Performance Evaluation of a Nature-Inspired Three-Particle Swarm Optimization Algorithm in PV Systems with a Modified SEPIC Converter
Year 2025,
Volume: 14 Issue: 3, 57 - 66, 26.09.2025
Muhammed Mahho
,
Mehmet Yılmaz
,
Muhammedfatih Corapsiz
Abstract
The increase in world population, the development of industrialization and people's use of more advanced technologies increase energy demands day by day. People have started to turn to alternative energy sources to avoid the energy crisis that will occur when existing energy sources are exhausted. Photovoltaic (PV) systems are an advantageous option among sustainable energy sources. PV systems are affected by irradiance intensity and temperature. To overcome this problem, Maximum power point tracking (MPPT) algorithms are used. In this study, in order to maximize the efficiency of PV systems, the performance of Particle swarm optimization (PSO), Deterministic Particle swarm optimization (DPSO), Enhance Autonomous Group Particle swarm optimization (EAGPSO) algorithms were evaluated by using a high gain modified SEPIC converter. PSO, DPSO and EAGPSO algorithms were evaluated for three different scenarios under normal irradiance and partial shading conditions. It has been observed that the EAGPSO algorithm has the highest MPPT efficiency of 98.9% and a convergence time of 0.37s for different scenarios. In addition, it has been found that the power oscillation of the EAGPSO algorithm is reduced by approximately half compared to DPSO and by approximately two thirds compared to PSO.
References
-
Bozkurt A. U., "Yenilenebilir enerji kaynaklarının enerji verimliliği açısından değerlendirilmesi," Dokuz Eylul Universitesi (Turkey), 2008.
-
Polat A., "Piezoelektrik sistemli suya dayalı enerji sistemlerinin analizi ve uygulaması," Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, 56-70, 2016.
-
Aboagye B., Gyamfi S., Ofosu E. A., and Djordjevic S., "Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems," Energy for Sustainable Development, vol. 66, pp. 165-176, 2022.
-
Yılmaz M. and Corapsiz M., "PSO training neural network MPPT with CUK converter topology for stand-alone PV systems under varying load and climatic conditions," Türk Doğa ve Fen Dergisi, vol. 13, no. 1, pp. 88-97, 2024.
-
Hassaine L., OLias E., Quintero J., and Salas V., "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, vol. 30, pp. 796-807, 2014.
-
Ram J. P. and Rajasekar N., "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, vol. 118, pp. 512-525, 2017.
-
Peled A. and Appelbaum J., "Minimizing the current mismatch resulting from different locations of solar cells within a PV module by proposing new interconnections," Solar Energy, vol. 135, pp. 840-847, 2016.
-
Bradai R. et al., "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied energy, vol. 199, pp. 416-429, 2017.
-
Abdel-Rahim O., M. Alghaythi L., Alshammari M. S., and Osheba D. S., "Enhancing photovoltaic conversion efficiency with model predictive control-based sensor-reduced maximum power point tracking in modified sepic converters," Ieee Access, vol. 11, pp. 100769-100780, 2023.
-
Assiya L., Aziz D., and Ahmed H., "Comparative study of P&O and INC MPPT algorithms for DC-DC converter based PV system on MATLAB/SIMULINK," in 2020 IEEE 2nd international conference on electronics, control, optimization and computer science (ICECOCS), 2020: IEEE, pp. 1-5.
-
Refaat A., Khalifa A.-E., Elsakka M. M., Elhenawy Y., Kalas A., and Elfar M. H., "A novel metaheuristic MPPT technique based on enhanced autonomous group Particle Swarm Optimization Algorithm to track the GMPP under partial shading conditions-Experimental validation," Energy Conversion and Management, vol. 287, p. 117124, 2023.
-
Yang B. et al., "Salp swarm optimization algorithm based MPPT design for PV-TEG hybrid system under partial shading conditions," Energy Conversion and Management, vol. 292, p. 117410, 2023.
-
Zhang R., Yang B., and Chen N., "Arithmetic optimization algorithm based MPPT technique for centralized TEG systems under different temperature gradients," Energy Reports, vol. 8, pp. 2424-2433, 2022.
-
González-Castaño C., Restrepo C., Kouro S., and Rodriguez J., "MPPT algorithm based on artificial bee colony for PV system," Ieee Access, vol. 9, pp. 43121-43133, 2021.
-
Mohanty S., Subudhi B., and Ray P. K., "A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions," IEEE transactions on sustainable energy, vol. 7, no. 1, pp. 181-188, 2015.
-
Abbass M. J., Lis R., and Saleem F., "The maximum power point tracking (MPPT) of a partially shaded PV array for optimization using the antlion algorithm," Energies, vol. 16, no. 5, p. 2380, 2023.
-
Kumar S. and Shaw B., "Design of off-grid fuel cell by implementing ALO optimized PID-based MPPT controller," in Soft Computing in Data Analytics: Proceedings of International Conference on SCDA 2018, 2018: Springer, pp. 83-93.
-
Mirza A. F., Mansoor M., and Ling Q., "A novel MPPT technique based on Henry gas solubility optimization," Energy Conversion and Management, vol. 225, p. 113409, 2020.
-
Percin H. B. and Caliskan A., "Whale optimization algorithm based MPPT control of a fuel cell system," International journal of hydrogen energy, vol. 48, no. 60, pp. 23230-23241, 2023.
-
Titri S., Larbes C., Toumi K. Y., and Benatchba K., "A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions," Applied Soft Computing, vol. 58, pp. 465-479, 2017.
-
Ye S. P., Liu Y. H., Wang S. C., and Pai H. Y., "A novel global maximum power point tracking algorithm based on Nelder-Mead simplex technique for complex partial shading conditions," Applied Energy, vol. 321, p. 119380, 2022.
-
Rezk H., Zaky M. M., Alhaider M., and Tolba M. A., "Robust fractional MPPT-based moth-flame optimization algorithm for thermoelectric generation applications," Energies, vol. 15, no. 23, p. 8836, 2022.
-
Subramanian A. and Raman J., "Grasshopper optimization algorithm tuned maximum power point tracking for solar photovoltaic systems," Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 9, pp. 8637-8645, 2021.
-
Ram J. P., Pillai D. S., Ghias A. M., and Rajasekar N., "Performance enhancement of solar PV systems applying P&O assisted Flower Pollination Algorithm (FPA)," Solar Energy, vol. 199, pp. 214-229, 2020.
-
Elbaksawi O., Elminshawy N. A., Diab S., Eltamaly A. M., Mahmoud A., and Elhadidy H., "Innovative metaheuristic algorithm with comparative analysis of MPPT for 5.5 kW floating photovoltaic system," Process Safety and Environmental Protection, vol. 185, pp. 1072-1088, 2024.
-
Kumar B. H. and Ghosh A., "Different MPPT Algorithms for DC-DC Converter," in 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2025: IEEE, pp. 1-6.
-
Yılmaz M., Kaleli A., and Çorapsız M. F., "Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs," Renewable Energy, vol. 219, p. 119470, 2023.
-
Regaya C. B., Hamdi H., Farhani F., Marai A., Zaafouri A., and Chaari A., "Real-time implementation of a novel MPPT control based on the improved PSO algorithm using an adaptive factor selection strategy for photovoltaic systems," ISA transactions, vol. 146, pp. 496-510, 2024.
-
Çorapsiz M. R., "PV-fed multi-output buck converter-based renewable energy storage system with extended current control for lifetime extension of Li-ion batteries," Computers and Electrical Engineering, vol. 120, p. 109757, 2024.
-
Saravanan S. and Babu N. R., "RBFN based MPPT algorithm for PV system with high step up converter," Energy conversion and Management, vol. 122, pp. 239-251, 2016.
-
Mahho M., Yilmaz M., and Çorapsiz M. F., "The performance of modified SEPIC converter for dynamic conditions with PI controller," in 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA), 2025: IEEE, pp. 1-4.
-
Sundareswaran K. and Palani S., "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, vol. 75, pp. 308-317, 2015.
-
Ishaque K. and Salam Z., "A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition," IEEE transactions on industrial electronics, vol. 60, no. 8, pp. 3195-3206, 2012.
-
Refaat A., Elbaz A., Khalifa A. E., Elsakka M. M., Kalas A., and Elfar M. H., "Performance evaluation of a novel self-tuning particle swarm optimization algorithm-based maximum power point tracker for porton exchange membrane fuel cells under different operating conditions," Energy Conversion and Management, vol. 301, p. 118014, 2024.
-
Abo-Elyousr F. K., Abdelshafy A. M., and Abdelaziz A. Y., "MPPT-based particle swarm and cuckoo search algorithms for PV systems," in Modern maximum power point tracking techniques for photovoltaic energy systems: Springer, 2019, pp. 379-400.
-
Kota V. R. and Bhukya M. N., "A novel linear tangents based P&O scheme for MPPT of a PV system," Renewable and Sustainable Energy Reviews, vol. 71, pp. 257-267, 2017.
Doğadan Esinlenen Üç Parçacık Sürüsü Optimizasyon Algoritması Modifiye Edilmiş SEPIC Dönüştürücüde PV Sistemler İçin Uygulanması
Year 2025,
Volume: 14 Issue: 3, 57 - 66, 26.09.2025
Muhammed Mahho
,
Mehmet Yılmaz
,
Muhammedfatih Corapsiz
Abstract
Dünya nüfusunun artması, sanayileşmenin gelişmesi ve insanların daha ileri teknolojileri kullanması enerji taleplerini her geçen gün artırmaktadır. İnsanlar mevcut enerji kaynakları tükendiğinde ortaya çıkacak enerji krizinden kaçınmak için alternatif enerji kaynaklarına yönelmeye başlamıştır. Fotovoltaik (PV) sistemler sürdürülebilir enerji kaynakları arasında avantajlı bir seçenektir. PV sistemler ışınım şiddetinden ve sıcaklıktan etkilenmektedir. Bu sorunu aşmak için Maksimum güç noktası izleme (MPPT) tabanlı algoritmalar kullanılır. Bu çalışmada PV sistemlerin verimliliğini en üst düzeye çıkarmak için, yüksek kazançlı modifiye edilmiş SEPIC dönüştürücü kullanılarak Parçacık sürü optimizasyon (PSO), Deterministik Parçacık sürü optimizasyon (DPSO), Geliştirilmiş Otonom Grup Parçacık Sürü Optimizasyonu (EAGPSO) algoritmalarının performansı değerlendirilmiştir. PSO, DPSO ve EAGPSO algoritmaları normal ışınım ve kısmi gölgelenme koşulları altında üç farklı senaryo için değerlendirilmiştir. EAGPSO algoritması farklı durumlar için en yüksek %98.9 MPPT verimliliğine ve 0.37s yakınsama süresine sahip olduğu gözlemlenmiştir. Ayrıca EAGPSO algoritmasının güç salınımının DPSO'ya göre yaklaşık yarı yarıya, PSO'ya göre ise yaklaşık üçte iki oranında azaldığı elde edilmiştir.
References
-
Bozkurt A. U., "Yenilenebilir enerji kaynaklarının enerji verimliliği açısından değerlendirilmesi," Dokuz Eylul Universitesi (Turkey), 2008.
-
Polat A., "Piezoelektrik sistemli suya dayalı enerji sistemlerinin analizi ve uygulaması," Yüksek Lisans Tezi, Bilecik Şeyh Edebali Üniversitesi, 56-70, 2016.
-
Aboagye B., Gyamfi S., Ofosu E. A., and Djordjevic S., "Investigation into the impacts of design, installation, operation and maintenance issues on performance and degradation of installed solar photovoltaic (PV) systems," Energy for Sustainable Development, vol. 66, pp. 165-176, 2022.
-
Yılmaz M. and Corapsiz M., "PSO training neural network MPPT with CUK converter topology for stand-alone PV systems under varying load and climatic conditions," Türk Doğa ve Fen Dergisi, vol. 13, no. 1, pp. 88-97, 2024.
-
Hassaine L., OLias E., Quintero J., and Salas V., "Overview of power inverter topologies and control structures for grid connected photovoltaic systems," Renewable and Sustainable Energy Reviews, vol. 30, pp. 796-807, 2014.
-
Ram J. P. and Rajasekar N., "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, vol. 118, pp. 512-525, 2017.
-
Peled A. and Appelbaum J., "Minimizing the current mismatch resulting from different locations of solar cells within a PV module by proposing new interconnections," Solar Energy, vol. 135, pp. 840-847, 2016.
-
Bradai R. et al., "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied energy, vol. 199, pp. 416-429, 2017.
-
Abdel-Rahim O., M. Alghaythi L., Alshammari M. S., and Osheba D. S., "Enhancing photovoltaic conversion efficiency with model predictive control-based sensor-reduced maximum power point tracking in modified sepic converters," Ieee Access, vol. 11, pp. 100769-100780, 2023.
-
Assiya L., Aziz D., and Ahmed H., "Comparative study of P&O and INC MPPT algorithms for DC-DC converter based PV system on MATLAB/SIMULINK," in 2020 IEEE 2nd international conference on electronics, control, optimization and computer science (ICECOCS), 2020: IEEE, pp. 1-5.
-
Refaat A., Khalifa A.-E., Elsakka M. M., Elhenawy Y., Kalas A., and Elfar M. H., "A novel metaheuristic MPPT technique based on enhanced autonomous group Particle Swarm Optimization Algorithm to track the GMPP under partial shading conditions-Experimental validation," Energy Conversion and Management, vol. 287, p. 117124, 2023.
-
Yang B. et al., "Salp swarm optimization algorithm based MPPT design for PV-TEG hybrid system under partial shading conditions," Energy Conversion and Management, vol. 292, p. 117410, 2023.
-
Zhang R., Yang B., and Chen N., "Arithmetic optimization algorithm based MPPT technique for centralized TEG systems under different temperature gradients," Energy Reports, vol. 8, pp. 2424-2433, 2022.
-
González-Castaño C., Restrepo C., Kouro S., and Rodriguez J., "MPPT algorithm based on artificial bee colony for PV system," Ieee Access, vol. 9, pp. 43121-43133, 2021.
-
Mohanty S., Subudhi B., and Ray P. K., "A new MPPT design using grey wolf optimization technique for photovoltaic system under partial shading conditions," IEEE transactions on sustainable energy, vol. 7, no. 1, pp. 181-188, 2015.
-
Abbass M. J., Lis R., and Saleem F., "The maximum power point tracking (MPPT) of a partially shaded PV array for optimization using the antlion algorithm," Energies, vol. 16, no. 5, p. 2380, 2023.
-
Kumar S. and Shaw B., "Design of off-grid fuel cell by implementing ALO optimized PID-based MPPT controller," in Soft Computing in Data Analytics: Proceedings of International Conference on SCDA 2018, 2018: Springer, pp. 83-93.
-
Mirza A. F., Mansoor M., and Ling Q., "A novel MPPT technique based on Henry gas solubility optimization," Energy Conversion and Management, vol. 225, p. 113409, 2020.
-
Percin H. B. and Caliskan A., "Whale optimization algorithm based MPPT control of a fuel cell system," International journal of hydrogen energy, vol. 48, no. 60, pp. 23230-23241, 2023.
-
Titri S., Larbes C., Toumi K. Y., and Benatchba K., "A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions," Applied Soft Computing, vol. 58, pp. 465-479, 2017.
-
Ye S. P., Liu Y. H., Wang S. C., and Pai H. Y., "A novel global maximum power point tracking algorithm based on Nelder-Mead simplex technique for complex partial shading conditions," Applied Energy, vol. 321, p. 119380, 2022.
-
Rezk H., Zaky M. M., Alhaider M., and Tolba M. A., "Robust fractional MPPT-based moth-flame optimization algorithm for thermoelectric generation applications," Energies, vol. 15, no. 23, p. 8836, 2022.
-
Subramanian A. and Raman J., "Grasshopper optimization algorithm tuned maximum power point tracking for solar photovoltaic systems," Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 9, pp. 8637-8645, 2021.
-
Ram J. P., Pillai D. S., Ghias A. M., and Rajasekar N., "Performance enhancement of solar PV systems applying P&O assisted Flower Pollination Algorithm (FPA)," Solar Energy, vol. 199, pp. 214-229, 2020.
-
Elbaksawi O., Elminshawy N. A., Diab S., Eltamaly A. M., Mahmoud A., and Elhadidy H., "Innovative metaheuristic algorithm with comparative analysis of MPPT for 5.5 kW floating photovoltaic system," Process Safety and Environmental Protection, vol. 185, pp. 1072-1088, 2024.
-
Kumar B. H. and Ghosh A., "Different MPPT Algorithms for DC-DC Converter," in 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS), 2025: IEEE, pp. 1-6.
-
Yılmaz M., Kaleli A., and Çorapsız M. F., "Machine learning based dynamic super twisting sliding mode controller for increase speed and accuracy of MPPT using real-time data under PSCs," Renewable Energy, vol. 219, p. 119470, 2023.
-
Regaya C. B., Hamdi H., Farhani F., Marai A., Zaafouri A., and Chaari A., "Real-time implementation of a novel MPPT control based on the improved PSO algorithm using an adaptive factor selection strategy for photovoltaic systems," ISA transactions, vol. 146, pp. 496-510, 2024.
-
Çorapsiz M. R., "PV-fed multi-output buck converter-based renewable energy storage system with extended current control for lifetime extension of Li-ion batteries," Computers and Electrical Engineering, vol. 120, p. 109757, 2024.
-
Saravanan S. and Babu N. R., "RBFN based MPPT algorithm for PV system with high step up converter," Energy conversion and Management, vol. 122, pp. 239-251, 2016.
-
Mahho M., Yilmaz M., and Çorapsiz M. F., "The performance of modified SEPIC converter for dynamic conditions with PI controller," in 2025 7th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (ICHORA), 2025: IEEE, pp. 1-4.
-
Sundareswaran K. and Palani S., "Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions," Renewable Energy, vol. 75, pp. 308-317, 2015.
-
Ishaque K. and Salam Z., "A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition," IEEE transactions on industrial electronics, vol. 60, no. 8, pp. 3195-3206, 2012.
-
Refaat A., Elbaz A., Khalifa A. E., Elsakka M. M., Kalas A., and Elfar M. H., "Performance evaluation of a novel self-tuning particle swarm optimization algorithm-based maximum power point tracker for porton exchange membrane fuel cells under different operating conditions," Energy Conversion and Management, vol. 301, p. 118014, 2024.
-
Abo-Elyousr F. K., Abdelshafy A. M., and Abdelaziz A. Y., "MPPT-based particle swarm and cuckoo search algorithms for PV systems," in Modern maximum power point tracking techniques for photovoltaic energy systems: Springer, 2019, pp. 379-400.
-
Kota V. R. and Bhukya M. N., "A novel linear tangents based P&O scheme for MPPT of a PV system," Renewable and Sustainable Energy Reviews, vol. 71, pp. 257-267, 2017.