Research Article
BibTex RIS Cite

Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay

Year 2024, Volume: 13 Issue: 3, 67 - 72, 26.09.2024
https://doi.org/10.46810/tdfd.1344725

Abstract

Langmuir isotherm model has been widely used by researchers in adsorption isotherm studies for more than a century. During the process, 6 linear equations have been derived from the Langmuir model, which is a non-linear model. This study focuses on these 6 equations which are rarely given together.
In this study, the performance of clay mineral in the removal of a heavy metal known for its harmful effect, such as cadmium, from solution was measured. The data obtained as a result of adsorption of cadmium (II) ion with clay from Siirt Koçpınar region at a temperature of 298 K were applied to 6 linear equations derived from Langmuir isotherm model. As a result, it was determined that the degree of suitability of the models for adsorption was type 3= type 6 < type 1= type 4 < type 2 = type 5 and the most suitable R2 values belonged to type 2 and type 5 with values of 0.992. The largest qm value was found to belong to type 4 with a value of 86,608 gmg-1.

References

  • Smith, K.S. (1998). Cadmium. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht, 50-51. https://doi.org/10.1007/1-4020-4496-8_37
  • Van Horn JD. Cadmium, Physical and Chemical Properties. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. 2013. p 383–384. https://doi.org/10.1007/978-1-4614-1533-6_32
  • Blumbergs E, Serga V, Platacis E, Maiorov M, Shishkin A. Cadmium Recovery from Spent Ni-Cd Batteries: A Brief Review. Metals 2021;11(11):1714. https://doi.org/10.3390/met11111714.
  • Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V. Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 2020;24:26–31.
  • Fernandes A, Afonso, JC, Bourdot D, Junqueira A. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni–Cd batteries. J. Power Sources. 2012;220:286–291.
  • Sarholt L, Jensen ASB, Touboltsev VS, Johansen A, Johnson E. Nanoscale Lead-Cadmium Alloy Inclusions in Silicon. In Journal of Metastable and Nanocrystalline Materials.2001;10:283-288. https://doi.org/10.4028/www.scientific.net/jmnm.10.283.
  • Mason HJ, Davison AG, Wright AL, Guthrie CJ, Fayers PM, Venables KM, et al. Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers. Br. J. Ind. Med. 1988;45:793–802.
  • Lombaert N, Gilles M, Verougstraete V. Cadmium Monitoring at the Workplace: Effectiveness of a Combination of Airand Biomonitoring. Toxics. 2023;11:354. https://doi.org/10.3390/toxics11040354.
  • Kartopu G, Oklobia O, Turkay D, Diercks DR, Gorman BP, Barrioz V, et al. Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping. Sol. Energy Mater. Sol. Cells. 2019;194:259–267.
  • Oklobia O, Kartopu G, JC Irvine S. Properties of Arsenic–Doped ZnTe Thin Films as a Back Contact for CdTe Solar Cells.Materials.2019;12:3706. https://doi.org/10.3390/ma12223706.
  • Frye AH, Horst RW. The mechanism of poly(vinyl chloride) stabilization by barium, cadmium, and zinc carboxylates . I. Infrared Studies, J. Polym. Sci. 1959;40:419–431 .
  • Batzer H.(1983). Use and possibilities for substitution of cadmium stabilizers. Ecotoxicology and Environmental Safety. 1983;7(1):117-121.
  • Pisu FA, Ricci PC, Porcu S, Carbonaro CM, Chiriu D. Degradation of CdS Yellow and Orange Pigments: A Preventive Characterization of the Process through Pump–Probe, Reflectance, X-ray Diffraction, and Raman Spectroscopy. Materials. 2022;15:5533. https://doi.org/10.3390/ma15165533.
  • Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R. UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1−xZnxS solid solutions in cadmium yellow pigments. Microchem. J. 2016;124:856–867.
  • Traill RJ, Boyle RW. Hawelite, Isometric Cadmium Sulphide, A New Mineral. Am. Mineral. J. Earth Planet. Mater. 1955;40:555–559.
  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17(11):3782. doi: 10.3390/ijerph17113782.
  • Hogervost J, Plusquin M, Vangronsvel J, Nawrot T, Cuypers A, Van Hecke E, et al. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ. Res. 2007;103:30–37. doi:10.1016/j.envres.2006.05.009.
  • Satarug S, Vesey DA, Gobe GC. Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response. Stresses. 2022;2(3):355-372. https://doi.org/10.3390/stresses2030025.
  • Zhou J, Liu Y, Li B, Huashou Li, Guikui C, Rongliang Q. Coagulation of trace arsenic and cadmium from drinking water using titanium potassium oxalate. npj CleanWater.2023;6(9). https://doi.org/10.1038/s41545-023-00227-z.
  • Bai Y, Bartkiewicz B. Removal of cadmium from wastewater using ion exchange resin Amberjet 1200H columns. Pol J Environ Studies. 2009;18(6):1191–1195.
  • Holmes RR., Hart ML, Kevern JT. Reuse of Drinking Water Treatment Waste for Remediation of Heavy Metal Contaminated Groundwater. Groundw. Monit. Remediat. 2019; 39:69–79.
  • Kheriji J, Tabassi D, Hamrouni B. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci Technol. 2015;72(7):1206-16. doi: 10.2166/wst.2015.326.
  • Liu W, Zhao C, Wang S, Niu L, Wang L, Liang S, et al. (2018). Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations. Res Chem Intermed. 2018;44:1441–1458. https://doi.org/10.1007/s11164-017-3178-y.
  • Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater. 2011;185(1):401-7. doi:10.1016/j.jhazmat.2010.09.047.
  • Pawar RR, Lalhmunsiama, Munui K, Jae-Gyu K, Hong SM, Sawant SY. Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Applied Clay Science. 2018;162;339-350.
  • Onursal N. Adsorpsiyon Kinetiğine Ve Modellerine Genel Bir Bakış. Fen Bilimleri ve Matematik Alanında Yeni Trendler. Platanus yayınları. 2022; p. 255-272.
  • Onursal N. Adsorpsiyon izotermi ve termodinamiğinin deneysel verilere dayanarak incelenmesi. Serüven yayınları. Fen bilimleri ve matematikte uluslararası araştırmalar. 2022; p. 145-158.
  • Onursal N. Malahit yeşilinin sulu çözeltilerden karışık tip kil ile sulu çözeltilerden uzaklaştırılması. 3. Anadolu Uluslararası Uygulamalı Bilimler Kongresi. Diyarbakır: UBAK Yayınları; 2019. s. 644-657.
  • Onursal N, Kul A, Baran M. Cu (II) iyonlarının aktive edilmiş karışık tipteki kil ile sudan uzaklaştırılması, izoterm, kinetik ve termodinamik parametrelerin incelenmesi, Eurasia Journal Of Mathematics, Engineering, Natural & Medical Sciences. 2019;7:63-85.
  • Onursal, N, Kul, R, Yavuz,Ö. Pb (II) İyonlarının Aktive Edilmiş Karışık Tipteki Kil İle Sudan Uzaklaştırılması İzoterm Kinetik ve Termodinamik Parametrelerin İncelenmesi. Euroasia of Mathematics Engineering Natural & Medical Sciences. . 2019; 6 (7); s. 9-22.
  • Onursal N, Dal MC. Altı Tip Yalancı-İkinci Dereceli Kinetik Denkleminin Malahit Yeşilinin Siirt Kili ile Adsorpsiyonunda Karşılaştırmalı Doğrusal Yöntemler. International Siirt Scientific Research Congress. Siirt: 2001. p. 399-409.
  • Onursal N. Removal of Ni(II) Ions from aqueous solutions with Siirt Koçpınar mixed type clay investigation of isotherm, thermodynamic and kinetic parameters. Desalination and Water Treatment. 2022;276:150-159.
  • Dal MC, Onursal N, Arıca E, Yavuz Ö. Diyarbakır Karacadağ Kırmızı Tepe skoryası ile Cu (II) adsorpsiyon kinetiğinin incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2021;12(2):337-346. doi:10.24012/dumf.881650.
  • Onursal N, Dal MC. Altı tip yalancı- ikinci dereceli kinetik denkleminin malahit yeşilinin Siirt kili ile adsorpsiyonunda karşılaştırılmalı doğrusal yöntemler. International Siirt Conference on Scıentific Research Conference Proceedings Book. Siirt. 2021. p. 398-409.
  • Kul A R , Benek V, Selçuk A, Onursal N. Using Natural Stone Pumice in Van Region on Adsorption of Some Textile Dyes. Journal of the Turkish Chemical Society Section A: Chemistry. 2017;4(2):525-536.
  • Kul AR, Benek V, Alacabey İ, Onursal N. Kinetics Studies of Zinc Adsorption on Van Pumice. International Congress of Healty and Environment. Adana:2017. p.406.
  • Onursal N, Altunkaynak Y, Baran A, Dal MC. Adsorption of nickel(II) ions from aqueous solutions using Malatya clay: Equilibrium, kinetic, and thermodynamic studies. Environ Prog Sustainable Energy. 2023;e14150. doi:10. 1002/ep.1415.
  • Altunkaynak, Yalçın. “Using Chemically Unprocessed Orange Peel to Effectively Remove Hg(II) Ions From Aqueous Solutions: Equivalent, Thermodynamic, And Kinetic Investigations”. Sakarya University Journal of Science 27/1 (Şubat 2023), 189-203. https://doi.org/10.16984/saufenbilder.1081514.
  • Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 1085-1096. https://doi.org/10.28948/ngumuh.1089310.
  • Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 498-507. https://doi.org/10.35414/akufemubid.1101318.
  • Onursal, N., Dal, M.C. (2024). Investigation of isotherm and thermodynamic parameters of adsorption of copper (II) ions in aqueous solution with natural mixed type Siirt clay (NMTSC-2) and new (second) linear equation derived from Harkins–Jura isotherm. Chem. Pap. 78, 749–760. https://doi.org/10.1007/s11696-023-03116-4.
  • Altunkaynak, Y., Canpolat, M., & Yavuz, Ö. (2023). Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(2), 1105-1120. https://doi.org/10.29130/dubited.1089013.
  • Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 498-507. https://doi.org/10.35414/akufemubid.1101318.
  • Uçar, S., Evcin, A., Uçar, M., Alibeyli, R., et al. (2015). Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. Hacettepe Journal of Biology and Chemistry, 43(3), 235-249.
  • Altunkaynak, Y., Canpolat, M., & Yavuz, Ö. (2023). Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(2), 1105-1120. https://doi.org/10.29130/dubited.1089013.
  • Altunkaynak, Y., & Canpolat, M. (2022). Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Journal of Advanced Research in Natural and Applied Sciences, 8(2), 322-339. https://doi.org/10.28979/jarnas.1000133.
  • Uçar, M. (2019). Adsorption of chlorophenolic compounds on activated clinoptilolite. Adsorption Science & Technology. 37(7–8) 664–679.
  • Altunkaynak, Y., & Canpolat, M., Yavuz, O. (2024). Adsorption of mercury (II) ions on kaolinite from aqueous solutions: Isothermal, kinetic, and thermodynamic studies. Environmental Progress & Sustainable Energy, 43(2),e14295, https://doi.org/10.1002/ep.14295.
  • Ayawei N, Ebelegi AN, Wankasi D. Modelling and Interpretation of adsorption isotherms. Hindawi Journal of Chemistry. 2017; 11 pages. https://doi.org/10.1155/2017/3039817.
  • Khayyun TS, Mseer AH. Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science. 2019;9:170. https://doi.org/10.1007/s13201-019-1061-2.
  • Alnaief M, Sandouqa A, Altarawneh I, Al-Shannag M, Alkasrawi M, Al-hamamre Z. Adsorption Characteristics and Potential of Olive Cake Alkali Residues for Biodiesel Purification. Energies. 2021;14(1):16. https://doi.org/10.3390/en14010016.
  • Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society. 1916;38 (11):2221-2295.
Year 2024, Volume: 13 Issue: 3, 67 - 72, 26.09.2024
https://doi.org/10.46810/tdfd.1344725

Abstract

References

  • Smith, K.S. (1998). Cadmium. In: Geochemistry. Encyclopedia of Earth Science. Springer, Dordrecht, 50-51. https://doi.org/10.1007/1-4020-4496-8_37
  • Van Horn JD. Cadmium, Physical and Chemical Properties. In: Kretsinger, R.H., Uversky, V.N., Permyakov, E.A. (eds) Encyclopedia of Metalloproteins. Springer, New York, NY. 2013. p 383–384. https://doi.org/10.1007/978-1-4614-1533-6_32
  • Blumbergs E, Serga V, Platacis E, Maiorov M, Shishkin A. Cadmium Recovery from Spent Ni-Cd Batteries: A Brief Review. Metals 2021;11(11):1714. https://doi.org/10.3390/met11111714.
  • Assefi M, Maroufi S, Yamauchi Y, Sahajwalla V. Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview. Curr. Opin. Green Sustain. Chem. 2020;24:26–31.
  • Fernandes A, Afonso, JC, Bourdot D, Junqueira A. Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni–Cd batteries. J. Power Sources. 2012;220:286–291.
  • Sarholt L, Jensen ASB, Touboltsev VS, Johansen A, Johnson E. Nanoscale Lead-Cadmium Alloy Inclusions in Silicon. In Journal of Metastable and Nanocrystalline Materials.2001;10:283-288. https://doi.org/10.4028/www.scientific.net/jmnm.10.283.
  • Mason HJ, Davison AG, Wright AL, Guthrie CJ, Fayers PM, Venables KM, et al. Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers. Br. J. Ind. Med. 1988;45:793–802.
  • Lombaert N, Gilles M, Verougstraete V. Cadmium Monitoring at the Workplace: Effectiveness of a Combination of Airand Biomonitoring. Toxics. 2023;11:354. https://doi.org/10.3390/toxics11040354.
  • Kartopu G, Oklobia O, Turkay D, Diercks DR, Gorman BP, Barrioz V, et al. Study of thin film poly-crystalline CdTe solar cells presenting high acceptor concentrations achieved by in-situ arsenic doping. Sol. Energy Mater. Sol. Cells. 2019;194:259–267.
  • Oklobia O, Kartopu G, JC Irvine S. Properties of Arsenic–Doped ZnTe Thin Films as a Back Contact for CdTe Solar Cells.Materials.2019;12:3706. https://doi.org/10.3390/ma12223706.
  • Frye AH, Horst RW. The mechanism of poly(vinyl chloride) stabilization by barium, cadmium, and zinc carboxylates . I. Infrared Studies, J. Polym. Sci. 1959;40:419–431 .
  • Batzer H.(1983). Use and possibilities for substitution of cadmium stabilizers. Ecotoxicology and Environmental Safety. 1983;7(1):117-121.
  • Pisu FA, Ricci PC, Porcu S, Carbonaro CM, Chiriu D. Degradation of CdS Yellow and Orange Pigments: A Preventive Characterization of the Process through Pump–Probe, Reflectance, X-ray Diffraction, and Raman Spectroscopy. Materials. 2022;15:5533. https://doi.org/10.3390/ma15165533.
  • Rosi F, Grazia C, Gabrieli F, Romani A, Paolantoni M, Vivani R. UV–Vis-NIR and micro Raman spectroscopies for the non destructive identification of Cd1−xZnxS solid solutions in cadmium yellow pigments. Microchem. J. 2016;124:856–867.
  • Traill RJ, Boyle RW. Hawelite, Isometric Cadmium Sulphide, A New Mineral. Am. Mineral. J. Earth Planet. Mater. 1955;40:555–559.
  • Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. Int J Environ Res Public Health. 2020;17(11):3782. doi: 10.3390/ijerph17113782.
  • Hogervost J, Plusquin M, Vangronsvel J, Nawrot T, Cuypers A, Van Hecke E, et al. House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ. Res. 2007;103:30–37. doi:10.1016/j.envres.2006.05.009.
  • Satarug S, Vesey DA, Gobe GC. Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response. Stresses. 2022;2(3):355-372. https://doi.org/10.3390/stresses2030025.
  • Zhou J, Liu Y, Li B, Huashou Li, Guikui C, Rongliang Q. Coagulation of trace arsenic and cadmium from drinking water using titanium potassium oxalate. npj CleanWater.2023;6(9). https://doi.org/10.1038/s41545-023-00227-z.
  • Bai Y, Bartkiewicz B. Removal of cadmium from wastewater using ion exchange resin Amberjet 1200H columns. Pol J Environ Studies. 2009;18(6):1191–1195.
  • Holmes RR., Hart ML, Kevern JT. Reuse of Drinking Water Treatment Waste for Remediation of Heavy Metal Contaminated Groundwater. Groundw. Monit. Remediat. 2019; 39:69–79.
  • Kheriji J, Tabassi D, Hamrouni B. Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci Technol. 2015;72(7):1206-16. doi: 10.2166/wst.2015.326.
  • Liu W, Zhao C, Wang S, Niu L, Wang L, Liang S, et al. (2018). Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations. Res Chem Intermed. 2018;44:1441–1458. https://doi.org/10.1007/s11164-017-3178-y.
  • Montazer-Rahmati MM, Rabbani P, Abdolali A, Keshtkar AR. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J Hazard Mater. 2011;185(1):401-7. doi:10.1016/j.jhazmat.2010.09.047.
  • Pawar RR, Lalhmunsiama, Munui K, Jae-Gyu K, Hong SM, Sawant SY. Efficient removal of hazardous lead, cadmium, and arsenic from aqueous environment by iron oxide modified clay-activated carbon composite beads. Applied Clay Science. 2018;162;339-350.
  • Onursal N. Adsorpsiyon Kinetiğine Ve Modellerine Genel Bir Bakış. Fen Bilimleri ve Matematik Alanında Yeni Trendler. Platanus yayınları. 2022; p. 255-272.
  • Onursal N. Adsorpsiyon izotermi ve termodinamiğinin deneysel verilere dayanarak incelenmesi. Serüven yayınları. Fen bilimleri ve matematikte uluslararası araştırmalar. 2022; p. 145-158.
  • Onursal N. Malahit yeşilinin sulu çözeltilerden karışık tip kil ile sulu çözeltilerden uzaklaştırılması. 3. Anadolu Uluslararası Uygulamalı Bilimler Kongresi. Diyarbakır: UBAK Yayınları; 2019. s. 644-657.
  • Onursal N, Kul A, Baran M. Cu (II) iyonlarının aktive edilmiş karışık tipteki kil ile sudan uzaklaştırılması, izoterm, kinetik ve termodinamik parametrelerin incelenmesi, Eurasia Journal Of Mathematics, Engineering, Natural & Medical Sciences. 2019;7:63-85.
  • Onursal, N, Kul, R, Yavuz,Ö. Pb (II) İyonlarının Aktive Edilmiş Karışık Tipteki Kil İle Sudan Uzaklaştırılması İzoterm Kinetik ve Termodinamik Parametrelerin İncelenmesi. Euroasia of Mathematics Engineering Natural & Medical Sciences. . 2019; 6 (7); s. 9-22.
  • Onursal N, Dal MC. Altı Tip Yalancı-İkinci Dereceli Kinetik Denkleminin Malahit Yeşilinin Siirt Kili ile Adsorpsiyonunda Karşılaştırmalı Doğrusal Yöntemler. International Siirt Scientific Research Congress. Siirt: 2001. p. 399-409.
  • Onursal N. Removal of Ni(II) Ions from aqueous solutions with Siirt Koçpınar mixed type clay investigation of isotherm, thermodynamic and kinetic parameters. Desalination and Water Treatment. 2022;276:150-159.
  • Dal MC, Onursal N, Arıca E, Yavuz Ö. Diyarbakır Karacadağ Kırmızı Tepe skoryası ile Cu (II) adsorpsiyon kinetiğinin incelenmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi. 2021;12(2):337-346. doi:10.24012/dumf.881650.
  • Onursal N, Dal MC. Altı tip yalancı- ikinci dereceli kinetik denkleminin malahit yeşilinin Siirt kili ile adsorpsiyonunda karşılaştırılmalı doğrusal yöntemler. International Siirt Conference on Scıentific Research Conference Proceedings Book. Siirt. 2021. p. 398-409.
  • Kul A R , Benek V, Selçuk A, Onursal N. Using Natural Stone Pumice in Van Region on Adsorption of Some Textile Dyes. Journal of the Turkish Chemical Society Section A: Chemistry. 2017;4(2):525-536.
  • Kul AR, Benek V, Alacabey İ, Onursal N. Kinetics Studies of Zinc Adsorption on Van Pumice. International Congress of Healty and Environment. Adana:2017. p.406.
  • Onursal N, Altunkaynak Y, Baran A, Dal MC. Adsorption of nickel(II) ions from aqueous solutions using Malatya clay: Equilibrium, kinetic, and thermodynamic studies. Environ Prog Sustainable Energy. 2023;e14150. doi:10. 1002/ep.1415.
  • Altunkaynak, Yalçın. “Using Chemically Unprocessed Orange Peel to Effectively Remove Hg(II) Ions From Aqueous Solutions: Equivalent, Thermodynamic, And Kinetic Investigations”. Sakarya University Journal of Science 27/1 (Şubat 2023), 189-203. https://doi.org/10.16984/saufenbilder.1081514.
  • Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Kimyasal olarak işlenmemiş Midyat taşı kullanılarak sulu çözeltilerden Pb(II) iyonlarının etkin bir şekilde uzaklaştırılması: İzoterm, kinetik ve termodinamik çalışmalar. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11(4), 1085-1096. https://doi.org/10.28948/ngumuh.1089310.
  • Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 498-507. https://doi.org/10.35414/akufemubid.1101318.
  • Onursal, N., Dal, M.C. (2024). Investigation of isotherm and thermodynamic parameters of adsorption of copper (II) ions in aqueous solution with natural mixed type Siirt clay (NMTSC-2) and new (second) linear equation derived from Harkins–Jura isotherm. Chem. Pap. 78, 749–760. https://doi.org/10.1007/s11696-023-03116-4.
  • Altunkaynak, Y., Canpolat, M., & Yavuz, Ö. (2023). Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(2), 1105-1120. https://doi.org/10.29130/dubited.1089013.
  • Canpolat, M., Altunkaynak, Y., & Yavuz, Ö. (2022). Bakır(II) İyonlarının Sulu Çözeltilerden Atık Portakal Kabuğu İle Uzaklaştırılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(3), 498-507. https://doi.org/10.35414/akufemubid.1101318.
  • Uçar, S., Evcin, A., Uçar, M., Alibeyli, R., et al. (2015). Removal of Phenol and Chlorophenols from Aquatic System Using Activated Clinoptilolite. Hacettepe Journal of Biology and Chemistry, 43(3), 235-249.
  • Altunkaynak, Y., Canpolat, M., & Yavuz, Ö. (2023). Sulu Çözeltilerden Pb2+ İyonlarının Uzaklaştırılmasında Atık Portakal Kabuklarının Kullanılması: Kinetik ve Termodinamik Çalışmalar. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 11(2), 1105-1120. https://doi.org/10.29130/dubited.1089013.
  • Altunkaynak, Y., & Canpolat, M. (2022). Sulu Çözeltilerden Nikel(II) İyonlarının Uzaklaştırılmasında Portakal Kabuğu Atığının Kullanılması: Denge, Kinetik Ve Termodinamik Çalışmalar. Journal of Advanced Research in Natural and Applied Sciences, 8(2), 322-339. https://doi.org/10.28979/jarnas.1000133.
  • Uçar, M. (2019). Adsorption of chlorophenolic compounds on activated clinoptilolite. Adsorption Science & Technology. 37(7–8) 664–679.
  • Altunkaynak, Y., & Canpolat, M., Yavuz, O. (2024). Adsorption of mercury (II) ions on kaolinite from aqueous solutions: Isothermal, kinetic, and thermodynamic studies. Environmental Progress & Sustainable Energy, 43(2),e14295, https://doi.org/10.1002/ep.14295.
  • Ayawei N, Ebelegi AN, Wankasi D. Modelling and Interpretation of adsorption isotherms. Hindawi Journal of Chemistry. 2017; 11 pages. https://doi.org/10.1155/2017/3039817.
  • Khayyun TS, Mseer AH. Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science. 2019;9:170. https://doi.org/10.1007/s13201-019-1061-2.
  • Alnaief M, Sandouqa A, Altarawneh I, Al-Shannag M, Alkasrawi M, Al-hamamre Z. Adsorption Characteristics and Potential of Olive Cake Alkali Residues for Biodiesel Purification. Energies. 2021;14(1):16. https://doi.org/10.3390/en14010016.
  • Langmuir I. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society. 1916;38 (11):2221-2295.
There are 52 citations in total.

Details

Primary Language English
Subjects Separation Science, Colloid and Surface Chemistry
Journal Section Articles
Authors

Mehmet Can Dal 0000-0001-6474-6053

Publication Date September 26, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Dal, M. C. (2024). Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay. Türk Doğa Ve Fen Dergisi, 13(3), 67-72. https://doi.org/10.46810/tdfd.1344725
AMA Dal MC. Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay. TJNS. September 2024;13(3):67-72. doi:10.46810/tdfd.1344725
Chicago Dal, Mehmet Can. “Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion With Siirt Kurtalan Koçpinar Clay”. Türk Doğa Ve Fen Dergisi 13, no. 3 (September 2024): 67-72. https://doi.org/10.46810/tdfd.1344725.
EndNote Dal MC (September 1, 2024) Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay. Türk Doğa ve Fen Dergisi 13 3 67–72.
IEEE M. C. Dal, “Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay”, TJNS, vol. 13, no. 3, pp. 67–72, 2024, doi: 10.46810/tdfd.1344725.
ISNAD Dal, Mehmet Can. “Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion With Siirt Kurtalan Koçpinar Clay”. Türk Doğa ve Fen Dergisi 13/3 (September 2024), 67-72. https://doi.org/10.46810/tdfd.1344725.
JAMA Dal MC. Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay. TJNS. 2024;13:67–72.
MLA Dal, Mehmet Can. “Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion With Siirt Kurtalan Koçpinar Clay”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 3, 2024, pp. 67-72, doi:10.46810/tdfd.1344725.
Vancouver Dal MC. Modeling of the Linear Equations of Langmuir Isotherm in the Adsorption of Cd (II) Ion with Siirt Kurtalan Koçpinar Clay. TJNS. 2024;13(3):67-72.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.