Research Article
BibTex RIS Cite

Methods in Lateral Cephalometric Radiographs Nesne Algılama Ve Semantik Bölütleme Yontemleri Kullanılarak Lateral Sefalometrik Radyografilerde Servikal Vertebra Analizi

Year 2025, Volume: 14 Issue: 2, 26 - 36, 27.06.2025
https://doi.org/10.46810/tdfd.1594252

Abstract

Bu çalışmada, lateral sefalometrik radyografilerde C2, C3 ve C4 servikal vertebralarının tespiti ve semantik segmentasyonu için yapay zeka tabanlı bir yöntem önerilmektedir. Veriler, Van Yüzüncü Yıl Üniversitesi Diş Hekimliği Fakültesi Ortodonti Anabilim Dalı’ndan temin edilen 2520 radyografiden oluşmaktadır. İlk aşamada YOLOv8 ve YOLOv11 nesne algılama modelleri kullanılarak vertebra bölgeleri tespit edilmiş ve ardından bu alanlar QuPath yazılımı ile detaylı şekilde anotasyonlanmıştır. Etiketlenen veriler, Attention-UNet, Attention-ResUNet, SEEA-UNet ve ResAt-UNet gibi ileri seviye derin öğrenme modelleri kullanılarak segmentasyon işlemlerine tabi tutulmuştur. Çalışma, nesne algılama modellerinin %99,8 doğruluk oranıyla yüksek performans sergilediğini ortaya koymuştur. Segmentasyon modelleri arasında en iyi performansı %99,25 doğruluk oranı ile Attention-ResUNet gösterirken, ResAt-UNet modeli genelleme kapasitesindeki dengesiyle dikkat çekmiştir. Elde edilen ikili maskeler, kemik yaşı tahmini ve iskeletsel olgunluk analizi için güvenilir bir veri seti oluşturmuştur. Bu çalışma, ek görüntüleme ihtiyacını ortadan kaldırarak radyasyon maruziyetini azaltmayı ve klinik süreçleri hızlandırmayı amaçlamaktadır. Sonuçlar, yapay zeka destekli yöntemlerin manuel değerlendirme kaynaklı hataları en aza indirdiğini ve iskeletsel analizde standardizasyon sağladığını göstermektedir. Gelecekte, bu yöntemlerin ortodonti ve pediatrik tıbbi uygulamalarda yaygın olarak kullanılabileceği öngörülmektedir.

References

  • M. Makaremi, C. Lacaule, and A. Mohammad-Djafari, “Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography,” Entropy, vol. 21, no. 12, p. 1222, 2019.
  • N. Masuzawa et al., “Automatic segmentation, localization, and identification of vertebrae in 3D CT images using cascaded convolutional neural networks,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2020, LNCS 12261. Springer, 2020.
  • O. Demirel and E. Sonuç, “Yapay Zeka Teknikleri Kullanılarak Kemik Yaşı Tespiti,” Türkiye Sağlık Enstitüleri Başkanlığı Dergisi, vol. 4, no. 3, pp. 17–30, 2021.
  • Y. Chen et al., “Vertxnet: Automatic segmentation and identification of lumbar and cervical vertebrae from spinal x-ray images,” arXiv preprint, arXiv:2207.05476, 2022.
  • M. Khazaei et al., “Automatic determination of pubertal growth spurts based on the cervical vertebral maturation staging using deep convolutional neural networks,” J. World Fed. Orthod., vol. 12, no. 2, pp. 56–63, 2023.
  • H. Li et al., “The psc-CVM assessment system: A three-stage type system for CVM assessment based on deep learning,” BMC Oral Health, vol. 23, no. 1, p. 557, 2023.
  • G. A. Kresnadhi et al., “Comparative Analysis of ResNet101, InceptionV3, and InceptionResnetV2 Architectures for Cervical Vertebrae Maturation Stage Classification,” in Proc. 2023 Int. Conf. on Electrical Engineering and Informatics (ICE), 2023.
  • G. Akay et al., “Deep convolutional neural network—The evaluation of cervical vertebrae maturation,” Oral Radiol., vol. 39, no. 4, pp. 629–638, 2023.
  • S. F. Atici et al., “A Novel Continuous Classification System for the Cervical Vertebrae Maturation (CVM) Stages Using Convolutional Neural Networks,” 2023.
  • P. Motie et al., “Improving cervical maturation degree classification accuracy using a multi-stage deep learning approach,” 2024.
  • M. H. Mohammed et al., “Convolutional Neural Network-Based Deep Learning Methods for Skeletal Growth Prediction in Dental Patients,” J. Imaging, vol. 10, no. 11, p. 278, 2024.
  • J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint, arXiv:1804.02767, 2018.
  • Z. Ge, “Yolox: Exceeding yolo series in 2021,” arXiv preprint, arXiv:2107.08430, 2021.
  • A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint, arXiv:2004.10934, 2020.
  • H. Herfandi et al., “Real-Time Patient Indoor Health Monitoring and Location Tracking with Optical Camera Communications on the Internet of Medical Things,” Appl. Sci., vol. 14, no. 3, p. 1153, 2024.
  • J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
  • O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, 2015, pp. 5–9.
  • A. Garcia-Garcia et al., “A review on deep learning techniques applied to semantic segmentation,” arXiv preprint, arXiv:1704.06857, 2017.
  • O. Oktay et al., “Attention u-net: Learning where to look for the pancreas,” arXiv preprint, arXiv:1804.03999, 2018.
  • J. Schlemper et al., “Attention-gated networks for improving ultrasound scan plane detection,” arXiv preprint, arXiv:1804.05338, 2018.
  • J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
  • Z. Fan et al., “ResAt-UNet: a U-shaped network using ResNet and attention module for image segmentation of urban buildings,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 2094–2111, 2023.

Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs

Year 2025, Volume: 14 Issue: 2, 26 - 36, 27.06.2025
https://doi.org/10.46810/tdfd.1594252

Abstract

This study proposes an artificial intelligence-based method for the detection and semantic segmentation of C2, C3, and C4 cervical vertebrae in lateral cephalometric radiographs. The dataset comprises 2520 radiographs obtained from the Orthodontics Department of Van Yüzüncü Yıl University Faculty of Dentistry. In the initial stage, vertebral regions were identified using YOLOv8 and YOLOv11 object detection models, and these areas were meticulously annotated using QuPath software. The labelled data were then subjected to segmentation using advanced deep learning models such as Attention-UNet, Attention-ResUNet, SEEA-UNet, and ResAt-UNet.
The study revealed that the object detection models achieved a high performance with an accuracy of 99.8%. Among the segmentation models, Attention-ResUNet demonstrated the best performance with an accuracy of 99.25%, while the ResAt-UNet model stood out with its balanced generalization capacity. The generated binary masks provided a reliable dataset for bone age estimation and skeletal maturity analysis.
This study aims to reduce radiation exposure and streamline clinical workflows by eliminating the need for additional imaging. The findings indicate that AI-supported methods minimize errors caused by manual assessments and ensure standardization in skeletal analysis. It is anticipated that these methods could be widely utilized in orthodontic and pediatric medical applications in the future.

References

  • M. Makaremi, C. Lacaule, and A. Mohammad-Djafari, “Deep learning and artificial intelligence for the determination of the cervical vertebra maturation degree from lateral radiography,” Entropy, vol. 21, no. 12, p. 1222, 2019.
  • N. Masuzawa et al., “Automatic segmentation, localization, and identification of vertebrae in 3D CT images using cascaded convolutional neural networks,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2020, LNCS 12261. Springer, 2020.
  • O. Demirel and E. Sonuç, “Yapay Zeka Teknikleri Kullanılarak Kemik Yaşı Tespiti,” Türkiye Sağlık Enstitüleri Başkanlığı Dergisi, vol. 4, no. 3, pp. 17–30, 2021.
  • Y. Chen et al., “Vertxnet: Automatic segmentation and identification of lumbar and cervical vertebrae from spinal x-ray images,” arXiv preprint, arXiv:2207.05476, 2022.
  • M. Khazaei et al., “Automatic determination of pubertal growth spurts based on the cervical vertebral maturation staging using deep convolutional neural networks,” J. World Fed. Orthod., vol. 12, no. 2, pp. 56–63, 2023.
  • H. Li et al., “The psc-CVM assessment system: A three-stage type system for CVM assessment based on deep learning,” BMC Oral Health, vol. 23, no. 1, p. 557, 2023.
  • G. A. Kresnadhi et al., “Comparative Analysis of ResNet101, InceptionV3, and InceptionResnetV2 Architectures for Cervical Vertebrae Maturation Stage Classification,” in Proc. 2023 Int. Conf. on Electrical Engineering and Informatics (ICE), 2023.
  • G. Akay et al., “Deep convolutional neural network—The evaluation of cervical vertebrae maturation,” Oral Radiol., vol. 39, no. 4, pp. 629–638, 2023.
  • S. F. Atici et al., “A Novel Continuous Classification System for the Cervical Vertebrae Maturation (CVM) Stages Using Convolutional Neural Networks,” 2023.
  • P. Motie et al., “Improving cervical maturation degree classification accuracy using a multi-stage deep learning approach,” 2024.
  • M. H. Mohammed et al., “Convolutional Neural Network-Based Deep Learning Methods for Skeletal Growth Prediction in Dental Patients,” J. Imaging, vol. 10, no. 11, p. 278, 2024.
  • J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” arXiv preprint, arXiv:1804.02767, 2018.
  • Z. Ge, “Yolox: Exceeding yolo series in 2021,” arXiv preprint, arXiv:2107.08430, 2021.
  • A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint, arXiv:2004.10934, 2020.
  • H. Herfandi et al., “Real-Time Patient Indoor Health Monitoring and Location Tracking with Optical Camera Communications on the Internet of Medical Things,” Appl. Sci., vol. 14, no. 3, p. 1153, 2024.
  • J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.
  • O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, 2015, pp. 5–9.
  • A. Garcia-Garcia et al., “A review on deep learning techniques applied to semantic segmentation,” arXiv preprint, arXiv:1704.06857, 2017.
  • O. Oktay et al., “Attention u-net: Learning where to look for the pancreas,” arXiv preprint, arXiv:1804.03999, 2018.
  • J. Schlemper et al., “Attention-gated networks for improving ultrasound scan plane detection,” arXiv preprint, arXiv:1804.05338, 2018.
  • J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.
  • Z. Fan et al., “ResAt-UNet: a U-shaped network using ResNet and attention module for image segmentation of urban buildings,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 16, pp. 2094–2111, 2023.
There are 22 citations in total.

Details

Primary Language English
Subjects Decision Support and Group Support Systems
Journal Section Articles
Authors

Mazhar Kayaoğlu 0000-0002-5807-9781

Abdülkadir Şengür 0000-0003-1614-2639

Saadet Çınarsoy Ciğerim 0000-0002-4384-0929

Sabahattin Bor 0000-0001-5463-0057

Publication Date June 27, 2025
Submission Date November 30, 2024
Acceptance Date April 4, 2025
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Kayaoğlu, M., Şengür, A., Çınarsoy Ciğerim, S., Bor, S. (2025). Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs. Türk Doğa Ve Fen Dergisi, 14(2), 26-36. https://doi.org/10.46810/tdfd.1594252
AMA Kayaoğlu M, Şengür A, Çınarsoy Ciğerim S, Bor S. Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs. TJNS. June 2025;14(2):26-36. doi:10.46810/tdfd.1594252
Chicago Kayaoğlu, Mazhar, Abdülkadir Şengür, Saadet Çınarsoy Ciğerim, and Sabahattin Bor. “Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs”. Türk Doğa Ve Fen Dergisi 14, no. 2 (June 2025): 26-36. https://doi.org/10.46810/tdfd.1594252.
EndNote Kayaoğlu M, Şengür A, Çınarsoy Ciğerim S, Bor S (June 1, 2025) Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs. Türk Doğa ve Fen Dergisi 14 2 26–36.
IEEE M. Kayaoğlu, A. Şengür, S. Çınarsoy Ciğerim, and S. Bor, “Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs”, TJNS, vol. 14, no. 2, pp. 26–36, 2025, doi: 10.46810/tdfd.1594252.
ISNAD Kayaoğlu, Mazhar et al. “Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs”. Türk Doğa ve Fen Dergisi 14/2 (June 2025), 26-36. https://doi.org/10.46810/tdfd.1594252.
JAMA Kayaoğlu M, Şengür A, Çınarsoy Ciğerim S, Bor S. Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs. TJNS. 2025;14:26–36.
MLA Kayaoğlu, Mazhar et al. “Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs”. Türk Doğa Ve Fen Dergisi, vol. 14, no. 2, 2025, pp. 26-36, doi:10.46810/tdfd.1594252.
Vancouver Kayaoğlu M, Şengür A, Çınarsoy Ciğerim S, Bor S. Detection of Cervical Vertebrae Using Object Detection and Semantic Segmentation Methods in Lateral Cephalometric Radiographs. TJNS. 2025;14(2):26-3.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.