Research Article
BibTex RIS Cite

PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI

Year 2024, , 155 - 167, 30.09.2024
https://doi.org/10.7216/teksmuh.1490957

Abstract

Bu çalışmada, pamuklu kumaşların boyama ve güç tutuşurluk bitim işlemlerinin tek adımda uygulanması üzerine araştırma yapılmıştır. Pamuklu kumaşların reaktif boyarmaddelerle boyanmasında yüksek miktarlarda tuz kullanılmasının atık su yükünü arttırması yanında çoklu ard yıkamaların yapılmasıyla fazla miktarda su kullanımı da söz konusudur. Konvansiyonel güç tutuşurluk bitim işleminde halojen içeren kimyasal maddeler kullanılmaktadır. Bu çalışmada tuz ve halojen içeren kimyasal madde kullanmadan boyama ve güç tutuşurluk bitim işlemleri sol-jel yöntemiyle tek adımda uygulanmıştır. Bu tür işlemlerde boyama düzgünsüzlüğü en büyük dezavantajdır. Bu sorun bu çalışmada kullanılan kumaşın katyonizasyon işlemiyle modifikasyonu sayesinde çözülmüş ve homojen bir boyama gerçekleştirilmiştir. Kumaşın katyonizasyon işlemi için poli(dimetilamin-ko-epiklorohidrin) içeren ticari bir ürün tercih edilirken sol-jel yöntemiyle gerçekleştirilen boyama ve güç tutuşurluk işleminde reaktif boyarmadde, azot-fosfor içeren kimyasal madde, tetraetoksisilan ve (3-glisidiloksipropil) trimetoksisilan kullanılmıştır. Kumaşların beyazlık, sarılık, K/S, haslık, alev yayılma, limit oksijen indeksi (LOI), eğilme uzunluğu ve eğilme direnci değerleri ölçülmüş, FTIR-ATR ve XPS analizleri yapılmış ve güç tutuşurluk özelliğinin kuru temizleme dayanımı incelenmiştir. Kumaşların yıkama sonrası atıksuları UV-Vis analiziyle değerlendirilmiştir. Katyonize pamuklu kumaşların hem boyama (K/S, haslık) ve güç tutuşurluk (alev yayılma, LOI) özelliklerinin birbirini olumsuz yönde etkilemeden tek bir adımda boyanması ve güç tutuşur özellik kazanması, hem de güç tutuşurluk özelliğinin kuru temizleme dayanımına sahip olması sağlanmıştır. K/S değeri 4, LOI değeri %32 ve kuru temizleme sonrası %31 olarak elde edilmiştir. Çalışma kapsamında kimyasal ve su tüketimi, atıksu yükü, işlem süresi ve enerji tüketimi azaltılmıştır.

References

  • Acharya, S., Abidi, N., Rajbhandari, R., & Meulewaeter, F. (2014). Chemical cationization of cotton fabric for improved dye uptake. Cellulose, 21, 4693-4706.
  • Arivithamani, N., & Dev, V. R. G. (2017). Cationization of cotton for industrial scale salt-free reactive dyeing of garments. Clean Technologies and Environmental Policy, 19, 2317-2326.
  • Xia, L., Wang, A., Zhang, C., Liu, Y., Guo, H., Ding, C., Wang, Y., & Xu, W. (2018). Environmentally friendly dyeing of cotton in an ethanol–water mixture with excellent exhaustion. Green Chemistry, 20(19), 4473-4483.
  • Zhai, S., Li, Y., Dong, W., Zhao, H., Ma, K., Zhang, H., Wang, H., Zhao, Y., Li, X., & Cai, Z. (2022). Cationic cotton modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride for salt-free dyeing with high levelling performance. Cellulose, 1-14.
  • Castellano, A., Colleoni, C., Iacono, G., Mezzi, A., Plutino, M. R., Malucelli, G., & Rosace, G. (2019). Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen-and formaldehyde-free flame retardant finishing for cotton fabric. Polymer Degradation and Stability, 162, 148-159.
  • Li, G., You, F., Zhou, S., Wang, Z., Li, D., Zhang, X., Zhou, C, Zhuang, C., & Zhao, Y. (2022). Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings. Polymer Degradation and Stability, 202, 110011.
  • Grancaric, A. M., Colleoni, C., Guido, E., Botteri, L., & Rosace, G. (2017). Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Progress in Organic Coatings, 103, 174-181.
  • Liu, J., Dong, C., Zhang, Z., Sun, H., Kong, D., & Lu, Z. (2020). Durable flame retardant cotton fabrics modified with a novel silicon–phosphorus–nitrogen synergistic flame retardant. Cellulose, 27, 9027-9043.
  • Rao, W., Shi, J., Yu, C., Zhao, H. B., & Wang, Y. Z. (2021). Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric. Chemical Engineering Journal, 424, 130556.
  • Ahmed, M., Sukumar, N., Yusuf, A., & Awol, Y. (2022). Cationisation of cotton with natural source based gelatin for salt-free reactive dyeing of cationised cotton. Journal of Natural Fibers, 19(17), 15353-15366.
  • Zhang, T., Zhang, S., Qian, W., He, J., & Dong, X. (2021). Reactive dyeing of cationized cotton fabric: The effect of cationization level. ACS Sustainable Chemistry & Engineering, 9(36), 12355-12364.
  • Wang, L., Xie, G., Mi, X., Kang, X., Zhu, Q., & Yu, Z. (2022). A single‐step pad‐steam cationisation and dyeing process for improving dyeing properties of cotton fabrics. Coloration technology, 138(5), 509-521.
  • Kıcık, H., & Gökbulut, Ç. (2023). Investigation of the effect of cationization process on wastewater characterization, physical and fastness values of cotton fabric, Tekstil ve Mühendis, 30(130), 131-140.
  • Dong, W., Zhou, M., Li, Y., Zhai, S., Jin, K., Fan, Z., Zhao, H, Zou, W., & Cai, Z. (2020). Low-salt dyeing of cotton fabric grafted with pH-responsive cationic polymer of polyelectrolyte 2-(N, N-dimethylamino) ethyl methacrylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 594, 124573.
  • Arivithamani, N., & Dev, V. R. G. (2016). Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydrate Polymers, 152, 1-11.
  • Arivithamani, N., & Dev, V. R. G. (2018). Characterization and comparison of salt-free reactive dyed cationized cotton hosiery fabrics with that of conventional dyed cotton fabrics. Journal of Cleaner Production, 183, 579-589.
  • Rosace, G., Castellano, A., Trovato, V., Iacono, G., & Malucelli, G. (2018). Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohydrate polymers, 196, 348-358.
  • Li, D., Wang, Z. H., Zhu, Y. S., You, F., Zhou, S. T., Li, G., Zhang, X. F., & Zhou, C. (2022). Synergistically improved flame retardancy of the cotton fabric finished by silica-coupling agent-zinc borate hybrid sol. Journal of Industrial Textiles, 51(5S), 8297S-8322S.
  • Ozer, M. S., & Gaan, S. (2022). Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Progress in Organic Coatings, 171, 107027.
  • Wang, S., Sun, L., Li, Y., Wang, H., Liu, J., Zhu, P., & Dong, C. (2021). Properties of flame-retardant cotton fabrics: Combustion behavior, thermal stability and mechanism of Si/P/N synergistic effect. Industrial Crops and Products, 173, 114157.
  • Ismail, W. N. W. (2016). Sol–gel technology for innovative fabric finishing–a review. Journal of sol-gel science and technology, 78, 698-707.
  • Mahltig, B., & Textor, T. (2006). Combination of silica sol and dyes on textiles. Journal of Sol-Gel Science and Technology, 39, 111-118.
  • Yuan, W., Grethe, T., & Mahltig, B. (2023). Sol-gel coatings with the fluorescence dye Rhodamine B for optical modification of cotton. Communications in Development and Assembling of Textile Products, 4(1), 1-17.
  • Mahltig, B., Textor, T., & Kumbasar, P. A. (2015). Photobactericidal and photochromic textile materials realized by embedding of advantageous dye using sol-gel technology. Celal Bayar University Journal of Science, 11(3).
  • Mahltig, B., Haufe, H., & Böttcher, H. (2005). Functionalisation of textiles by inorganic sol–gel coatings. Journal of materials chemistry, 15(41), 4385-4398.
  • Camlibel, N. O., & Arik, B. (2017). Sol-gel applications in textile finishing processes. U. Chandra (Ed.), Recent applications in sol-gel synthesis (253-281). London: InTech Open Limited.
  • Periyasamy, A. P., Venkataraman, M., Kremenakova, D., Militky, J., & Zhou, Y. (2020). Progress in sol-gel technology for the coatings of fabrics. Materials, 13(8), 1838.
  • Alongi, J., Carosio, F., & Malucelli, G. (2014). Current emerging techniques to impart flame retardancy to fabrics: an overview. Polymer Degradation and Stability, 106, 138-149.
  • Aksit, A. C., & Onar, N. (2008). Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol‐gel process. Journal of applied polymer science, 109(1), 97-105.
  • Hou, A., Shi, Y., & Yu, Y. (2009). Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydrate Polymers, 77(2), 201-205.
  • Aksit, A., Onar, N., Kutlu, B., Sergin, E., & Yakin, I. (2016). Synergistic effect of phosphorus, nitrogen and silicon on flame retardancy properties of cotton fabric treated by sol-gel process. International Journal of Clothing Science and Technology, 28(3), 319-327.
  • Sergin, E. (2017). Sol-jel yöntemi ile çevreye duyarlı, yıkama dayanımı yüksek, güç tutuşur hibrid tekstil kaplama malzemelerinin geliştirilmesi. (Yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.
  • Cireli, A., Onar, N., Ebeoglugil, M. F., Kayatekin, I., Kutlu, B., Culha, O., & Celik, E. (2007). Development of flame retardancy properties of new halogen‐free phosphorous doped SiO2 thin films on fabrics. Journal of Applied Polymer Science, 105(6), 3748-3756.
  • Alongi, J., Colleoni, C., Rosace, G., & Malucelli, G. (2013). Phosphorus-and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects? Polymer degradation and stability, 98(2), 579-589.
  • Brancatelli, G., Colleoni, C., Massafra, M. R., & Rosace, G. (2011). Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polymer Degradation and Stability, 96(4), 483-490.
  • He, P., Dong, C., Chen, X., Wang, P., Lu, Z., Jiang, Z., Liu, Y., & Zhu, P. (2020). Flame retardant finishing and dyeing of cotton fabric in one bath. AATCC Journal of Research, 7(4), 9-14.
  • Wang, S., Liu, J., Sun, L., Wang, H., Zhu, P., & Dong, C. (2020). Preparation of flame-retardant/dyed cotton fabrics: flame retardancy, dyeing performance and flame retardant/dyed mechanism. Cellulose, 27, 10425-10440.
  • Setthayanond, J., Netzer, F., Seemork, K., Suwanruji, P., Bechtold, T., Pham, T., & Manian, A. P. (2023). Low-level cationisation of cotton opens a chemical saving route to salt free reactive dyeing. Cellulose, 30(7), 4697-4711.
  • Birmole, R., Parkar, A., & Aruna, K. (2019). Biodegradation of reactive red 195 by a novel strain Enterococcus casseliflavus RDB_4 isolated from textile effluent. Nature Environment & Pollution Technology, 18(1).
  • Bi, X., Xue, D., Wang, Y., Lv, C., Li, Z., & Zhao, T. (2024). A flexible high-efficiency approach to preparing a durable flame-retardant cellulosic fabric as well as the research of the property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, 132697.
  • Lu, Y., Jia, Y., Zhang, G., & Zhang, F. (2018). An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric. Cellulose, 25, 5389-5404.
  • Pei, L., Zhu, H., Chen, J., Shi, W., Wang, J., & Alebeid, O. K. (2023). Study on reactive dyeing in a sustainable nonaqueous medium dyeing system by X-ray electron spectroscopy. Textile Research Journal, 93(19-20), 4469-4481.
  • Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269(1-2), 15-34.
  • Khatri, A., Peerzada, M. H., Mohsin, M., & White, M. (2015). A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. Journal of Cleaner Production, 50-57.
  • He, P., Chen, X., Zhu, P., Liu, J., Fan, G., Sui, S., Lu, Z., & Dong, C. (2018). Preparation and flame retardancy of reactive flame retardant for cotton fabric. Journal of Thermal Analysis and Calorimetry, 132, 1771-1781.
  • Wan, C., Tian, P., Liu, M., Zhang, G., & Zhang, F. (2019). Synthesis of a phosphorus˗ nitrogen flame retardant endowing cotton with high whiteness and washability. Industrial Crops and Products, 141, 111738.
  • Topel, E. (2014). Sol-jel teknolojisi ile tekstil materyallerinin boyanması ve haslık özelliklerinin geliştirilmesi. (Yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.
  • Yin, Y. J., & Wang, C. X. (2009). Enhancement of colour fixation behaviour of cotton fabric via sol–gel process. Materials Research Innovations, 13(1), 41-44.
  • Sampaio, S., Maia, F., & Gomes, J. R., (2010). Sol-gel technology for ecological dyeing cellulosic of fibres, 39th Textile Research Symposium. 16-19 Kasım 2010, Hindistan.
  • Zhang, F., Chen, Y., Lin, H., & Lu, Y. (2007). Synthesis of an amino‐terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt‐free dyeing auxiliary. Coloration Technology, 123(6), 351-357.
  • Wang, A., Xia, L., Zhou, S., Guo, H., Wang, Y., & Xu, W. (2020). Solvent assisted reactive dyeing of cotton with high exhaustion in the absence of salt. Journal of Cleaner Production, 267, 122062.
  • Cai, G., Sun, L., Wu, J., & Wang, J. (2015). Influence of nonionic surfactant on hydrolysis of vinyl sulfone reactive dye. Journal of Surfactants and Detergents, 18(6), 1127-1135.
  • Younis, S., Usman, M., ul Haq, A., Akram, N., Saeed, M., Raza, S., Siddiq, M., & Bukhtawar, F. (2020). Solubilization of reactive dyes by mixed micellar system: Synergistic effect of nonionic surfactant on solubilizing power of cationic surfactant. Chemical Physics Letters, 738, 136890.
  • Horrocks, A. R., Tune, M., & Cegielka, L. (1988). The burning behaviour of textiles and its assessment by oxygen-index methods. Textile Progress, 18(1-3), 1-186.
  • Tohidi, S. D., Jeddi, A. A., & Nosrati, H. (2013). Analyzing of the woven fabric geometry on the bending rigidity properties. International Journal of Textile Science, 2(4), 73-80.
  • Shiddique, M. N. A., Repon, M. R., & Mamun, R. A. (2019). Analysis of drape co-efficient, bending length, flexural rigidity and tightness factor of 4× 1 rib, 4× 4 rib, half cardigan and full cardigan knit structure fabric. J Textile Eng Fashion Technol, 5(2), 119-124.

APPLICATION OF DYEING AND FLAME RETARDANT FINISHING OF COTTON FABRICS IN ONE-STEP BY USING THE SOL-GEL METHOD

Year 2024, , 155 - 167, 30.09.2024
https://doi.org/10.7216/teksmuh.1490957

Abstract

In this study, research has been carried out on the application of dyeing and flame-retardant finishing of cotton fabrics in one step. In the dyeing of cotton fabrics with reactive dyestuffs, the use of high amounts of salt increases the wastewater load, as well as the use of large amounts of water due to multiple post-washes. Conventional flame-retardant finishing uses halogen-containing chemicals. In this study, dyeing and flame-retardant finishing processes were applied in one step by sol-gel method without using salt and halogen-containing chemicals. Dyeing unevenness is the biggest disadvantage in such processes. This problem was solved by modifying the fabric used in this study with a cationization process, and homogeneous dyeing was achieved. While a commercial product containing poly(dimethylamine-co-epichlorohydrin) was preferred for the cationization process of the fabric, reactive dyestuff, nitrogen-phosphorus-containing chemical, tetraethoxysilane, and (3-glycidyloxypropyl) trimethoxysilane were used in the dyeing and flame retardancy processes carried out by the sol-gel method. Whiteness, yellowness, K/S, fastness, flame spread, limit oxygen index (LOI), bending length and flexural rigidity values of the fabrics were measured, FTIR-ATR and XPS analyses were performed, and the dry cleaning resistance of the flame retardancy property was investigated. The post-washing wastewater of the fabrics was evaluated by UV-Vis analysis. Both dyeing (K/S, fastness) and flame retardancy (flame spread, LOI) properties of the cationized cotton fabrics were dyed and flame retardant in a single step without adversely affecting each other, and the flame retardancy property was provided to have dry cleaning resistance. The K/S value was 4, the LOI value was 32% and 31% after dry cleaning. Within the scope of the study, chemical and water consumption, wastewater load, process time, and energy consumption were reduced.

References

  • Acharya, S., Abidi, N., Rajbhandari, R., & Meulewaeter, F. (2014). Chemical cationization of cotton fabric for improved dye uptake. Cellulose, 21, 4693-4706.
  • Arivithamani, N., & Dev, V. R. G. (2017). Cationization of cotton for industrial scale salt-free reactive dyeing of garments. Clean Technologies and Environmental Policy, 19, 2317-2326.
  • Xia, L., Wang, A., Zhang, C., Liu, Y., Guo, H., Ding, C., Wang, Y., & Xu, W. (2018). Environmentally friendly dyeing of cotton in an ethanol–water mixture with excellent exhaustion. Green Chemistry, 20(19), 4473-4483.
  • Zhai, S., Li, Y., Dong, W., Zhao, H., Ma, K., Zhang, H., Wang, H., Zhao, Y., Li, X., & Cai, Z. (2022). Cationic cotton modified by 3-chloro-2-hydroxypropyl trimethyl ammonium chloride for salt-free dyeing with high levelling performance. Cellulose, 1-14.
  • Castellano, A., Colleoni, C., Iacono, G., Mezzi, A., Plutino, M. R., Malucelli, G., & Rosace, G. (2019). Synthesis and characterization of a phosphorous/nitrogen based sol-gel coating as a novel halogen-and formaldehyde-free flame retardant finishing for cotton fabric. Polymer Degradation and Stability, 162, 148-159.
  • Li, G., You, F., Zhou, S., Wang, Z., Li, D., Zhang, X., Zhou, C, Zhuang, C., & Zhao, Y. (2022). Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings. Polymer Degradation and Stability, 202, 110011.
  • Grancaric, A. M., Colleoni, C., Guido, E., Botteri, L., & Rosace, G. (2017). Thermal behaviour and flame retardancy of monoethanolamine-doped sol-gel coatings of cotton fabric. Progress in Organic Coatings, 103, 174-181.
  • Liu, J., Dong, C., Zhang, Z., Sun, H., Kong, D., & Lu, Z. (2020). Durable flame retardant cotton fabrics modified with a novel silicon–phosphorus–nitrogen synergistic flame retardant. Cellulose, 27, 9027-9043.
  • Rao, W., Shi, J., Yu, C., Zhao, H. B., & Wang, Y. Z. (2021). Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric. Chemical Engineering Journal, 424, 130556.
  • Ahmed, M., Sukumar, N., Yusuf, A., & Awol, Y. (2022). Cationisation of cotton with natural source based gelatin for salt-free reactive dyeing of cationised cotton. Journal of Natural Fibers, 19(17), 15353-15366.
  • Zhang, T., Zhang, S., Qian, W., He, J., & Dong, X. (2021). Reactive dyeing of cationized cotton fabric: The effect of cationization level. ACS Sustainable Chemistry & Engineering, 9(36), 12355-12364.
  • Wang, L., Xie, G., Mi, X., Kang, X., Zhu, Q., & Yu, Z. (2022). A single‐step pad‐steam cationisation and dyeing process for improving dyeing properties of cotton fabrics. Coloration technology, 138(5), 509-521.
  • Kıcık, H., & Gökbulut, Ç. (2023). Investigation of the effect of cationization process on wastewater characterization, physical and fastness values of cotton fabric, Tekstil ve Mühendis, 30(130), 131-140.
  • Dong, W., Zhou, M., Li, Y., Zhai, S., Jin, K., Fan, Z., Zhao, H, Zou, W., & Cai, Z. (2020). Low-salt dyeing of cotton fabric grafted with pH-responsive cationic polymer of polyelectrolyte 2-(N, N-dimethylamino) ethyl methacrylate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 594, 124573.
  • Arivithamani, N., & Dev, V. R. G. (2016). Salt-free reactive dyeing of cotton hosiery fabrics by exhaust application of cationic agent. Carbohydrate Polymers, 152, 1-11.
  • Arivithamani, N., & Dev, V. R. G. (2018). Characterization and comparison of salt-free reactive dyed cationized cotton hosiery fabrics with that of conventional dyed cotton fabrics. Journal of Cleaner Production, 183, 579-589.
  • Rosace, G., Castellano, A., Trovato, V., Iacono, G., & Malucelli, G. (2018). Thermal and flame retardant behaviour of cotton fabrics treated with a novel nitrogen-containing carboxyl-functionalized organophosphorus system. Carbohydrate polymers, 196, 348-358.
  • Li, D., Wang, Z. H., Zhu, Y. S., You, F., Zhou, S. T., Li, G., Zhang, X. F., & Zhou, C. (2022). Synergistically improved flame retardancy of the cotton fabric finished by silica-coupling agent-zinc borate hybrid sol. Journal of Industrial Textiles, 51(5S), 8297S-8322S.
  • Ozer, M. S., & Gaan, S. (2022). Recent developments in phosphorus based flame retardant coatings for textiles: Synthesis, applications and performance. Progress in Organic Coatings, 171, 107027.
  • Wang, S., Sun, L., Li, Y., Wang, H., Liu, J., Zhu, P., & Dong, C. (2021). Properties of flame-retardant cotton fabrics: Combustion behavior, thermal stability and mechanism of Si/P/N synergistic effect. Industrial Crops and Products, 173, 114157.
  • Ismail, W. N. W. (2016). Sol–gel technology for innovative fabric finishing–a review. Journal of sol-gel science and technology, 78, 698-707.
  • Mahltig, B., & Textor, T. (2006). Combination of silica sol and dyes on textiles. Journal of Sol-Gel Science and Technology, 39, 111-118.
  • Yuan, W., Grethe, T., & Mahltig, B. (2023). Sol-gel coatings with the fluorescence dye Rhodamine B for optical modification of cotton. Communications in Development and Assembling of Textile Products, 4(1), 1-17.
  • Mahltig, B., Textor, T., & Kumbasar, P. A. (2015). Photobactericidal and photochromic textile materials realized by embedding of advantageous dye using sol-gel technology. Celal Bayar University Journal of Science, 11(3).
  • Mahltig, B., Haufe, H., & Böttcher, H. (2005). Functionalisation of textiles by inorganic sol–gel coatings. Journal of materials chemistry, 15(41), 4385-4398.
  • Camlibel, N. O., & Arik, B. (2017). Sol-gel applications in textile finishing processes. U. Chandra (Ed.), Recent applications in sol-gel synthesis (253-281). London: InTech Open Limited.
  • Periyasamy, A. P., Venkataraman, M., Kremenakova, D., Militky, J., & Zhou, Y. (2020). Progress in sol-gel technology for the coatings of fabrics. Materials, 13(8), 1838.
  • Alongi, J., Carosio, F., & Malucelli, G. (2014). Current emerging techniques to impart flame retardancy to fabrics: an overview. Polymer Degradation and Stability, 106, 138-149.
  • Aksit, A. C., & Onar, N. (2008). Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol‐gel process. Journal of applied polymer science, 109(1), 97-105.
  • Hou, A., Shi, Y., & Yu, Y. (2009). Preparation of the cellulose/silica hybrid containing cationic group by sol–gel crosslinking process and its dyeing properties. Carbohydrate Polymers, 77(2), 201-205.
  • Aksit, A., Onar, N., Kutlu, B., Sergin, E., & Yakin, I. (2016). Synergistic effect of phosphorus, nitrogen and silicon on flame retardancy properties of cotton fabric treated by sol-gel process. International Journal of Clothing Science and Technology, 28(3), 319-327.
  • Sergin, E. (2017). Sol-jel yöntemi ile çevreye duyarlı, yıkama dayanımı yüksek, güç tutuşur hibrid tekstil kaplama malzemelerinin geliştirilmesi. (Yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.
  • Cireli, A., Onar, N., Ebeoglugil, M. F., Kayatekin, I., Kutlu, B., Culha, O., & Celik, E. (2007). Development of flame retardancy properties of new halogen‐free phosphorous doped SiO2 thin films on fabrics. Journal of Applied Polymer Science, 105(6), 3748-3756.
  • Alongi, J., Colleoni, C., Rosace, G., & Malucelli, G. (2013). Phosphorus-and nitrogen-doped silica coatings for enhancing the flame retardancy of cotton: synergisms or additive effects? Polymer degradation and stability, 98(2), 579-589.
  • Brancatelli, G., Colleoni, C., Massafra, M. R., & Rosace, G. (2011). Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polymer Degradation and Stability, 96(4), 483-490.
  • He, P., Dong, C., Chen, X., Wang, P., Lu, Z., Jiang, Z., Liu, Y., & Zhu, P. (2020). Flame retardant finishing and dyeing of cotton fabric in one bath. AATCC Journal of Research, 7(4), 9-14.
  • Wang, S., Liu, J., Sun, L., Wang, H., Zhu, P., & Dong, C. (2020). Preparation of flame-retardant/dyed cotton fabrics: flame retardancy, dyeing performance and flame retardant/dyed mechanism. Cellulose, 27, 10425-10440.
  • Setthayanond, J., Netzer, F., Seemork, K., Suwanruji, P., Bechtold, T., Pham, T., & Manian, A. P. (2023). Low-level cationisation of cotton opens a chemical saving route to salt free reactive dyeing. Cellulose, 30(7), 4697-4711.
  • Birmole, R., Parkar, A., & Aruna, K. (2019). Biodegradation of reactive red 195 by a novel strain Enterococcus casseliflavus RDB_4 isolated from textile effluent. Nature Environment & Pollution Technology, 18(1).
  • Bi, X., Xue, D., Wang, Y., Lv, C., Li, Z., & Zhao, T. (2024). A flexible high-efficiency approach to preparing a durable flame-retardant cellulosic fabric as well as the research of the property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 680, 132697.
  • Lu, Y., Jia, Y., Zhang, G., & Zhang, F. (2018). An eco-friendly intumescent flame retardant with high efficiency and durability for cotton fabric. Cellulose, 25, 5389-5404.
  • Pei, L., Zhu, H., Chen, J., Shi, W., Wang, J., & Alebeid, O. K. (2023). Study on reactive dyeing in a sustainable nonaqueous medium dyeing system by X-ray electron spectroscopy. Textile Research Journal, 93(19-20), 4469-4481.
  • Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269(1-2), 15-34.
  • Khatri, A., Peerzada, M. H., Mohsin, M., & White, M. (2015). A review on developments in dyeing cotton fabrics with reactive dyes for reducing effluent pollution. Journal of Cleaner Production, 50-57.
  • He, P., Chen, X., Zhu, P., Liu, J., Fan, G., Sui, S., Lu, Z., & Dong, C. (2018). Preparation and flame retardancy of reactive flame retardant for cotton fabric. Journal of Thermal Analysis and Calorimetry, 132, 1771-1781.
  • Wan, C., Tian, P., Liu, M., Zhang, G., & Zhang, F. (2019). Synthesis of a phosphorus˗ nitrogen flame retardant endowing cotton with high whiteness and washability. Industrial Crops and Products, 141, 111738.
  • Topel, E. (2014). Sol-jel teknolojisi ile tekstil materyallerinin boyanması ve haslık özelliklerinin geliştirilmesi. (Yüksek lisans tezi). Dokuz Eylül Üniversitesi, İzmir.
  • Yin, Y. J., & Wang, C. X. (2009). Enhancement of colour fixation behaviour of cotton fabric via sol–gel process. Materials Research Innovations, 13(1), 41-44.
  • Sampaio, S., Maia, F., & Gomes, J. R., (2010). Sol-gel technology for ecological dyeing cellulosic of fibres, 39th Textile Research Symposium. 16-19 Kasım 2010, Hindistan.
  • Zhang, F., Chen, Y., Lin, H., & Lu, Y. (2007). Synthesis of an amino‐terminated hyperbranched polymer and its application in reactive dyeing on cotton as a salt‐free dyeing auxiliary. Coloration Technology, 123(6), 351-357.
  • Wang, A., Xia, L., Zhou, S., Guo, H., Wang, Y., & Xu, W. (2020). Solvent assisted reactive dyeing of cotton with high exhaustion in the absence of salt. Journal of Cleaner Production, 267, 122062.
  • Cai, G., Sun, L., Wu, J., & Wang, J. (2015). Influence of nonionic surfactant on hydrolysis of vinyl sulfone reactive dye. Journal of Surfactants and Detergents, 18(6), 1127-1135.
  • Younis, S., Usman, M., ul Haq, A., Akram, N., Saeed, M., Raza, S., Siddiq, M., & Bukhtawar, F. (2020). Solubilization of reactive dyes by mixed micellar system: Synergistic effect of nonionic surfactant on solubilizing power of cationic surfactant. Chemical Physics Letters, 738, 136890.
  • Horrocks, A. R., Tune, M., & Cegielka, L. (1988). The burning behaviour of textiles and its assessment by oxygen-index methods. Textile Progress, 18(1-3), 1-186.
  • Tohidi, S. D., Jeddi, A. A., & Nosrati, H. (2013). Analyzing of the woven fabric geometry on the bending rigidity properties. International Journal of Textile Science, 2(4), 73-80.
  • Shiddique, M. N. A., Repon, M. R., & Mamun, R. A. (2019). Analysis of drape co-efficient, bending length, flexural rigidity and tightness factor of 4× 1 rib, 4× 4 rib, half cardigan and full cardigan knit structure fabric. J Textile Eng Fashion Technol, 5(2), 119-124.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Textile Finishing
Journal Section Articles
Authors

Evren Sergin 0000-0002-9954-0394

Aysun Akşit 0000-0002-6187-9288

Publication Date September 30, 2024
Submission Date May 27, 2024
Acceptance Date August 29, 2024
Published in Issue Year 2024

Cite

APA Sergin, E., & Akşit, A. (2024). PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI. Tekstil Ve Mühendis, 31(135), 155-167. https://doi.org/10.7216/teksmuh.1490957
AMA Sergin E, Akşit A. PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI. Tekstil ve Mühendis. September 2024;31(135):155-167. doi:10.7216/teksmuh.1490957
Chicago Sergin, Evren, and Aysun Akşit. “PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI”. Tekstil Ve Mühendis 31, no. 135 (September 2024): 155-67. https://doi.org/10.7216/teksmuh.1490957.
EndNote Sergin E, Akşit A (September 1, 2024) PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI. Tekstil ve Mühendis 31 135 155–167.
IEEE E. Sergin and A. Akşit, “PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI”, Tekstil ve Mühendis, vol. 31, no. 135, pp. 155–167, 2024, doi: 10.7216/teksmuh.1490957.
ISNAD Sergin, Evren - Akşit, Aysun. “PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI”. Tekstil ve Mühendis 31/135 (September 2024), 155-167. https://doi.org/10.7216/teksmuh.1490957.
JAMA Sergin E, Akşit A. PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI. Tekstil ve Mühendis. 2024;31:155–167.
MLA Sergin, Evren and Aysun Akşit. “PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI”. Tekstil Ve Mühendis, vol. 31, no. 135, 2024, pp. 155-67, doi:10.7216/teksmuh.1490957.
Vancouver Sergin E, Akşit A. PAMUKLU KUMAŞLARIN BOYAMA VE GÜÇ TUTUŞURLUK BİTİM İŞLEMLERİNİN SOL-JEL YÖNTEMİ İLE TEK ADIMDA UYGULANMASI. Tekstil ve Mühendis. 2024;31(135):155-67.