024
Submission Date April 28, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Kuduğ Ceylan, H., Meydan, C., Nalbantsoy, A., Elibol, M. (2024). Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799. Türk Doğa Ve Fen Dergisi, 13(2), 95-105. https://doi.org/10.46810/tdfd.1474399
AMA Kuduğ Ceylan H, Meydan C, Nalbantsoy A, Elibol M. Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799. TJNS. June 2024;13(2):95-105. doi:10.46810/tdfd.1474399
Chicago Kuduğ Ceylan, Hülya, Cafer Meydan, Ayşe Nalbantsoy, and Murat Elibol. “Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces Lactis GG799”. Türk Doğa Ve Fen Dergisi 13, no. 2 (June 2024): 95-105. https://doi.org/10.46810/tdfd.1474399.
EndNote Kuduğ Ceylan H, Meydan C, Nalbantsoy A, Elibol M (June 1, 2024) Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799. Türk Doğa ve Fen Dergisi 13 2 95–105.
IEEE H. Kuduğ Ceylan, C. Meydan, A. Nalbantsoy, and M. Elibol, “Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799”, TJNS, vol. 13, no. 2, pp. 95–105, 2024, doi: 10.46810/tdfd.1474399.
ISNAD Kuduğ Ceylan, Hülya et al. “Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces Lactis GG799”. Türk Doğa ve Fen Dergisi 13/2 (June 2024), 95-105. https://doi.org/10.46810/tdfd.1474399.
JAMA Kuduğ Ceylan H, Meydan C, Nalbantsoy A, Elibol M. Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799. TJNS. 2024;13:95–105.
MLA Kuduğ Ceylan, Hülya et al. “Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces Lactis GG799”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 2, 2024, pp. 95-105, doi:10.46810/tdfd.1474399.
Vancouver Kuduğ Ceylan H, Meydan C, Nalbantsoy A, Elibol M. Optimization of Medium Components for Enhanced Expression of Recombinant Human Vascular Endothelial Growth Factor (VEGF165) in Kluyveromyces lactis GG799. TJNS. 2024;13(2):95-105.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.