Research Article
BibTex RIS Cite

Fenolik içeriğine bağlı olarak Chenopodium spp'nin Antioksidan etkileri, DNA koruma potansiyeli ve Antikolinerjik değerlendirilmesi

Year 2024, Volume: 13 Issue: 3, 161 - 170, 26.09.2024
https://doi.org/10.46810/tdfd.1479916

Abstract

Bitkiler önemli besin kaynakları ve doğal terapötiklerdir. Bu nedenle onlar özellikle rutin hastalıkların tedavisinde yan etkilere sahip olan sentetik ilaçların yerine alternatif olarak tercih edilirler. Bitkilerin özgün etkileri Çoğunlukla büyüdükleri biyocoğrafya, toprak türü ve iklim şartlarına bağlı olarak değişebilen bitkisel metabolitlerine atfedilir. Kurak ve nitrojen içeriği bol olan topraklarda büyüyen Chenopodium türleri özgün etkiler için önemli adaylardır. Yiyecek veya vahşi bitki olarak kabul edilmelerinden dolayı kullanmadan önce onların biyolojik yönden araştırılması ve bu etkilerin arkasındaki moleküllerin bilinmesi önem arz eder. Bu çalışmada bu türün kendine has biyolojik bazı etkilerini belirlemek amacıyla bir dizi in vitro biyolojik aktivite testi gerçekleştirilmiştir. İlk olarak Soxhlet ekstraksiyon aparatı kullanılarak bitkiden yaprak ve çiçek örnekleri hazırlanmıştır. Radikal süpürme ve ağır metal indirgeme testlerini içeren antioksidan testler gerçekleştirilmiş, ardından elde edinen verileri daha anlamlı hale getirmek amacıyla LC-MS/MS ile bitkinin fenolik içeriği belirlenmiştir. Daha sonra örneklerin AChE ve BChE enzimleri üzerindeki inhibitör etkileri test edilmiş ve numunelerin standart olarak kullanılan galantamine kıyasla oldukça anlamlı toplam inhibisyon etkisi göstermiş olduğu anlaşılmıştır. Son olarak örneklerin DNA koruyucu özellikleri test edilmiştir. Sonuç olarak, fenolik içerik ile diğer biyolojik etkilerin çoğunlukla paralel olduğu ve örneklerin doza bağlı olarak kabul edilebilir düzeylerde antioksidan etkiye sahip olabileceği anlaşılmıştır.

Ethical Statement

There is no need for any ethics committee document for this study.

Thanks

I would like to express my gratitude to Murat KURŞAT from Bitlis Eren University for supporting me in the identification of plant used in the study.

References

  • Singh R, Upadhyay SK, Tuli HS, Singh M, Kumar V, Yadav M, et al. Ethnobotany and herbal medicine: Some local plants with anticancer activity. Bulletin of Pure & Applied Sciences-Botany, 2020; 1: p. 57-40
  • Shori AB, Kee LA, Baba AS. Total phenols, antioxidant activity and sensory evaluation of bread fortified with spearmint. Arabian Journal for Science and Engineering, 2021; 46: p. 5257-5264
  • El Omari N, Sayah K, Fettach S, El Blidi O, Bouyahya A, Faouzi MEA, et al. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evidence-Based Complementary and Alternative Medicine, 2019; 2019
  • Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int. J. Pharm. Sci. Res, 2019; 10(2): p. 494-504
  • Reddy PRK, Elghandour M, Salem A, Yasaswini D, Reddy PPR, Reddy AN, et al. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Animal Feed Science and Technology, 2020; 264: p. 114469
  • Khomarlou N, Aberoomand-Azar P, Lashgari AP, Hakakian A, Ranjbar R, Ayatollahi S. Evaluation of antibacterial activity against multidrug-resistance (mdr) bacteria and antioxidant effects of the ethanolic extract and fractions of Chenopodium album (sub sp striatum). International Journal of Pharmaceutical Sciences and Research, 2017; 8(9): p. 3696-3708
  • Akyüz M, İnci Ş, Kırbağ S. Evaluation of Antimicrobial, Antioxidant, Cytotoxic and DNA Protective Effects of Oyster Mushroom: Pleurotus pulmonarius (Fr.) Quel. Arabian Journal for Science and Engineering, 2022: p. 1-11
  • Wei S, Wang Y, Tang Z, Xu H, Wang Z, Yang T, et al. A novel green synthesis of silver nanoparticles by the residues of Chinese herbal medicine and their biological activities. RSC advances, 2021; 11(3): p. 1411-1419
  • Hemeg HA, Moussa IM, Ibrahim S, Dawoud TM, Alhaji JH, Mubarak AS, et al. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 2020; 27(12): p. 3221-3227
  • Bose B, Tripathy D, Chatterjee A, Tandon P, Kumaria S. Secondary metabolite profiling, cytotoxicity, anti-inflammatory potential and in vitro inhibitory activities of Nardostachys jatamansi on key enzymes linked to hyperglycemia, hypertension and cognitive disorders. Phytomedicine, 2019; 55: p. 58-69
  • Vujanović M, Zengin G, Đurović S, Mašković P, Cvetanović A, Radojković M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. South African Journal of Botany, 2019; 120: p. 213-218
  • Yang L, Li Q, Zhao G. Characterization of the complete chloroplast genome of Chenopodium sp.(Caryophyllales: Chenopodiaceae). Mitochondrial DNA Part B, 2019; 4(2): p. 2574-2575
  • Umar MF, Ahmad F, Saeed H, Usmani SA, Owais M, Rafatullah M. Bio-mediated synthesis of reduced graphene oxide nanoparticles from chenopodium album: their antimicrobial and anticancer activities. Nanomaterials, 2020; 10(6): p. 1096
  • Mollica A, Stefanucci A, Macedonio G, Locatelli M, Luisi G, Novellino E, et al. Chemical composition and biological activity of Capparis spinosa L. from Lipari Island. South African Journal of Botany, 2019; 120: p. 135-140
  • Kaya AÇ, Özbek H, Yuca H, Yilmaz G, Bingöl Z, Kazaz C, et al. Phytochemical Analysis and Screening of Acetylcholinesterase and Carbonic Anhydrase I and II Isoenzymes Inhibitory Effect of Heptaptera triquetra (Vent.) Tutin Root. FABAD Journal of Pharmaceutical Sciences, 2022; 47(3): p. 381-392
  • Sicari V, Pellicanò T, Giuffrè A, Zappia C, Capocasale M, Poiana M. Physical chemical properties and antioxidant capacities of grapefruit juice (Citrus paradisi) extracted from two different varieties. International Food Research Journal, 2018; 25(5)
  • Jaradat N, Qneibi M, Hawash M, Sawalha A, Qtaishat S, Hussein F, et al. Chemical composition, antioxidant, antiobesity, and antidiabetic effects of Helichrysum sanguineum (L.) Kostel. from Palestine. Arabian Journal for Science and Engineering, 2021; 46: p. 41-51
  • Papanastasiou SA, Bali E-MD, Ioannou CS, Papachristos DP, Zarpas KD, Papadopoulos NT. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata). PloS one, 2017; 12(5): p. e0177837
  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 2019; 11(2): p. 255-277
  • Zhu G, Mosyakin SL, Clemants SE. Chenopodium Linnaeus. Flora of China, 2004; 5: p. 352-378
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature, 1958; 181(4617): p. 1199-1200
  • Wu L-c, Chang L-H, Chen S-H, Fan N-c, Ho J-aA. Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: A potential natural and functional food flavor additive. LWT-Food Science and Technology, 2009; 42(9): p. 1513-1519
  • Apak R, Guclu K, Ozyurek M, Karademir SE, Ercag E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 2006; 57(5-6): p. 292-304
  • Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 1986; 44(6): p. 307-315
  • Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Frontiers, 2020; 1(1): p. 60-69
  • Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and food Chemistry, 1990; 38(3): p. 674-677
  • Siddall TL, Ouse DG, Benko ZL, Garvin GM, Jackson JL, McQuiston JM, et al. Synthesis and herbicidal activity of phenyl‐substituted benzoylpyrazoles. Pest Management Science: formerly Pesticide Science, 2002; 58(12): p. 1175-1186
  • Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 1961; 7(2): p. 88-95
  • Kocpinar EF, Gonul Baltaci N, Ceylan H, Kalin SN, Erdogan O, Budak H. Effect of a Prolonged Dietary Iron Intake on the Gene Expression and Activity of the Testicular Antioxidant Defense System in Rats. Biol Trace Elem Res, 2020; 195(1): p. 135-141
  • Salahshour B, Sadeghi S, Nazari H, Soltaninejad K. Determining undeclared synthetic pharmaceuticals as adulterants in weight loss herbal medicines. International Journal of Medical Toxicology and Forensic Medicine, 2020; 10(1): p. 26253
  • Skanda S, Vijayakumar B. Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp.(SSS-8). Arabian Journal for Science and Engineering, 2022; 47(6): p. 6707-6714
  • Campestrini LH, Melo PS, Peres LE, Calhelha RC, Ferreira IC, Alencar SM. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon, 2019; 5(11): p. e02831
  • Wangsawat N, Nahar L, Sarker SD, Phosri C, Evans AR, Whalley AJ, et al. Antioxidant activity and cytotoxicity against cancer cell lines of the extracts from novel Xylaria species associated with termite nests and LC-MS analysis. Antioxidants, 2021; 10(10): p. 1557
  • Kucukoglu K, Nadaroglu H. Assessment of the antioxidant and antiradicalic capacities in vitro of different phenolic derivatives. Free Radicals and Antioxidants, 2014; 4(1): p. 24-31
  • Zulfqar S, Wahid A, Farooq M, Maqbool N, Arfan M. Phytoremediation of soil cadmium using Chenopodium species. Pak. J. Agri. Sci, 2012; 49(4): p. 435-445
  • Mwamatope B, Tembo D, Chikowe I, Kampira E, Nyirenda C. Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 2020; 9: p. e00481
  • Gajanayake A, Abeywickrama P, Jayawardena R, Camporesi E, Bundhun D. Pathogenic Diaporthe from Italy and the first report of D. foeniculina associated with Chenopodium sp. Plant Pathology & Quarantine, 2020; 10(1): p. 172-197

Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content

Year 2024, Volume: 13 Issue: 3, 161 - 170, 26.09.2024
https://doi.org/10.46810/tdfd.1479916

Abstract

Plants are important food sources and natural therapeutics, and they are preferred as an alternative instead of synthetic medicines with harmful side effects in the treatment of routine diseases. Their unique effects are mostly attributed to specific herbal metabolites based on soil, climatic, and biogeography. Chenopodium species growing on barren and alkaline soils with nitrogen content are important candidates for unique biological effects. Due to their acceptance as food and wild, searching the biological activities and knowing the metabolite content are important. A series of in vitro biological activity tests were performed to determine the effects of Chenopodium spp (Cspp). First, leaf and flower samples were prepared using a Soxhlet device. Antioxidant tests including radical scavenging and heavy metal reduction were performed. Their phenolic contents were determined by LC-MS/MS to better interpreting the antioxidant results. Their inhibitory effects on AChE and BChE were tested and were shown to have quite significant total inhibition effect compared to Galantamine used as standard. Finally, their DNA protective effects were evaluated. In conclusion, it has been understood that phenolic content and the other biological effects are mostly parallel, and the samples may have antioxidant effects at acceptable levels depending on dose.

References

  • Singh R, Upadhyay SK, Tuli HS, Singh M, Kumar V, Yadav M, et al. Ethnobotany and herbal medicine: Some local plants with anticancer activity. Bulletin of Pure & Applied Sciences-Botany, 2020; 1: p. 57-40
  • Shori AB, Kee LA, Baba AS. Total phenols, antioxidant activity and sensory evaluation of bread fortified with spearmint. Arabian Journal for Science and Engineering, 2021; 46: p. 5257-5264
  • El Omari N, Sayah K, Fettach S, El Blidi O, Bouyahya A, Faouzi MEA, et al. Evaluation of in vitro antioxidant and antidiabetic activities of Aristolochia longa extracts. Evidence-Based Complementary and Alternative Medicine, 2019; 2019
  • Jain C, Khatana S, Vijayvergia R. Bioactivity of secondary metabolites of various plants: a review. Int. J. Pharm. Sci. Res, 2019; 10(2): p. 494-504
  • Reddy PRK, Elghandour M, Salem A, Yasaswini D, Reddy PPR, Reddy AN, et al. Plant secondary metabolites as feed additives in calves for antimicrobial stewardship. Animal Feed Science and Technology, 2020; 264: p. 114469
  • Khomarlou N, Aberoomand-Azar P, Lashgari AP, Hakakian A, Ranjbar R, Ayatollahi S. Evaluation of antibacterial activity against multidrug-resistance (mdr) bacteria and antioxidant effects of the ethanolic extract and fractions of Chenopodium album (sub sp striatum). International Journal of Pharmaceutical Sciences and Research, 2017; 8(9): p. 3696-3708
  • Akyüz M, İnci Ş, Kırbağ S. Evaluation of Antimicrobial, Antioxidant, Cytotoxic and DNA Protective Effects of Oyster Mushroom: Pleurotus pulmonarius (Fr.) Quel. Arabian Journal for Science and Engineering, 2022: p. 1-11
  • Wei S, Wang Y, Tang Z, Xu H, Wang Z, Yang T, et al. A novel green synthesis of silver nanoparticles by the residues of Chinese herbal medicine and their biological activities. RSC advances, 2021; 11(3): p. 1411-1419
  • Hemeg HA, Moussa IM, Ibrahim S, Dawoud TM, Alhaji JH, Mubarak AS, et al. Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 2020; 27(12): p. 3221-3227
  • Bose B, Tripathy D, Chatterjee A, Tandon P, Kumaria S. Secondary metabolite profiling, cytotoxicity, anti-inflammatory potential and in vitro inhibitory activities of Nardostachys jatamansi on key enzymes linked to hyperglycemia, hypertension and cognitive disorders. Phytomedicine, 2019; 55: p. 58-69
  • Vujanović M, Zengin G, Đurović S, Mašković P, Cvetanović A, Radojković M. Biological activity of extracts of traditional wild medicinal plants from the Balkan Peninsula. South African Journal of Botany, 2019; 120: p. 213-218
  • Yang L, Li Q, Zhao G. Characterization of the complete chloroplast genome of Chenopodium sp.(Caryophyllales: Chenopodiaceae). Mitochondrial DNA Part B, 2019; 4(2): p. 2574-2575
  • Umar MF, Ahmad F, Saeed H, Usmani SA, Owais M, Rafatullah M. Bio-mediated synthesis of reduced graphene oxide nanoparticles from chenopodium album: their antimicrobial and anticancer activities. Nanomaterials, 2020; 10(6): p. 1096
  • Mollica A, Stefanucci A, Macedonio G, Locatelli M, Luisi G, Novellino E, et al. Chemical composition and biological activity of Capparis spinosa L. from Lipari Island. South African Journal of Botany, 2019; 120: p. 135-140
  • Kaya AÇ, Özbek H, Yuca H, Yilmaz G, Bingöl Z, Kazaz C, et al. Phytochemical Analysis and Screening of Acetylcholinesterase and Carbonic Anhydrase I and II Isoenzymes Inhibitory Effect of Heptaptera triquetra (Vent.) Tutin Root. FABAD Journal of Pharmaceutical Sciences, 2022; 47(3): p. 381-392
  • Sicari V, Pellicanò T, Giuffrè A, Zappia C, Capocasale M, Poiana M. Physical chemical properties and antioxidant capacities of grapefruit juice (Citrus paradisi) extracted from two different varieties. International Food Research Journal, 2018; 25(5)
  • Jaradat N, Qneibi M, Hawash M, Sawalha A, Qtaishat S, Hussein F, et al. Chemical composition, antioxidant, antiobesity, and antidiabetic effects of Helichrysum sanguineum (L.) Kostel. from Palestine. Arabian Journal for Science and Engineering, 2021; 46: p. 41-51
  • Papanastasiou SA, Bali E-MD, Ioannou CS, Papachristos DP, Zarpas KD, Papadopoulos NT. Toxic and hormetic-like effects of three components of citrus essential oils on adult Mediterranean fruit flies (Ceratitis capitata). PloS one, 2017; 12(5): p. e0177837
  • Ismael MA, Elyamine AM, Moussa MG, Cai M, Zhao X, Hu C. Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 2019; 11(2): p. 255-277
  • Zhu G, Mosyakin SL, Clemants SE. Chenopodium Linnaeus. Flora of China, 2004; 5: p. 352-378
  • Blois MS. Antioxidant determinations by the use of a stable free radical. Nature, 1958; 181(4617): p. 1199-1200
  • Wu L-c, Chang L-H, Chen S-H, Fan N-c, Ho J-aA. Antioxidant activity and melanogenesis inhibitory effect of the acetonic extract of Osmanthus fragrans: A potential natural and functional food flavor additive. LWT-Food Science and Technology, 2009; 42(9): p. 1513-1519
  • Apak R, Guclu K, Ozyurek M, Karademir SE, Ercag E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. International Journal of Food Sciences and Nutrition, 2006; 57(5-6): p. 292-304
  • Oyaizu M. Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 1986; 44(6): p. 307-315
  • Xiao F, Xu T, Lu B, Liu R. Guidelines for antioxidant assays for food components. Food Frontiers, 2020; 1(1): p. 60-69
  • Decker EA, Welch B. Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and food Chemistry, 1990; 38(3): p. 674-677
  • Siddall TL, Ouse DG, Benko ZL, Garvin GM, Jackson JL, McQuiston JM, et al. Synthesis and herbicidal activity of phenyl‐substituted benzoylpyrazoles. Pest Management Science: formerly Pesticide Science, 2002; 58(12): p. 1175-1186
  • Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 1961; 7(2): p. 88-95
  • Kocpinar EF, Gonul Baltaci N, Ceylan H, Kalin SN, Erdogan O, Budak H. Effect of a Prolonged Dietary Iron Intake on the Gene Expression and Activity of the Testicular Antioxidant Defense System in Rats. Biol Trace Elem Res, 2020; 195(1): p. 135-141
  • Salahshour B, Sadeghi S, Nazari H, Soltaninejad K. Determining undeclared synthetic pharmaceuticals as adulterants in weight loss herbal medicines. International Journal of Medical Toxicology and Forensic Medicine, 2020; 10(1): p. 26253
  • Skanda S, Vijayakumar B. Antioxidant and antibacterial potential of crude extract of soil fungus Periconia sp.(SSS-8). Arabian Journal for Science and Engineering, 2022; 47(6): p. 6707-6714
  • Campestrini LH, Melo PS, Peres LE, Calhelha RC, Ferreira IC, Alencar SM. A new variety of purple tomato as a rich source of bioactive carotenoids and its potential health benefits. Heliyon, 2019; 5(11): p. e02831
  • Wangsawat N, Nahar L, Sarker SD, Phosri C, Evans AR, Whalley AJ, et al. Antioxidant activity and cytotoxicity against cancer cell lines of the extracts from novel Xylaria species associated with termite nests and LC-MS analysis. Antioxidants, 2021; 10(10): p. 1557
  • Kucukoglu K, Nadaroglu H. Assessment of the antioxidant and antiradicalic capacities in vitro of different phenolic derivatives. Free Radicals and Antioxidants, 2014; 4(1): p. 24-31
  • Zulfqar S, Wahid A, Farooq M, Maqbool N, Arfan M. Phytoremediation of soil cadmium using Chenopodium species. Pak. J. Agri. Sci, 2012; 49(4): p. 435-445
  • Mwamatope B, Tembo D, Chikowe I, Kampira E, Nyirenda C. Total phenolic contents and antioxidant activity of Senna singueana, Melia azedarach, Moringa oleifera and Lannea discolor herbal plants. Scientific African, 2020; 9: p. e00481
  • Gajanayake A, Abeywickrama P, Jayawardena R, Camporesi E, Bundhun D. Pathogenic Diaporthe from Italy and the first report of D. foeniculina associated with Chenopodium sp. Plant Pathology & Quarantine, 2020; 10(1): p. 172-197
There are 37 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Articles
Authors

Enver Fehim Koçpınar 0000-0002-6031-4664

Publication Date September 26, 2024
Submission Date May 7, 2024
Acceptance Date September 10, 2024
Published in Issue Year 2024 Volume: 13 Issue: 3

Cite

APA Koçpınar, E. F. (2024). Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content. Türk Doğa Ve Fen Dergisi, 13(3), 161-170. https://doi.org/10.46810/tdfd.1479916
AMA Koçpınar EF. Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content. TJNS. September 2024;13(3):161-170. doi:10.46810/tdfd.1479916
Chicago Koçpınar, Enver Fehim. “Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium Spp Depending on Its Phenolic Content”. Türk Doğa Ve Fen Dergisi 13, no. 3 (September 2024): 161-70. https://doi.org/10.46810/tdfd.1479916.
EndNote Koçpınar EF (September 1, 2024) Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content. Türk Doğa ve Fen Dergisi 13 3 161–170.
IEEE E. F. Koçpınar, “Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content”, TJNS, vol. 13, no. 3, pp. 161–170, 2024, doi: 10.46810/tdfd.1479916.
ISNAD Koçpınar, Enver Fehim. “Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium Spp Depending on Its Phenolic Content”. Türk Doğa ve Fen Dergisi 13/3 (September 2024), 161-170. https://doi.org/10.46810/tdfd.1479916.
JAMA Koçpınar EF. Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content. TJNS. 2024;13:161–170.
MLA Koçpınar, Enver Fehim. “Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium Spp Depending on Its Phenolic Content”. Türk Doğa Ve Fen Dergisi, vol. 13, no. 3, 2024, pp. 161-70, doi:10.46810/tdfd.1479916.
Vancouver Koçpınar EF. Anticholinergic Evaluation, Antioxidant Effects, and DNA Protection Potential of Chenopodium spp Depending on Its Phenolic Content. TJNS. 2024;13(3):161-70.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.