Research Article
BibTex RIS Cite

Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi

Year 2020, Volume: 31 Issue: 5, 10251 - 10274, 01.09.2020
https://doi.org/10.18400/tekderg.565709

Abstract

Türkiye’nin Karayolları Genel Müdürlüğü bünyesindeki ilk beton yol uygulaması
olan Afyon-Emirdağ kesimi derzli donatısız beton kaplama olarak Belçika Katalog
yöntemine göre tasarlanmıştır. Bu tasarım, hem geleneksel Amerikan Devlet
Karayolu ve Taşımacılık İdareleri Birliği ampirik tasarım yöntemi (AASHTO 93);
hem de mekanistik-ampirik (M-E) üstyapı tasarım yöntemi ile yeniden analiz
edilerek, mevcut yol üzerinden aralıklarla ölçülen düzgünsüzlük (IRI) değerleri
ile karşılaştırılmıştır. Saha ölçümleri ile M-E analizleri sonucu tahmin edilen
IRI değerlerinin birbirine oldukça yakın olduğu tespit edilmiştir. M-E
analizleri sonucunda mevcut yolun servis sürecinde düzgünsüzlük ve faylanma
performans kriterlerine göre sınır değerleri aşacağı, ancak enine çatlak
yönünden sınır değerler içinde kalacağı öngörülmüştür. 

Thanks

M-E tasarım yöntemi ile yapılan analizler için kullanılan AASHTOWare 2.0 sonlu elemanlar yazılım programının lisans alma sürecinde maddi katkılarından dolayı TÇMB’ye ve IOWA Üniversitesi Öğretim Üyesi Prof. Dr. Halil Ceylan’a teşekkür ederiz.

References

  • Güngör G., Sağlık A., Ünal N., Karayolu Beton Yol Deneme Kesimleri Performans Değerlendirmesi, Hazır Beton Kongresi, İstanbul-Türkiye, 1, 96-111, 2013.
  • Yeğinboğa A., Türkiye’nin İlk Beton Karayolları, TÇMB / AR-GE Enstitüsü, Ankara, Türkiye, 2010.
  • Hall K., Dawood D., Vanikar S., Tally R., Cackler T., Correa A., vd., Long-life Concrete Pavements in Europe and Canada, FHWA, ABD, 2007.
  • Ağar E., Sütaş İ., Öztaş G., Beton Yollar, İstanbul Teknik Üniversitesi Yayınları, İstanbul, Türkiye, 1998.
  • NCHRP Project 1-37A Report, Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, FHWA, ABD, 2004.
  • Huang Y. H., Pavement Analysis and Design, 2.cilt,Par entice Hall, ABD, 2008.
  • Ozturk H. I., Tan E. B., Sengun E., Yaman I. O., Comparison of jointed plain concrete pavement systems designed by mechanistic-empirical (M-E) method for different traffic, subgrade, material and climatic conditions, Journal of the Faculty of Engineering and Architecture of Gazi University, 2018.
  • Sachs S., Vandenbossche J.M., Snyder M.B., Calibration of national rigid pavement performance models for the pavement mechanistic–empirical design guide, Transportation Research Record: Journal of Transportation Research Board, 2524 (6), 59–67, 2015.
  • Mu F., Mack J.W., Rodden R.A., Review of national and state-level calibrations of AASHTOWare Pavement ME design for new jointed plain concrete pavement. Int J Pavement Eng, 19 (9), 825-831, 2018.
  • Kim S., Ceylan H., Ma D., Gopalakrishnan K., Calibration of pavement ME design and mechanistic-empirical pavement design guide performance prediction models for Iowa pavement systems, J Transp Eng, 140 (10), 2014.
  • Vandenbossche J.M., Mu F., Burnham T.R., Comparison of measured vs. predicted performance of jointed plain concrete pavements using the Mechanistic–Empirical Pavement Design Guideline. Int J Pavement Eng, 12 (3), 239-251, 2011.
  • Johanneck L., Tompkins D., Clyne T., Khazanovich L., Minnesota Road Research Data for Evaluation and Local Calibration of the Mechanistic-Empirical Pavement Design Guide’s Enhanced Integrated Climatic Model, Transportation Research Record: Journal of Transportation Research Board, 2226 (4), 30-40, 2011.
  • Li J., Uhlmeyer J., Mahoney J., Muench S., Updating the Pavement Design Catalog for the Washington State Department of Transportation: Using 1993 AASHTO Guide, Mechanistic-Empirical Pavement Design Guide, and Historical Performance, Transportation Research Record: Journal of Transportation Research Board, 2154 (12), 124-129, 2010.
  • Bustos M., Cordo O., Girardi P., Pereyra M., Calibration of Distress Models from the Mechanistic–Empirical Pavement Design Guide for Rigid Pavement Design in Argentina, Transportation Research Record: Journal of Transportation Research Board, 2226 (1), 3-12, 2011.
  • Sadek H.A., Masad E.A., Sirin O., Al-Khalid H., Sadeq M.A., Little D., Implementation of mechanistic-empirical pavement analysis in the State of Qatar, Int J Pavement Eng, 15 (6), 495-511, 2014.
  • Romero M.J.M.E., Garro N.M.T., Zevallos G.G., Implementation of the mechanistic–empirical pavement design in northern Peru using a calibration coefficient for the International Roughness Index, Constr Build Mater, 102 (1), 270-280, 2016.
  • El-Shaib M.A., El-Badawy S.M., Shawaly E.-S.A., Comparison of AASHTO 1993 and MEPDG considering the Egyptian climatic conditions, Innovative Infrastructure Solutions, 2 (18), 2017.
  • Ameri M., Khavandi A., Development of mechanistic-empirical flexible pavement design in Iran, J Appl Sci, 9 (2), 354-359, 2009.
  • Ghosh A., Padmarekha A., Krishnan J.M., Implementation and proof-checking of mechanistic-empirical pavement design for Indian highways using AASHTOWARE pavement ME design software, Procedia-Social Behav Sci, 104 (2), 119-128, 2013.
  • Ma H., Wang D., Zhou C., Feng D., Calibration on MEPDG low temperature cracking model and recommendation on asphalt pavement structures in seasonal frozen region of China, Adv Mater Sci Eng, 2015.
  • Delgadillo R., Wahr C., Alarcón J., Toward implementation of the mechanistic-empirical pavement design guide in Latin America: Preliminary work in Chile, Transportation Research Record: Journal of Transportation Research Board, 2226 (16), 142-148, 2011.
  • Chehab G.R., Chehade R.H., Houssami L., Mrad R., Implementation Initiatives of the Mechanistic-Empirical Pavement Design Guide in Countries with Insufficient Design Input Data–The Case of Lebanon. Int. Congr. Exhib. Sustain. Civ. Infrastructures Innovative Infrastructure Geotechnology, Springer, 2017.
  • Khattab A.M., El-Badawy S.M., Elmwafi M., Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia, Constr Build Mater, 64, 360-369, 2014.
  • Seo Y., Distress Evolution in Highway Flexible Pavements: A 5-Year Study at the Korea Highway Corporation Test Road, Journal of Test Evaluation, 38, 32-41, 2009.
  • Ciro C., Local Calibration and Implementation of the Mechanistic-Empirical Pavement Design Guide for Flexible Pavement Design, J Transp Eng, 138 (3), 348-360, 2012.
  • Rens L., Road Structures in Belgium and Specifications for Hydraulically Bound Mixtures for Base Layers, Brussels, Belgium, 2016.
  • Kırbaş U., Karaşahin M, Şehiriçi Yollarda Üstyapıların Mevcut Performansını Belirlemek İçin Bir Yöntem, Teknik Dergi, 29, 8459–8467, 2018.
  • Múčka P., International Roughness Index Specifications Around the World, Road Materials Pavement Design, 18, 929–965, 2017.
  • Kırbaş U., Konforlu Sürüş için Uluslararası Düzgünsüzlük İndeksi Sınır Değerlerinin Belirlenmesi, Journal of Engineering Science, 6 (2), 301–309, 2018.
  • ASTM E 950/E950M, Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer-Established Inertial Profiling Reference, ASTM International, West Conshohocken, 2018.
  • Merritt D. K., Chang G. K., Rutledge J. L., Best Practices for Achieving and Measuring Pavement Smoothness, A Synthesis of State-Of-Practice, FHWA/LA. 14/550, Louisiana Transportation Research Center, 2015.
  • ACPA, Guide Specification- Smoothness Pavement Smoothness Requirements, American Concrete Pavement Association, 2013.
  • KGM, Beton Yollar Teknik Şartnamesi, Karayolları Genel Müdürlüğü ARGE Daire Başkanlığı, Ankara, Türkiye, 2016.
  • ASTM E 274/E274M, Standard Test Method for Skid Resistance of Paved Surfaces Using a Full-Scale Tire, ASTM International, West Conshohocken, 2015.
  • Hergüner A. T., Ağar E., Türkiye Otoyol Ağı için Üstyapı Performans Tahmin Modellerinin Geliştirilmesi, İTÜ Dergisi, 9, 2011.
  • Hergüner A. T., Türkiye Otoyol Ağı İçin Üstyapı Yönetim Sistemi, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2009.
  • TS EN 13036-1, Karayolunun ve Havaalanı Pistinin Yüzey Karakteristikleri - Deney Yöntemleri - Bölüm 1: Kaplama Yüzeyi Makro Doku Derinliğinin Hacimsel Alan Tekniği Kullanılarak Ölçülmesi, Türk Standartları Enstitüsü, Ankara, 2015.
  • Kaçmaz B., Topal A., Şengöz B., Tanyel S., Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi, Teknik Dergi, 26, 7115–7137, 2015.
  • ACPA (American Concrete Pavement Association), Agency Practices Explorer. http://1734298.sites.myregisteredsite.com/legacyapps/APD.aspx. Erişim tarihi Temmuz 27, 2018.
  • Karayolları Genel Müdürlüğü, Trafik Hacim Haritaları. http://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/TrafikHacimHaritasi.aspx. Erişim tarihi Ağustos 7, 2018.
  • FHWA-HRT-13-091, Verification, Refinement, and Applicability of Long-Term Pavement Performance Vehicle Classification Rules, Georgetown Pike McLean, VA, ABD, 2014.
  • American Association of State Highway and Transportation Officials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, A.B.D., 2008.
  • American Association of State Highway and Transportation Officials (AASHTO), Guide for Design of Pavement Structures, vol. 1, 1993.
  • Elshaeb M.A., El-Badawy S.M., Shawaly E-S.A., Development and Impact of the Egyptian Climatic Conditions on Flexible Pavement Performance, American Journal of Civil Engineering and Architecture, 2 (3), 115-121, 2014.
  • KGM, Karayolları Esnek Üstyapılar Projelendirme Rehberi, Karayolları Genel Müdürlüğü Teknik Araştırma Dairesi Başkanlığı, Ankara, Türkiye, 2008.
  • Haas R., Hudson W. R., Zaniewski J. P., Modern Pavement Management, Krieger Publishing Company Malabar, FL, 1994.
  • Shahin M. Y., Pavement Management for Airports, Roads, and Parking Lots, Springer New York, 2005.
  • Kırbaş U., Karaşahin M., Performance Models for Hot Mix Asphalt Pavements in Urban Roads, Construction Building Materials, 116, 281–288, 2016.

Comparison of Mechanistic-Empirical and Traditional Rigid Pavement Design Methods: Afyon-Emirdağ Trial Section

Year 2020, Volume: 31 Issue: 5, 10251 - 10274, 01.09.2020
https://doi.org/10.18400/tekderg.565709

Abstract

The
first rigid pavement section in Turkey under the jurisdiction of General
Directorate of Highways was designed as Jointed Plain Concrete pavement (JPCP)
according to Belgian catalog method. This design was compared with the
traditional empirical American Association of State Highway and Transportation
Officials (AASHTO-93) design method and with the mechanistic-empirical (M-E) pavement
design guide. Moreover, the international roughness index (IRI) values measured
with intervals were compared with the predicted values of M-E analysis.
According to M-E analysis, it is predicted that IRI and faulting will exceed but
the cracking will be within the limit values during its service life.

References

  • Güngör G., Sağlık A., Ünal N., Karayolu Beton Yol Deneme Kesimleri Performans Değerlendirmesi, Hazır Beton Kongresi, İstanbul-Türkiye, 1, 96-111, 2013.
  • Yeğinboğa A., Türkiye’nin İlk Beton Karayolları, TÇMB / AR-GE Enstitüsü, Ankara, Türkiye, 2010.
  • Hall K., Dawood D., Vanikar S., Tally R., Cackler T., Correa A., vd., Long-life Concrete Pavements in Europe and Canada, FHWA, ABD, 2007.
  • Ağar E., Sütaş İ., Öztaş G., Beton Yollar, İstanbul Teknik Üniversitesi Yayınları, İstanbul, Türkiye, 1998.
  • NCHRP Project 1-37A Report, Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures, FHWA, ABD, 2004.
  • Huang Y. H., Pavement Analysis and Design, 2.cilt,Par entice Hall, ABD, 2008.
  • Ozturk H. I., Tan E. B., Sengun E., Yaman I. O., Comparison of jointed plain concrete pavement systems designed by mechanistic-empirical (M-E) method for different traffic, subgrade, material and climatic conditions, Journal of the Faculty of Engineering and Architecture of Gazi University, 2018.
  • Sachs S., Vandenbossche J.M., Snyder M.B., Calibration of national rigid pavement performance models for the pavement mechanistic–empirical design guide, Transportation Research Record: Journal of Transportation Research Board, 2524 (6), 59–67, 2015.
  • Mu F., Mack J.W., Rodden R.A., Review of national and state-level calibrations of AASHTOWare Pavement ME design for new jointed plain concrete pavement. Int J Pavement Eng, 19 (9), 825-831, 2018.
  • Kim S., Ceylan H., Ma D., Gopalakrishnan K., Calibration of pavement ME design and mechanistic-empirical pavement design guide performance prediction models for Iowa pavement systems, J Transp Eng, 140 (10), 2014.
  • Vandenbossche J.M., Mu F., Burnham T.R., Comparison of measured vs. predicted performance of jointed plain concrete pavements using the Mechanistic–Empirical Pavement Design Guideline. Int J Pavement Eng, 12 (3), 239-251, 2011.
  • Johanneck L., Tompkins D., Clyne T., Khazanovich L., Minnesota Road Research Data for Evaluation and Local Calibration of the Mechanistic-Empirical Pavement Design Guide’s Enhanced Integrated Climatic Model, Transportation Research Record: Journal of Transportation Research Board, 2226 (4), 30-40, 2011.
  • Li J., Uhlmeyer J., Mahoney J., Muench S., Updating the Pavement Design Catalog for the Washington State Department of Transportation: Using 1993 AASHTO Guide, Mechanistic-Empirical Pavement Design Guide, and Historical Performance, Transportation Research Record: Journal of Transportation Research Board, 2154 (12), 124-129, 2010.
  • Bustos M., Cordo O., Girardi P., Pereyra M., Calibration of Distress Models from the Mechanistic–Empirical Pavement Design Guide for Rigid Pavement Design in Argentina, Transportation Research Record: Journal of Transportation Research Board, 2226 (1), 3-12, 2011.
  • Sadek H.A., Masad E.A., Sirin O., Al-Khalid H., Sadeq M.A., Little D., Implementation of mechanistic-empirical pavement analysis in the State of Qatar, Int J Pavement Eng, 15 (6), 495-511, 2014.
  • Romero M.J.M.E., Garro N.M.T., Zevallos G.G., Implementation of the mechanistic–empirical pavement design in northern Peru using a calibration coefficient for the International Roughness Index, Constr Build Mater, 102 (1), 270-280, 2016.
  • El-Shaib M.A., El-Badawy S.M., Shawaly E.-S.A., Comparison of AASHTO 1993 and MEPDG considering the Egyptian climatic conditions, Innovative Infrastructure Solutions, 2 (18), 2017.
  • Ameri M., Khavandi A., Development of mechanistic-empirical flexible pavement design in Iran, J Appl Sci, 9 (2), 354-359, 2009.
  • Ghosh A., Padmarekha A., Krishnan J.M., Implementation and proof-checking of mechanistic-empirical pavement design for Indian highways using AASHTOWARE pavement ME design software, Procedia-Social Behav Sci, 104 (2), 119-128, 2013.
  • Ma H., Wang D., Zhou C., Feng D., Calibration on MEPDG low temperature cracking model and recommendation on asphalt pavement structures in seasonal frozen region of China, Adv Mater Sci Eng, 2015.
  • Delgadillo R., Wahr C., Alarcón J., Toward implementation of the mechanistic-empirical pavement design guide in Latin America: Preliminary work in Chile, Transportation Research Record: Journal of Transportation Research Board, 2226 (16), 142-148, 2011.
  • Chehab G.R., Chehade R.H., Houssami L., Mrad R., Implementation Initiatives of the Mechanistic-Empirical Pavement Design Guide in Countries with Insufficient Design Input Data–The Case of Lebanon. Int. Congr. Exhib. Sustain. Civ. Infrastructures Innovative Infrastructure Geotechnology, Springer, 2017.
  • Khattab A.M., El-Badawy S.M., Elmwafi M., Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia, Constr Build Mater, 64, 360-369, 2014.
  • Seo Y., Distress Evolution in Highway Flexible Pavements: A 5-Year Study at the Korea Highway Corporation Test Road, Journal of Test Evaluation, 38, 32-41, 2009.
  • Ciro C., Local Calibration and Implementation of the Mechanistic-Empirical Pavement Design Guide for Flexible Pavement Design, J Transp Eng, 138 (3), 348-360, 2012.
  • Rens L., Road Structures in Belgium and Specifications for Hydraulically Bound Mixtures for Base Layers, Brussels, Belgium, 2016.
  • Kırbaş U., Karaşahin M, Şehiriçi Yollarda Üstyapıların Mevcut Performansını Belirlemek İçin Bir Yöntem, Teknik Dergi, 29, 8459–8467, 2018.
  • Múčka P., International Roughness Index Specifications Around the World, Road Materials Pavement Design, 18, 929–965, 2017.
  • Kırbaş U., Konforlu Sürüş için Uluslararası Düzgünsüzlük İndeksi Sınır Değerlerinin Belirlenmesi, Journal of Engineering Science, 6 (2), 301–309, 2018.
  • ASTM E 950/E950M, Standard Test Method for Measuring the Longitudinal Profile of Traveled Surfaces with an Accelerometer-Established Inertial Profiling Reference, ASTM International, West Conshohocken, 2018.
  • Merritt D. K., Chang G. K., Rutledge J. L., Best Practices for Achieving and Measuring Pavement Smoothness, A Synthesis of State-Of-Practice, FHWA/LA. 14/550, Louisiana Transportation Research Center, 2015.
  • ACPA, Guide Specification- Smoothness Pavement Smoothness Requirements, American Concrete Pavement Association, 2013.
  • KGM, Beton Yollar Teknik Şartnamesi, Karayolları Genel Müdürlüğü ARGE Daire Başkanlığı, Ankara, Türkiye, 2016.
  • ASTM E 274/E274M, Standard Test Method for Skid Resistance of Paved Surfaces Using a Full-Scale Tire, ASTM International, West Conshohocken, 2015.
  • Hergüner A. T., Ağar E., Türkiye Otoyol Ağı için Üstyapı Performans Tahmin Modellerinin Geliştirilmesi, İTÜ Dergisi, 9, 2011.
  • Hergüner A. T., Türkiye Otoyol Ağı İçin Üstyapı Yönetim Sistemi, Doktora Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2009.
  • TS EN 13036-1, Karayolunun ve Havaalanı Pistinin Yüzey Karakteristikleri - Deney Yöntemleri - Bölüm 1: Kaplama Yüzeyi Makro Doku Derinliğinin Hacimsel Alan Tekniği Kullanılarak Ölçülmesi, Türk Standartları Enstitüsü, Ankara, 2015.
  • Kaçmaz B., Topal A., Şengöz B., Tanyel S., Farklı Tip Esnek Kaplamaların Yol Yüzey Özelliklerinin Arazi Ölçümleriyle Değerlendirilmesi, Teknik Dergi, 26, 7115–7137, 2015.
  • ACPA (American Concrete Pavement Association), Agency Practices Explorer. http://1734298.sites.myregisteredsite.com/legacyapps/APD.aspx. Erişim tarihi Temmuz 27, 2018.
  • Karayolları Genel Müdürlüğü, Trafik Hacim Haritaları. http://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Trafik/TrafikHacimHaritasi.aspx. Erişim tarihi Ağustos 7, 2018.
  • FHWA-HRT-13-091, Verification, Refinement, and Applicability of Long-Term Pavement Performance Vehicle Classification Rules, Georgetown Pike McLean, VA, ABD, 2014.
  • American Association of State Highway and Transportation Officials (AASHTO), Mechanistic-Empirical Pavement Design Guide: A Manual of Practice, A.B.D., 2008.
  • American Association of State Highway and Transportation Officials (AASHTO), Guide for Design of Pavement Structures, vol. 1, 1993.
  • Elshaeb M.A., El-Badawy S.M., Shawaly E-S.A., Development and Impact of the Egyptian Climatic Conditions on Flexible Pavement Performance, American Journal of Civil Engineering and Architecture, 2 (3), 115-121, 2014.
  • KGM, Karayolları Esnek Üstyapılar Projelendirme Rehberi, Karayolları Genel Müdürlüğü Teknik Araştırma Dairesi Başkanlığı, Ankara, Türkiye, 2008.
  • Haas R., Hudson W. R., Zaniewski J. P., Modern Pavement Management, Krieger Publishing Company Malabar, FL, 1994.
  • Shahin M. Y., Pavement Management for Airports, Roads, and Parking Lots, Springer New York, 2005.
  • Kırbaş U., Karaşahin M., Performance Models for Hot Mix Asphalt Pavements in Urban Roads, Construction Building Materials, 116, 281–288, 2016.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Emin Şengün 0000-0001-7082-0061

Hande İşık Öztürk 0000-0003-1597-5348

İsmail Özgür Yaman 0000-0001-6489-6852

Publication Date September 1, 2020
Submission Date May 15, 2019
Published in Issue Year 2020 Volume: 31 Issue: 5

Cite

APA Şengün, E., Öztürk, H. İ., & Yaman, İ. Ö. (2020). Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi. Teknik Dergi, 31(5), 10251-10274. https://doi.org/10.18400/tekderg.565709
AMA Şengün E, Öztürk Hİ, Yaman İÖ. Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi. Teknik Dergi. September 2020;31(5):10251-10274. doi:10.18400/tekderg.565709
Chicago Şengün, Emin, Hande İşık Öztürk, and İsmail Özgür Yaman. “Mekanistik-Ampirik Ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi”. Teknik Dergi 31, no. 5 (September 2020): 10251-74. https://doi.org/10.18400/tekderg.565709.
EndNote Şengün E, Öztürk Hİ, Yaman İÖ (September 1, 2020) Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi. Teknik Dergi 31 5 10251–10274.
IEEE E. Şengün, H. İ. Öztürk, and İ. Ö. Yaman, “Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi”, Teknik Dergi, vol. 31, no. 5, pp. 10251–10274, 2020, doi: 10.18400/tekderg.565709.
ISNAD Şengün, Emin et al. “Mekanistik-Ampirik Ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi”. Teknik Dergi 31/5 (September 2020), 10251-10274. https://doi.org/10.18400/tekderg.565709.
JAMA Şengün E, Öztürk Hİ, Yaman İÖ. Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi. Teknik Dergi. 2020;31:10251–10274.
MLA Şengün, Emin et al. “Mekanistik-Ampirik Ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi”. Teknik Dergi, vol. 31, no. 5, 2020, pp. 10251-74, doi:10.18400/tekderg.565709.
Vancouver Şengün E, Öztürk Hİ, Yaman İÖ. Mekanistik-Ampirik ve Geleneksel Beton Yol Tasarım Yöntemlerinin Karşılaştırılması: Afyon-Emirdağ Deneme Kesimi. Teknik Dergi. 2020;31(5):10251-74.