Research Article
BibTex RIS Cite

Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles

Year 2025, Volume: 14 Issue: 1, 197 - 203, 26.03.2025
https://doi.org/10.46810/tdfd.1537189

Abstract

A deterministic lateral displacement system with inclined elliptical posts is demonstrated to sort spherical micrometer-sized solid particles. Numerical simulations via the finite-element method are performed to investigate the microfluidic system performance. Soft microparticles undergo deformations in designs with cylindrical posts or posts with sharp corners. Such deformations occur due to particle clogging between obstacles, which can disrupt the flow lanes. The proposed approach aims to eliminate these challenges. The calculations reveal a much-reduced rate of change in flow velocity between vertically inclined elliptical posts, compared to circular posts. The calculated critical particle sizes are more likely to follow the equation associated with the first flow lane width derived from a parabolic velocity profile at high fluid inlet rates, rather than the two semi-analytical models proposed for circular posts. The experimental and theoretical critical diameter data exhibited greater agreement with the critical diameter equation obtained using the curve-fitting method at lower fluid inlet rates. Overall, the minimum particle size decreased as the rate of flow increased. When assessing the connection between the two, a smaller critical diameter is achieved by decreasing the inclination angle. The adjustability of the system by rotating the posts is a major advantage of the proposed approach.

Project Number

117F403

References

  • Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368-73.
  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412-8.
  • Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab on a Chip. 2017;17(1):11-33.
  • Xu X, Sarder P, Kotagiri N, Achilefu S, Nehorai A. Performance analysis and design of position-encoded microsphere arrays using the Ziv-Zakai bound. IEEE Transactions on Nanobioscience. 2012;12(1):29-40.
  • Choi J-W, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, et al. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab on a Chip. 2002;2(1):27-30.
  • Dittrich PS, Schwille P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Analytical chemistry. 2003;75(21):5767-74.
  • Munaz A, Shiddiky MJ, Nguyen N-T. Recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics. 2018;12(3).
  • Jubery TZ, Srivastava SK, Dutta P. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis. 2014;35(5):691-713.
  • Connacher W, Zhang N, Huang A, Mei J, Zhang S, Gopesh T, Friend J. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab on a Chip. 2018;18(14):1952-96.
  • Vigolo D, Rusconi R, Stone HA, Piazza R. Thermophoresis: microfluidics characterization and separation. Soft Matter. 2010;6(15):3489-93.
  • Debnath N, Sadrzadeh M. Microfluidic mimic for colloid membrane filtration: a review. Journal of the Indian Institute of Science. 2018;98(2):137-57.
  • Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chemical Society Reviews. 2010;39(3):1203-17.
  • Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Warkiani ME, Li W. Fundamentals and applications of inertial microfluidics: A review. Lab on a Chip. 2016;16(1):10-34.
  • Lu X, Liu C, Hu G, Xuan X. Particle manipulations in non-Newtonian microfluidics: A review. Journal of colloid and interface science. 2017;500:182-201.
  • McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle separation: a review. Lab on a Chip. 2014;14(21):4139-58.
  • Huang LR, Cox EC, Austin RH, Sturm JC. Continuous particle separation through deterministic lateral displacement. Science. 2004;304(5673):987-90.
  • Inglis DW, Davis JA, Austin RH, Sturm JC. Critical particle size for fractionation by deterministic lateral displacement. Lab on a Chip. 2006;6(5):655-8.
  • Davis JA. Microfluidic separation of blood components through deterministic lateral displacement: Princeton University; 2008.
  • Beech JP. SEPARATION AND ANALYSIS OF BIOLOGICAL PARTICLES.
  • Al-Fandi M, Al-Rousan M, Jaradat MA, Al-Ebbini L. New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robotics and computer-integrated manufacturing. 2011;27(2):237-44.
  • Dincau BM, Aghilinejad A, Chen X, Moon SY, Kim J-H. Vortex-free high-Reynolds deterministic lateral displacement (DLD) via airfoil pillars. Microfluidics and Nanofluidics. 2018;22:1-9.
  • Liu L, Loutherback K, Liao D, Yeater D, Lambert G, Estévez-Torres A, et al. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. Lab on a Chip. 2010;10(14):1807-13.
  • Zeming KK, Ranjan S, Zhang Y. Rotational separation of non-spherical bioparticles using I- pillar arrays in a microfluidic device. Nature communications. 2013;4(1):1625.
  • Hyun J-c, Hyun J, Wang S, Yang S. Improved pillar shape for deterministic lateral displacement separation method to maintain separation efficiency over a long period of time. Separation and Purification Technology. 2017;172:258-67
  • Burlington MA. Multiphysics, C. O. M. S. O. L. Introduction to comsol multiphysics®. COMSOL Multiphysics, 1998. accessed Feb, 9(2018), 32.
  • Bruus H. Theoretical microfluidis (Vol. 18): Oxford University Press; 2007
  • Batchelor GK. An introduction to fluid dynamics: Cambridge University Press; 2000
  • Beech J. Microfluidics separation and analysis of biological particles: Lund University; 2011.

Miroparçacıkların Boyutlarına Göre Verimli Ayrıştırılması İçin Eğimli Eliptik Engeller İçeren Bir Deterministik Yanal Yerdeğiştirme Sistemi

Year 2025, Volume: 14 Issue: 1, 197 - 203, 26.03.2025
https://doi.org/10.46810/tdfd.1537189

Abstract

Supporting Institution

TÜBİTAK

Project Number

117F403

References

  • Whitesides GM. The origins and the future of microfluidics. Nature. 2006;442(7101):368-73.
  • Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH. Microfluidic diagnostic technologies for global public health. Nature. 2006;442(7101):412-8.
  • Salafi T, Zeming KK, Zhang Y. Advancements in microfluidics for nanoparticle separation. Lab on a Chip. 2017;17(1):11-33.
  • Xu X, Sarder P, Kotagiri N, Achilefu S, Nehorai A. Performance analysis and design of position-encoded microsphere arrays using the Ziv-Zakai bound. IEEE Transactions on Nanobioscience. 2012;12(1):29-40.
  • Choi J-W, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, et al. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab on a Chip. 2002;2(1):27-30.
  • Dittrich PS, Schwille P. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Analytical chemistry. 2003;75(21):5767-74.
  • Munaz A, Shiddiky MJ, Nguyen N-T. Recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics. 2018;12(3).
  • Jubery TZ, Srivastava SK, Dutta P. Dielectrophoretic separation of bioparticles in microdevices: A review. Electrophoresis. 2014;35(5):691-713.
  • Connacher W, Zhang N, Huang A, Mei J, Zhang S, Gopesh T, Friend J. Micro/nano acoustofluidics: materials, phenomena, design, devices, and applications. Lab on a Chip. 2018;18(14):1952-96.
  • Vigolo D, Rusconi R, Stone HA, Piazza R. Thermophoresis: microfluidics characterization and separation. Soft Matter. 2010;6(15):3489-93.
  • Debnath N, Sadrzadeh M. Microfluidic mimic for colloid membrane filtration: a review. Journal of the Indian Institute of Science. 2018;98(2):137-57.
  • Lenshof A, Laurell T. Continuous separation of cells and particles in microfluidic systems. Chemical Society Reviews. 2010;39(3):1203-17.
  • Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Warkiani ME, Li W. Fundamentals and applications of inertial microfluidics: A review. Lab on a Chip. 2016;16(1):10-34.
  • Lu X, Liu C, Hu G, Xuan X. Particle manipulations in non-Newtonian microfluidics: A review. Journal of colloid and interface science. 2017;500:182-201.
  • McGrath J, Jimenez M, Bridle H. Deterministic lateral displacement for particle separation: a review. Lab on a Chip. 2014;14(21):4139-58.
  • Huang LR, Cox EC, Austin RH, Sturm JC. Continuous particle separation through deterministic lateral displacement. Science. 2004;304(5673):987-90.
  • Inglis DW, Davis JA, Austin RH, Sturm JC. Critical particle size for fractionation by deterministic lateral displacement. Lab on a Chip. 2006;6(5):655-8.
  • Davis JA. Microfluidic separation of blood components through deterministic lateral displacement: Princeton University; 2008.
  • Beech JP. SEPARATION AND ANALYSIS OF BIOLOGICAL PARTICLES.
  • Al-Fandi M, Al-Rousan M, Jaradat MA, Al-Ebbini L. New design for the separation of microorganisms using microfluidic deterministic lateral displacement. Robotics and computer-integrated manufacturing. 2011;27(2):237-44.
  • Dincau BM, Aghilinejad A, Chen X, Moon SY, Kim J-H. Vortex-free high-Reynolds deterministic lateral displacement (DLD) via airfoil pillars. Microfluidics and Nanofluidics. 2018;22:1-9.
  • Liu L, Loutherback K, Liao D, Yeater D, Lambert G, Estévez-Torres A, et al. A microfluidic device for continuous cancer cell culture and passage with hydrodynamic forces. Lab on a Chip. 2010;10(14):1807-13.
  • Zeming KK, Ranjan S, Zhang Y. Rotational separation of non-spherical bioparticles using I- pillar arrays in a microfluidic device. Nature communications. 2013;4(1):1625.
  • Hyun J-c, Hyun J, Wang S, Yang S. Improved pillar shape for deterministic lateral displacement separation method to maintain separation efficiency over a long period of time. Separation and Purification Technology. 2017;172:258-67
  • Burlington MA. Multiphysics, C. O. M. S. O. L. Introduction to comsol multiphysics®. COMSOL Multiphysics, 1998. accessed Feb, 9(2018), 32.
  • Bruus H. Theoretical microfluidis (Vol. 18): Oxford University Press; 2007
  • Batchelor GK. An introduction to fluid dynamics: Cambridge University Press; 2000
  • Beech J. Microfluidics separation and analysis of biological particles: Lund University; 2011.
There are 28 citations in total.

Details

Primary Language English
Subjects Condensed Matter Physics (Other), Microfluidics and Nanofluidics
Journal Section Articles
Authors

Döne Sayarcan 0000-0001-7000-0354

Ahmet Çiçek 0000-0002-7686-0045

Nurettin Körözlü 0000-0002-0899-0227

Project Number 117F403
Early Pub Date March 26, 2025
Publication Date March 26, 2025
Submission Date August 22, 2024
Acceptance Date March 7, 2025
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Sayarcan, D., Çiçek, A., & Körözlü, N. (2025). Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles. Türk Doğa Ve Fen Dergisi, 14(1), 197-203. https://doi.org/10.46810/tdfd.1537189
AMA Sayarcan D, Çiçek A, Körözlü N. Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles. TJNS. March 2025;14(1):197-203. doi:10.46810/tdfd.1537189
Chicago Sayarcan, Döne, Ahmet Çiçek, and Nurettin Körözlü. “Deterministic Lateral Displacement System With Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles”. Türk Doğa Ve Fen Dergisi 14, no. 1 (March 2025): 197-203. https://doi.org/10.46810/tdfd.1537189.
EndNote Sayarcan D, Çiçek A, Körözlü N (March 1, 2025) Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles. Türk Doğa ve Fen Dergisi 14 1 197–203.
IEEE D. Sayarcan, A. Çiçek, and N. Körözlü, “Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles”, TJNS, vol. 14, no. 1, pp. 197–203, 2025, doi: 10.46810/tdfd.1537189.
ISNAD Sayarcan, Döne et al. “Deterministic Lateral Displacement System With Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles”. Türk Doğa ve Fen Dergisi 14/1 (March 2025), 197-203. https://doi.org/10.46810/tdfd.1537189.
JAMA Sayarcan D, Çiçek A, Körözlü N. Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles. TJNS. 2025;14:197–203.
MLA Sayarcan, Döne et al. “Deterministic Lateral Displacement System With Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 1, 2025, pp. 197-03, doi:10.46810/tdfd.1537189.
Vancouver Sayarcan D, Çiçek A, Körözlü N. Deterministic Lateral Displacement System with Inclined Elliptical Obstacles for Efficient Size-Based Separation of Microparticles. TJNS. 2025;14(1):197-203.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.