Research Article
BibTex RIS Cite

Comparison of Textile Dye Adsorption Properties of Low-Cost Biowaste Adsorbents

Year 2017, Volume: 24 Issue: 107, 181 - 187, 30.09.2017

Abstract

In this study, cherry and apricot stones have been investigated as an adsorbent for removing disperse yellow 211 textile dye from aqueous solution. Cherry and apricot stones have been characterized by SEM (scanning electron microscopy) and N2 adsorption isotherms. In the study, the effects of adsorbent dosage, contact time, temperature and pH value on the removal efficiency have been investigated. The Freundlich, Langmuir, Temkin and Dubinin-Radushkevich (DR) isotherms were tested to examine the adsorption behavior. The kinetic studies indicate that adsorption follows the pseudo first order model. Thermodynamic parameters, enthalpy, entropy and Gibbs free energy changes were established. The maximum adsorption capacity was found to be as high as 105.71 mg/g for cherry stones and 156.25 mg/g for apricot stones. These results showed that the adsorption capacity of apricot stones is about 1.5 times higher than that of cherry stones. The results support the potential use of cherry and apricot stones as efficient and low-cost adsorbents for the removal of textile dye from aqueous solution. 

References

  • Pandiselvi, K., Thambidurai, S., (2013), Synthesis of porous chitosan-polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloids and Surf. B: Biointerfaces, 108, 229-238.
  • Erdogan, T., Oguz Erdogan, F., (2016), Characterization of the adsorption of disperse yellow 211 on activated carbon from cherry stones following microwave-assisted phosphoric acid treatment. Analytical Letters, 49, 917-928.
  • Auta, M., B.H. Hameed., B. H., (2013), Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids and Surf. B: Biointerfaces, 105, 199-206.
  • Fan, L., Luo, C., Sun, M., Qiu, H., Li, X., (2013), Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surf. B: Biointerfaces, 103, 601-607.
  • Lafi, R., Fradj, A., Hafiane, A., Hameed, B. H., (2014), Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean J. Chem. Eng., 31, 2198-2206.
  • Krishni, R. R., Foo, K.Y., Hameed, B. H., (2014), Adsorption of methylene blue onto papaya leaves: comparison of linear and nonlinear isotherm analysis. Desalination and Water Treatment, 52, 6712-6719.
  • Oguz Erdogan, F., (2016), Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide. Analytical Letters, 49, 1079-1090.
  • http://wwww.fao.org
  • Huang, Z., Wang, X., Yang, D., (2015), Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Science and Engineering, 8, 226-232.
  • Zhao, D., Zhang, C., Chen, C., Wang, X., (2013), Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environmental Sciences, 18, 890-895.
  • Nesic A. R., Velickovic S. J., Antonovic D. G., (2014), Novel composite films based on amidated pectin for cationic dye adsorption. Colloids and Surf. B: Biointerfaces, 116, 620-626.
  • Rubín, E.,. Rodríguez, P., Herrero, R., Sastre de Vicente, M. E.,(2006), Biosorption of phenolic compounds by the brown alga Sargassum muticum. Journal of Chemical Technology and Biotechnology, 81, 1093-1099.
  • Nweke, C. O., Okpokwasili G. C., (2013), Removal of phenol from aqueous solution by adsorption onto activated carbon and fungal biomass. International Journal of Biosciences, 3, 11-21.
  • Kosa, S. A., Al-Zhrani, G., Salam M. A., (2012), Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 181-182, 159-168.
  • Emami, Z., Azizian, S., (2014), Preparation of activated carbon from date sphate using microwave irradiation and investigation of its capability for removal of dye pollutant from aqueous media. Journal of Analytical and Applied Pyrolysis, 108, 176-184.
  • Chen, S., Zhang, J., Zhang, C., Yue, Q., Li, Y., Li, C., (2010), Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination, 252, 149-156.
  • Chowdhury, S., Chakraborty, S., Saha, P., (2011), Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and Surf. B: Biointerfaces, 84, 520-527.
  • Kondapalli, S., Mohanty, K., (2011), Influence of temperature on equilibrium, kinetic and thermodynamic parameters of biosorption of Cr(VI) onto fish scales as suitable biosorbent. Journal of Water Resource and Protection, 3, 429-439.
  • Akpomie, K. G., Dawodu, F. A., Adebowale, K. O., (2015), Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54, 757-767.
  • Agarry, S. E., Aremu, M. O., (2012), Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950. British Biotechnology Journal, 2, 26-48.
  • Varshini, J. S., Das, N., (2014), Enhanced uptake of rare earth metals using surface molecular imprinted biosorbents of animal origin: Equilibrium, kinetic and thermodynamic. International Journal of ChemTech Research, 7, 1913-1919.
  • Akar, T., Özkara, S., Celik, S., Turkyilmaz, S., Akar, S. T.,(2013), Chemical modification of a plant origin biomass using cationic surfactant ABDAC and the biosorptive decolorization of RR45 containing solutions. Colloids and Surf. B: Biointerfaces, 101, 307-314.
  • Rahman, M. S., Sathasivam, K. V., (2015), Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models. BioMed Research International, 2015, 13-20.

Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması

Year 2017, Volume: 24 Issue: 107, 181 - 187, 30.09.2017

Abstract

Bu çalışmada, kiraz ve kayısı çekirdekleri, sulu çözeltiden dispers sarı 211 tekstil boyasının uzaklaştırılması için bir adsorbent olarak incelenmiştir. Kiraz ve kayısı çekirdekleri SEM (taramalı elektron mikroskopisi) ve N2 adsorpsiyon izotermleriyle karakterize edilmiştir. Çalışmada; adsorbent miktarı, temas süresi, sıcaklık ve pH’ın uzaklaştırma verimine etkisi incelenmiştir. Adsorpsiyon davranışının incelenmesinde Freundlich, Langmuir, Temkin ve Dubinin-Radushkevich (DR) izotermleri test edilmiştir. Kinetik çalışmalar, adsorpsiyonun yalancı birinci derece kinetik modeli takip ettiğini göstermektedir. Termodinamik parametreler olan entalpi, entropi ve Gibbs serbest enerji değişimleri belirlenmiştir. Maksimum adsorpsiyon kapasitesi kiraz çekirdekleri için 105.71 mg/g, kayısı çekirdekleri için 156.25 mg/g olarak bulunmuştur. Bu sonuçlar kayısı çekirdeklerinin adsorpsiyon kapasitesinin kiraz çekirdeklerinin adsorpsiyon kapasitesinden yaklaşık 1.5 kat fazla olduğunu göstermiştir. Sonuçlar, kiraz ve kayısı çekirdeklerinin, sulu çözeltiden dispers sarı 211 tekstil boyasının uzaklaştırılmasında etkili ve düşük maliyetli adsorbentler olarak kullanılma potansiyelini desteklemektedir.

References

  • Pandiselvi, K., Thambidurai, S., (2013), Synthesis of porous chitosan-polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloids and Surf. B: Biointerfaces, 108, 229-238.
  • Erdogan, T., Oguz Erdogan, F., (2016), Characterization of the adsorption of disperse yellow 211 on activated carbon from cherry stones following microwave-assisted phosphoric acid treatment. Analytical Letters, 49, 917-928.
  • Auta, M., B.H. Hameed., B. H., (2013), Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids and Surf. B: Biointerfaces, 105, 199-206.
  • Fan, L., Luo, C., Sun, M., Qiu, H., Li, X., (2013), Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surf. B: Biointerfaces, 103, 601-607.
  • Lafi, R., Fradj, A., Hafiane, A., Hameed, B. H., (2014), Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean J. Chem. Eng., 31, 2198-2206.
  • Krishni, R. R., Foo, K.Y., Hameed, B. H., (2014), Adsorption of methylene blue onto papaya leaves: comparison of linear and nonlinear isotherm analysis. Desalination and Water Treatment, 52, 6712-6719.
  • Oguz Erdogan, F., (2016), Characterization of the activated carbon surface of cherry stones prepared by sodium and potassium hydroxide. Analytical Letters, 49, 1079-1090.
  • http://wwww.fao.org
  • Huang, Z., Wang, X., Yang, D., (2015), Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Science and Engineering, 8, 226-232.
  • Zhao, D., Zhang, C., Chen, C., Wang, X., (2013), Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environmental Sciences, 18, 890-895.
  • Nesic A. R., Velickovic S. J., Antonovic D. G., (2014), Novel composite films based on amidated pectin for cationic dye adsorption. Colloids and Surf. B: Biointerfaces, 116, 620-626.
  • Rubín, E.,. Rodríguez, P., Herrero, R., Sastre de Vicente, M. E.,(2006), Biosorption of phenolic compounds by the brown alga Sargassum muticum. Journal of Chemical Technology and Biotechnology, 81, 1093-1099.
  • Nweke, C. O., Okpokwasili G. C., (2013), Removal of phenol from aqueous solution by adsorption onto activated carbon and fungal biomass. International Journal of Biosciences, 3, 11-21.
  • Kosa, S. A., Al-Zhrani, G., Salam M. A., (2012), Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 181-182, 159-168.
  • Emami, Z., Azizian, S., (2014), Preparation of activated carbon from date sphate using microwave irradiation and investigation of its capability for removal of dye pollutant from aqueous media. Journal of Analytical and Applied Pyrolysis, 108, 176-184.
  • Chen, S., Zhang, J., Zhang, C., Yue, Q., Li, Y., Li, C., (2010), Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis. Desalination, 252, 149-156.
  • Chowdhury, S., Chakraborty, S., Saha, P., (2011), Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and Surf. B: Biointerfaces, 84, 520-527.
  • Kondapalli, S., Mohanty, K., (2011), Influence of temperature on equilibrium, kinetic and thermodynamic parameters of biosorption of Cr(VI) onto fish scales as suitable biosorbent. Journal of Water Resource and Protection, 3, 429-439.
  • Akpomie, K. G., Dawodu, F. A., Adebowale, K. O., (2015), Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential. Alexandria Engineering Journal, 54, 757-767.
  • Agarry, S. E., Aremu, M. O., (2012), Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950. British Biotechnology Journal, 2, 26-48.
  • Varshini, J. S., Das, N., (2014), Enhanced uptake of rare earth metals using surface molecular imprinted biosorbents of animal origin: Equilibrium, kinetic and thermodynamic. International Journal of ChemTech Research, 7, 1913-1919.
  • Akar, T., Özkara, S., Celik, S., Turkyilmaz, S., Akar, S. T.,(2013), Chemical modification of a plant origin biomass using cationic surfactant ABDAC and the biosorptive decolorization of RR45 containing solutions. Colloids and Surf. B: Biointerfaces, 101, 307-314.
  • Rahman, M. S., Sathasivam, K. V., (2015), Heavy metal adsorption onto Kappaphycus sp. from aqueous solutions: The use of error functions for validation of isotherm and kinetics models. BioMed Research International, 2015, 13-20.
There are 23 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Fatma Oğuz Erdoğan This is me

Publication Date September 30, 2017
Published in Issue Year 2017 Volume: 24 Issue: 107

Cite

APA Erdoğan, F. O. (2017). Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması. Tekstil Ve Mühendis, 24(107), 181-187.
AMA Erdoğan FO. Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması. Tekstil ve Mühendis. September 2017;24(107):181-187.
Chicago Erdoğan, Fatma Oğuz. “Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması”. Tekstil Ve Mühendis 24, no. 107 (September 2017): 181-87.
EndNote Erdoğan FO (September 1, 2017) Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması. Tekstil ve Mühendis 24 107 181–187.
IEEE F. O. Erdoğan, “Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması”, Tekstil ve Mühendis, vol. 24, no. 107, pp. 181–187, 2017.
ISNAD Erdoğan, Fatma Oğuz. “Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması”. Tekstil ve Mühendis 24/107 (September 2017), 181-187.
JAMA Erdoğan FO. Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması. Tekstil ve Mühendis. 2017;24:181–187.
MLA Erdoğan, Fatma Oğuz. “Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması”. Tekstil Ve Mühendis, vol. 24, no. 107, 2017, pp. 181-7.
Vancouver Erdoğan FO. Düşük Maliyetli Biyolojik Atık Adsorbentlerin Tekstil Boyası Adsorpsiyonu Özelliklerinin Karşılaştırılması. Tekstil ve Mühendis. 2017;24(107):181-7.