Research Article
BibTex RIS Cite

Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy

Year 2024, Issue: 1, 82 - 86, 01.10.2024
https://doi.org/10.46810/tdfd.1425775

Abstract

Implants and prostheses, which are used to replace a missing or damaged structure in living organisms, must show all the necessary mechanical, tribological, electrochemical and biocompatibility properties together. CoCr alloys are often preferred biometals for their good mechanical strength and wear resistance, especially in dental and orthopedic implants. Although these alloys show good corrosion resistance in terms of electrochemical behavior as well as other good properties, when CoCr alloys come into contact with bone tissue, their surfaces show bioinert properties in terms of tissue formation between the implant and bone tissue. Therefore, both their corrosion behavior and biocompatibility properties need to be improved. In this study, CoCrW alloys produced by selective laser melting were coated with commercial 45S5 bioglass powder, a bioactive material, by electrophoretic deposition method. In order to improve the adhesion after coating, CoCrW alloys were subjected to electrochemical etching process during coating. After the coating process was completed, untreated, oxidized, untreated-coated and oxidized-coated samples were examined by electrochemical impedance spectroscopy (EIS) after open circuit potential measurements to investigate their corrosion behavior. As a result of the corrosion tests, it was determined that the oxidized-coated sample showed the best condition compared to the other samples in EIS analyzes.

References

  • Kuzucu V, Ceylan M, Çelik H, Aksoy I. Microstructure and phase analyses of Stellite 6 plus 6 wt.% Mo alloy. Journal of Materials Processing Technology. 1997; 69(1–3): 257-263.
  • Tian LY, Lizárraga R, Larsson H, Holmström E, Vitos L. A first principles study of the stacking fault energies for fcc Co-based binary alloys. Acta Materialia. 2017; 136: 215-223.
  • Wang S, Zhan S, Hou X, Wang L, Zhang H, Zhang H, Sun Y, Huang L. Microstructure and Mechanical Property of a Multi-Scale Carbide Reinforced Co–Cr–W Matrix Composites. Crystals. 2022; 12(2):198.
  • Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007; 263(7–12): 1105-1111.
  • Ouerd A, Alemany-Dumont C, Normand B, Szunerits S. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochimica Acta. 2008; 53(13): 4461-4469.
  • Igual Muñoz A, Mischler S. Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. J. Electrochem. Soc. 2007; 154: 10.
  • Gittens RA, Olivares-Navarrete R, Tannenbaum R, Boyan BD, Schwartz Z. Electrical Implications of Corrosion for Osseointegration of Titanium Implants. Journal of Dental Research. 2011; 90(12): 1389-1397.
  • Diaz I, Martinez-Lerma JF, Montoya R, Llorente I, Escudero ML, García-Alonso MC. Study of overall and local electrochemical responses of oxide films grown on CoCr alloy under biological environments. Bioelectrochemistry. 2017; 115: 1-10.
  • Mani G. Metallic biomaterials: cobalt-chromium alloys. Murphy W, Black J, Hastings G. (Eds.), Handb. Biomater. Prop (second ed.). 159-166, 2016, Springer.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015; 87: 1-57.
  • Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ. Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires. J. Mater. Sci. 2006; 41: 8152-8159.
  • Pishbin F, Simchi A, Ryan MP, Boccaccini AR. Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications. Surf. Coatings Technol. 2011; 205: 5260-5268.
  • Khanmohammadi S, Ojaghi-Ilkhchi M, Farrokhi-Rad M. Evaluation of Bioactive glass and hydroxyapatite based nanocomposite coatings obtained by electrophoretic deposition. Ceramics International. 2020; 46: 26069-26077.
  • Vichery C, Nedelec J-M. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. Materials. 2016; 9(4): 288.
  • Khanmohammadi S, Ojaghi-Ilkhchi M, Khalil-Allafi J. Electrophoretic deposition and characterization of Bioactive glass-whisker hydroxyapatite nanocomposite coatings on titanium substrate. Surface and Coatings Technology. 2019; 378: 1-13.
  • Pawlik A, Rehman MAU, Nawaz Q, Bastan FE, Sulka GD, Boccaccini AR. Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochim. Acta. 2019; 307: 465-473.
  • Ozel T, Bartolo P, Ceretti E, De Ciurana Gay J, Rodriguez CA, Da Silva JVL. Biomedical devices: design, prototyping and manufacturing. 2017, John Wiley & Sons.
  • Takaichi A, Suyalatu T, Nakamoto N, Joko N, Nomura Y, Tsutsumi S. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013; 21: 67-76.
  • Mergulhão MV, Podestá CE, das Neves MDM. Valuation of mechanical properties and microstructural characterization of ASTM F75 Co-Cr alloy obtained by Selective Laser Melting (SLM) and casting techniques. Mater Sci Forum. 2017; 899: 323-328.
  • Seyedi M, Zanotto F, Monticelli C, Balbo A, Liverani E, Fortunato A. Microstructural characterization and corrosion behaviour of SLM CoCrMo alloy in simulated body fluid. Metall Ital. 2018; 110: 45-50.
  • Lee HW, Jung K-H, Hwang S-K, Kang S-H, Kim D-K. Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting. Materials Science and Engineering: A. 2019; 749: 65-73.
  • Lu Y, Wu S, Gan Y, Zhang S, Guo S, Lin J, Lin J. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. Journal of the Mechanical Behavior of Biomedical Materials. 2016; 55: 179-190.
  • Luo J, Wu S, Lu Y et al. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting. J Mater Sci: Mater Med. 2018; 29(37).
  • Lu Y, Lin W, Xie M, Xu W, Liu Y, Lin J, Yu C, Tang K, Liu W, Yang K, Lin J. Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys. Applied Surface Science. 2019; 464: 262-272.
  • Azzouz I, Faure J, Khlifi K, Cheikh Larbi A, Benhayoune H. Electrophoretic Deposition of 45S5 Bioglass® Coatings on the Ti6Al4V Prosthetic Alloy with Improved Mechanical Properties. Coatings. 2020; 10(12):1192.
  • Qin P, Chen LY, Liu YJ, Zhao CH, Lu YJ, Sun H, Zhang LC. Corrosion behavior and mechanism of laser powder bed fusion produced CoCrW in an acidic NaCl solution. Corrosion Science. 2023; 213: 110999.
  • Uzun Y., Taş B., Tüzemen Ş.M., Çelik A. The Improvement of Corrosion Performance of CoCrW Alloy with Bioglass Coating. 3rd International Natural Science, Engineering and Materials Technology Conference, NEM 2023. Gazimagusa, Cyprus (Kktc); 2023. p.182-189.
  • Lu Y, Ren L, Xu X, Yang Y, Wu S, Luo J, Yang M, Liu L, Zhuang D, Yang K, Lin J. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials. 2018; 81: 130-141.
  • Lu Y, Wu S, Gan Y, Li J, Zhao C, Zhuo D, Lin J. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Materials Science and Engineering: C. 2015; 49: 517-525.
  • Sun D, Wharton JA, Wood RJK, Ma L, Rainforth WM. Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids. Tribology International. 2009; 42(1): 99-110.
Year 2024, Issue: 1, 82 - 86, 01.10.2024
https://doi.org/10.46810/tdfd.1425775

Abstract

References

  • Kuzucu V, Ceylan M, Çelik H, Aksoy I. Microstructure and phase analyses of Stellite 6 plus 6 wt.% Mo alloy. Journal of Materials Processing Technology. 1997; 69(1–3): 257-263.
  • Tian LY, Lizárraga R, Larsson H, Holmström E, Vitos L. A first principles study of the stacking fault energies for fcc Co-based binary alloys. Acta Materialia. 2017; 136: 215-223.
  • Wang S, Zhan S, Hou X, Wang L, Zhang H, Zhang H, Sun Y, Huang L. Microstructure and Mechanical Property of a Multi-Scale Carbide Reinforced Co–Cr–W Matrix Composites. Crystals. 2022; 12(2):198.
  • Yan Y, Neville A, Dowson D. Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments. Wear. 2007; 263(7–12): 1105-1111.
  • Ouerd A, Alemany-Dumont C, Normand B, Szunerits S. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface. Electrochimica Acta. 2008; 53(13): 4461-4469.
  • Igual Muñoz A, Mischler S. Interactive Effects of Albumin and Phosphate Ions on the Corrosion of CoCrMo Implant Alloy. J. Electrochem. Soc. 2007; 154: 10.
  • Gittens RA, Olivares-Navarrete R, Tannenbaum R, Boyan BD, Schwartz Z. Electrical Implications of Corrosion for Osseointegration of Titanium Implants. Journal of Dental Research. 2011; 90(12): 1389-1397.
  • Diaz I, Martinez-Lerma JF, Montoya R, Llorente I, Escudero ML, García-Alonso MC. Study of overall and local electrochemical responses of oxide films grown on CoCr alloy under biological environments. Bioelectrochemistry. 2017; 115: 1-10.
  • Mani G. Metallic biomaterials: cobalt-chromium alloys. Murphy W, Black J, Hastings G. (Eds.), Handb. Biomater. Prop (second ed.). 159-166, 2016, Springer.
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Rep. 2015; 87: 1-57.
  • Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ. Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass® coatings on NiTi shape memory alloy wires. J. Mater. Sci. 2006; 41: 8152-8159.
  • Pishbin F, Simchi A, Ryan MP, Boccaccini AR. Electrophoretic deposition of chitosan/45S5 Bioglass® composite coatings for orthopaedic applications. Surf. Coatings Technol. 2011; 205: 5260-5268.
  • Khanmohammadi S, Ojaghi-Ilkhchi M, Farrokhi-Rad M. Evaluation of Bioactive glass and hydroxyapatite based nanocomposite coatings obtained by electrophoretic deposition. Ceramics International. 2020; 46: 26069-26077.
  • Vichery C, Nedelec J-M. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. Materials. 2016; 9(4): 288.
  • Khanmohammadi S, Ojaghi-Ilkhchi M, Khalil-Allafi J. Electrophoretic deposition and characterization of Bioactive glass-whisker hydroxyapatite nanocomposite coatings on titanium substrate. Surface and Coatings Technology. 2019; 378: 1-13.
  • Pawlik A, Rehman MAU, Nawaz Q, Bastan FE, Sulka GD, Boccaccini AR. Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers. Electrochim. Acta. 2019; 307: 465-473.
  • Ozel T, Bartolo P, Ceretti E, De Ciurana Gay J, Rodriguez CA, Da Silva JVL. Biomedical devices: design, prototyping and manufacturing. 2017, John Wiley & Sons.
  • Takaichi A, Suyalatu T, Nakamoto N, Joko N, Nomura Y, Tsutsumi S. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater. 2013; 21: 67-76.
  • Mergulhão MV, Podestá CE, das Neves MDM. Valuation of mechanical properties and microstructural characterization of ASTM F75 Co-Cr alloy obtained by Selective Laser Melting (SLM) and casting techniques. Mater Sci Forum. 2017; 899: 323-328.
  • Seyedi M, Zanotto F, Monticelli C, Balbo A, Liverani E, Fortunato A. Microstructural characterization and corrosion behaviour of SLM CoCrMo alloy in simulated body fluid. Metall Ital. 2018; 110: 45-50.
  • Lee HW, Jung K-H, Hwang S-K, Kang S-H, Kim D-K. Microstructure and mechanical anisotropy of CoCrW alloy processed by selective laser melting. Materials Science and Engineering: A. 2019; 749: 65-73.
  • Lu Y, Wu S, Gan Y, Zhang S, Guo S, Lin J, Lin J. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions. Journal of the Mechanical Behavior of Biomedical Materials. 2016; 55: 179-190.
  • Luo J, Wu S, Lu Y et al. The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting. J Mater Sci: Mater Med. 2018; 29(37).
  • Lu Y, Lin W, Xie M, Xu W, Liu Y, Lin J, Yu C, Tang K, Liu W, Yang K, Lin J. Examining Cu content contribution to changes in oxide layer formed on selective-laser-melted CoCrW alloys. Applied Surface Science. 2019; 464: 262-272.
  • Azzouz I, Faure J, Khlifi K, Cheikh Larbi A, Benhayoune H. Electrophoretic Deposition of 45S5 Bioglass® Coatings on the Ti6Al4V Prosthetic Alloy with Improved Mechanical Properties. Coatings. 2020; 10(12):1192.
  • Qin P, Chen LY, Liu YJ, Zhao CH, Lu YJ, Sun H, Zhang LC. Corrosion behavior and mechanism of laser powder bed fusion produced CoCrW in an acidic NaCl solution. Corrosion Science. 2023; 213: 110999.
  • Uzun Y., Taş B., Tüzemen Ş.M., Çelik A. The Improvement of Corrosion Performance of CoCrW Alloy with Bioglass Coating. 3rd International Natural Science, Engineering and Materials Technology Conference, NEM 2023. Gazimagusa, Cyprus (Kktc); 2023. p.182-189.
  • Lu Y, Ren L, Xu X, Yang Y, Wu S, Luo J, Yang M, Liu L, Zhuang D, Yang K, Lin J. Effect of Cu on microstructure, mechanical properties, corrosion resistance and cytotoxicity of CoCrW alloy fabricated by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials. 2018; 81: 130-141.
  • Lu Y, Wu S, Gan Y, Li J, Zhao C, Zhuo D, Lin J. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Materials Science and Engineering: C. 2015; 49: 517-525.
  • Sun D, Wharton JA, Wood RJK, Ma L, Rainforth WM. Microabrasion–corrosion of cast CoCrMo alloy in simulated body fluids. Tribology International. 2009; 42(1): 99-110.
There are 30 citations in total.

Details

Primary Language English
Subjects Biomaterials in Biomedical Engineering, Biomechanical Engineering
Journal Section Articles
Authors

Şükran Merve Tüzemen 0000-0003-0400-5602

Yusuf Burak Bozkurt 0000-0003-3859-9322

Burak Atik 0000-0003-2117-9284

Yakup Uzun 0000-0002-5134-7640

Ayhan Çelik 0000-0002-8096-0794

Publication Date October 1, 2024
Submission Date January 25, 2024
Acceptance Date April 24, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Tüzemen, Ş. M., Bozkurt, Y. B., Atik, B., Uzun, Y., et al. (2024). Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy. Türk Doğa Ve Fen Dergisi(1), 82-86. https://doi.org/10.46810/tdfd.1425775
AMA Tüzemen ŞM, Bozkurt YB, Atik B, Uzun Y, Çelik A. Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy. TJNS. October 2024;(1):82-86. doi:10.46810/tdfd.1425775
Chicago Tüzemen, Şükran Merve, Yusuf Burak Bozkurt, Burak Atik, Yakup Uzun, and Ayhan Çelik. “Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy”. Türk Doğa Ve Fen Dergisi, no. 1 (October 2024): 82-86. https://doi.org/10.46810/tdfd.1425775.
EndNote Tüzemen ŞM, Bozkurt YB, Atik B, Uzun Y, Çelik A (October 1, 2024) Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy. Türk Doğa ve Fen Dergisi 1 82–86.
IEEE Ş. M. Tüzemen, Y. B. Bozkurt, B. Atik, Y. Uzun, and A. Çelik, “Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy”, TJNS, no. 1, pp. 82–86, October 2024, doi: 10.46810/tdfd.1425775.
ISNAD Tüzemen, Şükran Merve et al. “Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy”. Türk Doğa ve Fen Dergisi 1 (October 2024), 82-86. https://doi.org/10.46810/tdfd.1425775.
JAMA Tüzemen ŞM, Bozkurt YB, Atik B, Uzun Y, Çelik A. Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy. TJNS. 2024;:82–86.
MLA Tüzemen, Şükran Merve et al. “Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy”. Türk Doğa Ve Fen Dergisi, no. 1, 2024, pp. 82-86, doi:10.46810/tdfd.1425775.
Vancouver Tüzemen ŞM, Bozkurt YB, Atik B, Uzun Y, Çelik A. Electrochemical Impedance Spectroscopy Analysis of 45S5 Bioglass Coating on After Oxidation of CoCrW Alloy. TJNS. 2024(1):82-6.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.