Research Article
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 13 - 20, 26.03.2025
https://doi.org/10.46810/tdfd.1531667

Abstract

References

  • Kwan I, Mapstone J. Visibility aids for pedestrians and cyclists: a systematic review of randomised controlled trials. Accid Anal Prev. 2004;36(3):305-12.
  • Lachheb H, Puzenat E, Houas A, Ksibi E, Elaloui E, Guillard C, et al. Photocatalytic degradation of various types of dyes (alizarin S, crocein orange G, methyl red, congo red, methylene blue) in water by UV-irradiated titania. Appl. Catal B: Environ. 2002; 39:75-90.
  • Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J Alloy Compd. 2021; 863: 158734.
  • Banazadeh A, Salimi H, Khaleghi M, Haghighi SS. Highly efficient degradation of hazardous dyes in aqueous phase by supported palladium nano catalyst-a green approach. J Environ Chem Eng. 2016; 4:2178-2186.
  • Göktaş S, Aslan F. Kimyasal çöktürme yöntemiyle belirli karboksilik asitlerden organosiklotrifosfazen üretimi ve kimyasal özellikleri. Harran üniversitesi mühendislik dergisi, 2019; 4(3):19-28.
  • Goktas A, Modanlı S, Tumbul A, Kilic A. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J Alloy and Compd. 2022; 893:162334.
  • Faisal M, Khan SB, Rahman MM, Jamal A, Asiri AM, Abdullah MM. Smart chemical sensor and active photo-catalyst for environmental pollutants. Chem Eng J. 2011; 173:178-184.
  • Shariffudin SS, Khalid SS, Sahat NM, Sarah MSP, Hashim H. Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating, IOP Conf Series: Mater. Sci. Eng. 2015:99;012007.
  • Vikas P, Datta J, Shailesh P, Manik C, Prsad G, Sanjay P. Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization, J. Sens. Tech. 2011;1(2):36.
  • Lidia A, Davide B, Manuel B, Gregorio B, Cinzia S, Eugenio T. A sol–gel approach to nanophasic copper oxide thin films, Thin Solid Films. 2003; 442:48–52.
  • Jessica LR, Jorge M, Guerrero-V, María de LMG, Francisco S, Aguirre-Tostado et al. G, Gutiérrez H., Israel M-S., Amanda, CC. Optical and microstructural characteristics of CuO thin films by sol gel process and introducing in non-enzymatic glucose biosensor applications. Optik. 2021; 229:166238.
  • Zaman S, Zainelabdin A, Amin G, Nur O, Willander M. Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. J Phys Chem Solids 2012; 73:1320-1325.
  • Xu C, Sun J, Gao L, J Power Sources 2011;196:5138.
  • Goktas S, Tumbul A, Goktas A. Growth technique–induced highly c-axis-oriented ZnO: Mn, ZnO:Fe and ZnO:Co thin films: a comparison of nanostructure, surface morphology, optical band gap, and room temperature ferromagnetism. J Supercond Nov Magn 2023;36: 1875.
  • Bayansal F, Taşköprü, T Şahin B, Çetinkara HA. Effect of cobalt doping on nanostructured CuO thin films. Metall Mater Trans A. 2014; 45:3670.
  • Şahin G, Göktaş S, Calculation of structural parameters and optical constants of size dependent ZrO2 nanostructures. GJES. 2024; 10(1)114–124.
  • Goktas A, Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: defects-induced enhanced room temperature ferromagnetism and photoluminescence. Phys. E: Low-Dimens. Syst. Nanostructures. 2020; 117:113828.
  • Goktas A, High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments. J Alloy Compd. 2018;735: 2038-2045.
  • Bensouici F, Bououdina M, Dakhel AA, Tala-Ighil R, Tounane M, Iratni A, et al. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017; 395:110–116.
  • Goktas A, Modanlı S, Tumbul A, Kilic A. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloy Compd. 2022; 893:162334.
  • Mikailzade F, Önal F, Maksutoglu M, Zarbali M, Göktaş A. Structure and magnetization of polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 films prepared using sol-gel technique. J Supercond Nov Magn. 2018; 31:4141–4145.
  • Mukherjee N, Show B, Maji SK, Madhu U, Bhar SK, Mitra BC, et al. CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity, Mater Lett. 2011; 65:3248–3250.
  • Wang Y, Jiang T, Meng D, Yang J, Li Y, Ma Q, et al. Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties,
  • Appl Surf Sci. 2014;317:414–421.
  • Wang Y, Jiang T, Meng D, Jin H, Yu D. Controllable fabrication of nanowirelike CuO film by anodization and its properties. Appl Surf Sci. 2015; 349:636–643.
  • Gao F, Zhu L, Li H, Xie H. Hierarchical flower-like CuO film: one-step room temperature synthesis, formation mechanism and excellent optoelectronic properties. Mater Res Bull. 2017; 93:342–351.
  • Kavita S, Shipra Choudhar S, Khan A, Akhilesh P, Satyabrata M. Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films. Nano-Struct. Nano-Obj. 2019; 17:92–102.
  • Komaraiah D, Sayanna R. Structural, optical properties and photocatalytic activity of spin-coated CuO thin films. Adv Nat Sci: Nanosci. Nanotechnol. 2023; 14:015006.
  • Göktaş S, Sahin G. Methylene blue concentration and pH-induced photocatalytic degradation of methylene blue without photocatalyst under visible light. Inter. J Adv Nat. Sci. Eng. Res. 2023;7(6):176-181.
  • Tumbul A, Aslan E, Göktaş A, Mutlu IH, Arslan F, Aslan F. Chemically derived quinary Cu2Co1–xNaxSnS4 photon absorber material and its photocatalytic application. Appl Phys A. 2024;130:225.
  • Goktas A, Aslan F, Mutlu IH. Annealing effect on the characteristics of La0.67Sr0.33MnO3 polycrystalline thin films produced by the sol–gel dip-coating process. J Mater Sci: Mater Electron. 2012; 23:605–611.
  • Sekhar CR, Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells. 2001; 68(3–4): 307.
  • Goktas A, Aslan F, Tumbul A. Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties. J Sol-Gel Sci Technol. 2015; 75:45.
  • Wang Z, Pischedda V, Saxena SK, Lazor P. X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures, Solid State Commun. 2002; 121:275–279.
  • Goktas A, Sol–gel derived Zn1−xFexS. Diluted magnetic semiconductor thin films: compositional dependent room or above room temperature ferromagnetism, Appl. Surf. Sci. 2015; 340:151-159.
  • Göktaş S, Synergic effects of pH, reaction temperature, and various light sources on the photodegradation of methylene blue without photocatalyst: a relatively high degradation efficiency. Chem Africa. 2024; 1-13.
  • Maryam K-S, Alireza N-E. Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nanoparticle. J Mol Catal. A: Chem. 2016;(418–419):103-114.
  • Goktas S, Metilen mavisi organik boyasinin güneş ışığında katalizörsüz yıkımı. Inter. Conf. Eng. Nat. Soc. Sci. 2023; 1, 364-367.
  • Huang H, Tu S, Zeng C, Zhang T, Reshak HA, Zhang Y, Macroscopic polarization enhancement promoting photo-and piezoelectric-induced charge separation and molecular oxygen activation, Angew Chem Inter Ed. 2017;56:11860–11864.
  • Goktas A, Aslan F, Mutlu IH. Effect of preparation technique on the selected characteristics of Zn1−xCoxO nanocrystalline thin films deposited by sol–gel and magnetron sputtering. J. alloy compd. 2014; 615:765-778.
  • Aslanoglu M, Goktas S, Karabulut S, Kutluay A. Cyclic voltammetric determination of noradrenaline in pharmaceuticals using poly (3-acetylthiophene)-modified glassy carbon electrode. Chem. Analityczna, 54(4), 643-653.

Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films

Year 2025, Volume: 14 Issue: 1, 13 - 20, 26.03.2025
https://doi.org/10.46810/tdfd.1531667

Abstract

In this study, the impact of different Cu sources has been scrutinized on the structure, surface morphology, optical, and photocatalytic properties of CuO thin films, synthesized by sol-gel dip coating have been investigated. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) mapping, and UV–Vis spectroscopy were utilized to scrutinize them. The XRD patterns showed that the CuO films had a monoclinic CuO phase with a polycrystalline nature and their crystalline quality depended on the used Cu-source. Comparatively, the highest crystalline quality was observed for CuO film derived from the Cu-acetate source. The EDS and elemental mapping analysis exhibited the presence of Cu and O atoms within the film composition, randomly distributed on the film facets. As observed from the SEM analysis, the surface morphologies and grain sizes of CuO films were mainly changed by the Cu chemical source used. Variation in UV–Vis absorbance reflects different surface morphology and defect levels as the Cu-source was changed. The synthesized nanostructured CuO thin films showed highly varied photocatalytic activities and degradation rate of methylene blue dye solution under solar radiation. Among all synthesized CuO thin films, derived by using a Cu-chlorite source showed the highest photocatalytic efficacy within 150 min.

References

  • Kwan I, Mapstone J. Visibility aids for pedestrians and cyclists: a systematic review of randomised controlled trials. Accid Anal Prev. 2004;36(3):305-12.
  • Lachheb H, Puzenat E, Houas A, Ksibi E, Elaloui E, Guillard C, et al. Photocatalytic degradation of various types of dyes (alizarin S, crocein orange G, methyl red, congo red, methylene blue) in water by UV-irradiated titania. Appl. Catal B: Environ. 2002; 39:75-90.
  • Goktas S, Goktas A. A comparative study on recent progress in efficient ZnO based nanocomposite and heterojunction photocatalysts: A review. J Alloy Compd. 2021; 863: 158734.
  • Banazadeh A, Salimi H, Khaleghi M, Haghighi SS. Highly efficient degradation of hazardous dyes in aqueous phase by supported palladium nano catalyst-a green approach. J Environ Chem Eng. 2016; 4:2178-2186.
  • Göktaş S, Aslan F. Kimyasal çöktürme yöntemiyle belirli karboksilik asitlerden organosiklotrifosfazen üretimi ve kimyasal özellikleri. Harran üniversitesi mühendislik dergisi, 2019; 4(3):19-28.
  • Goktas A, Modanlı S, Tumbul A, Kilic A. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J Alloy and Compd. 2022; 893:162334.
  • Faisal M, Khan SB, Rahman MM, Jamal A, Asiri AM, Abdullah MM. Smart chemical sensor and active photo-catalyst for environmental pollutants. Chem Eng J. 2011; 173:178-184.
  • Shariffudin SS, Khalid SS, Sahat NM, Sarah MSP, Hashim H. Preparation and characterization of nanostructured CuO thin films using sol-gel dip coating, IOP Conf Series: Mater. Sci. Eng. 2015:99;012007.
  • Vikas P, Datta J, Shailesh P, Manik C, Prsad G, Sanjay P. Nanocrystalline CuO thin films for H2S monitoring: microstructural and optoelectronic characterization, J. Sens. Tech. 2011;1(2):36.
  • Lidia A, Davide B, Manuel B, Gregorio B, Cinzia S, Eugenio T. A sol–gel approach to nanophasic copper oxide thin films, Thin Solid Films. 2003; 442:48–52.
  • Jessica LR, Jorge M, Guerrero-V, María de LMG, Francisco S, Aguirre-Tostado et al. G, Gutiérrez H., Israel M-S., Amanda, CC. Optical and microstructural characteristics of CuO thin films by sol gel process and introducing in non-enzymatic glucose biosensor applications. Optik. 2021; 229:166238.
  • Zaman S, Zainelabdin A, Amin G, Nur O, Willander M. Efficient catalytic effect of CuO nanostructures on the degradation of organic dyes. J Phys Chem Solids 2012; 73:1320-1325.
  • Xu C, Sun J, Gao L, J Power Sources 2011;196:5138.
  • Goktas S, Tumbul A, Goktas A. Growth technique–induced highly c-axis-oriented ZnO: Mn, ZnO:Fe and ZnO:Co thin films: a comparison of nanostructure, surface morphology, optical band gap, and room temperature ferromagnetism. J Supercond Nov Magn 2023;36: 1875.
  • Bayansal F, Taşköprü, T Şahin B, Çetinkara HA. Effect of cobalt doping on nanostructured CuO thin films. Metall Mater Trans A. 2014; 45:3670.
  • Şahin G, Göktaş S, Calculation of structural parameters and optical constants of size dependent ZrO2 nanostructures. GJES. 2024; 10(1)114–124.
  • Goktas A, Role of simultaneous substitution of Cu2+ and Mn2+ in ZnS thin films: defects-induced enhanced room temperature ferromagnetism and photoluminescence. Phys. E: Low-Dimens. Syst. Nanostructures. 2020; 117:113828.
  • Goktas A, High-quality solution-based Co and Cu co-doped ZnO nanocrystalline thin films: Comparison of the effects of air and argon annealing environments. J Alloy Compd. 2018;735: 2038-2045.
  • Bensouici F, Bououdina M, Dakhel AA, Tala-Ighil R, Tounane M, Iratni A, et al. Optical, structural and photocatalysis properties of Cu-doped TiO2 thin films. Appl. Surf. Sci. 2017; 395:110–116.
  • Goktas A, Modanlı S, Tumbul A, Kilic A. Facile synthesis and characterization of ZnO, ZnO: Co, and ZnO/ZnO: Co nano rod-like homojunction thin films: Role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloy Compd. 2022; 893:162334.
  • Mikailzade F, Önal F, Maksutoglu M, Zarbali M, Göktaş A. Structure and magnetization of polycrystalline La0.66Ca0.33MnO3 and La0.66Ba0.33MnO3 films prepared using sol-gel technique. J Supercond Nov Magn. 2018; 31:4141–4145.
  • Mukherjee N, Show B, Maji SK, Madhu U, Bhar SK, Mitra BC, et al. CuO nano-whiskers: electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity, Mater Lett. 2011; 65:3248–3250.
  • Wang Y, Jiang T, Meng D, Yang J, Li Y, Ma Q, et al. Fabrication of nanostructured CuO films by electrodeposition and their photocatalytic properties,
  • Appl Surf Sci. 2014;317:414–421.
  • Wang Y, Jiang T, Meng D, Jin H, Yu D. Controllable fabrication of nanowirelike CuO film by anodization and its properties. Appl Surf Sci. 2015; 349:636–643.
  • Gao F, Zhu L, Li H, Xie H. Hierarchical flower-like CuO film: one-step room temperature synthesis, formation mechanism and excellent optoelectronic properties. Mater Res Bull. 2017; 93:342–351.
  • Kavita S, Shipra Choudhar S, Khan A, Akhilesh P, Satyabrata M. Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films. Nano-Struct. Nano-Obj. 2019; 17:92–102.
  • Komaraiah D, Sayanna R. Structural, optical properties and photocatalytic activity of spin-coated CuO thin films. Adv Nat Sci: Nanosci. Nanotechnol. 2023; 14:015006.
  • Göktaş S, Sahin G. Methylene blue concentration and pH-induced photocatalytic degradation of methylene blue without photocatalyst under visible light. Inter. J Adv Nat. Sci. Eng. Res. 2023;7(6):176-181.
  • Tumbul A, Aslan E, Göktaş A, Mutlu IH, Arslan F, Aslan F. Chemically derived quinary Cu2Co1–xNaxSnS4 photon absorber material and its photocatalytic application. Appl Phys A. 2024;130:225.
  • Goktas A, Aslan F, Mutlu IH. Annealing effect on the characteristics of La0.67Sr0.33MnO3 polycrystalline thin films produced by the sol–gel dip-coating process. J Mater Sci: Mater Electron. 2012; 23:605–611.
  • Sekhar CR, Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties. Sol. Energy Mater. Sol. Cells. 2001; 68(3–4): 307.
  • Goktas A, Aslan F, Tumbul A. Nanostructured Cu-doped ZnS polycrystalline thin films produced by a wet chemical route: the influences of Cu doping and film thickness on the structural, optical and electrical properties. J Sol-Gel Sci Technol. 2015; 75:45.
  • Wang Z, Pischedda V, Saxena SK, Lazor P. X-ray diffraction and Raman spectroscopic study of nanocrystalline CuO under pressures, Solid State Commun. 2002; 121:275–279.
  • Goktas A, Sol–gel derived Zn1−xFexS. Diluted magnetic semiconductor thin films: compositional dependent room or above room temperature ferromagnetism, Appl. Surf. Sci. 2015; 340:151-159.
  • Göktaş S, Synergic effects of pH, reaction temperature, and various light sources on the photodegradation of methylene blue without photocatalyst: a relatively high degradation efficiency. Chem Africa. 2024; 1-13.
  • Maryam K-S, Alireza N-E. Comparative study on the increased photoactivity of coupled and supported manganese-silver oxides onto a natural zeolite nanoparticle. J Mol Catal. A: Chem. 2016;(418–419):103-114.
  • Goktas S, Metilen mavisi organik boyasinin güneş ışığında katalizörsüz yıkımı. Inter. Conf. Eng. Nat. Soc. Sci. 2023; 1, 364-367.
  • Huang H, Tu S, Zeng C, Zhang T, Reshak HA, Zhang Y, Macroscopic polarization enhancement promoting photo-and piezoelectric-induced charge separation and molecular oxygen activation, Angew Chem Inter Ed. 2017;56:11860–11864.
  • Goktas A, Aslan F, Mutlu IH. Effect of preparation technique on the selected characteristics of Zn1−xCoxO nanocrystalline thin films deposited by sol–gel and magnetron sputtering. J. alloy compd. 2014; 615:765-778.
  • Aslanoglu M, Goktas S, Karabulut S, Kutluay A. Cyclic voltammetric determination of noradrenaline in pharmaceuticals using poly (3-acetylthiophene)-modified glassy carbon electrode. Chem. Analityczna, 54(4), 643-653.
There are 41 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics (Other)
Journal Section Articles
Authors

Sultan Göktaş 0009-0000-7084-9710

Gülsen Şahin 0000-0003-4891-041X

Early Pub Date March 26, 2025
Publication Date March 26, 2025
Submission Date August 12, 2024
Acceptance Date December 1, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Göktaş, S., & Şahin, G. (2025). Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films. Türk Doğa Ve Fen Dergisi, 14(1), 13-20. https://doi.org/10.46810/tdfd.1531667
AMA Göktaş S, Şahin G. Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films. TJNS. March 2025;14(1):13-20. doi:10.46810/tdfd.1531667
Chicago Göktaş, Sultan, and Gülsen Şahin. “Impact of Different Cu Sources on the Structure, Surface Morphology, Optical and Photocatalytic Characteristics of Sol-Gel Derived CuO Thin Films”. Türk Doğa Ve Fen Dergisi 14, no. 1 (March 2025): 13-20. https://doi.org/10.46810/tdfd.1531667.
EndNote Göktaş S, Şahin G (March 1, 2025) Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films. Türk Doğa ve Fen Dergisi 14 1 13–20.
IEEE S. Göktaş and G. Şahin, “Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films”, TJNS, vol. 14, no. 1, pp. 13–20, 2025, doi: 10.46810/tdfd.1531667.
ISNAD Göktaş, Sultan - Şahin, Gülsen. “Impact of Different Cu Sources on the Structure, Surface Morphology, Optical and Photocatalytic Characteristics of Sol-Gel Derived CuO Thin Films”. Türk Doğa ve Fen Dergisi 14/1 (March 2025), 13-20. https://doi.org/10.46810/tdfd.1531667.
JAMA Göktaş S, Şahin G. Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films. TJNS. 2025;14:13–20.
MLA Göktaş, Sultan and Gülsen Şahin. “Impact of Different Cu Sources on the Structure, Surface Morphology, Optical and Photocatalytic Characteristics of Sol-Gel Derived CuO Thin Films”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 1, 2025, pp. 13-20, doi:10.46810/tdfd.1531667.
Vancouver Göktaş S, Şahin G. Impact of different Cu sources on the structure, surface morphology, optical and photocatalytic characteristics of sol-gel derived CuO thin films. TJNS. 2025;14(1):13-20.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.