Research Article
BibTex RIS Cite

Coating of Graphene on the Spunbond Non-Woven Textile Surface Via Electrospinning Method in Nano Size and its Characterization

Year 2017, Volume: 24 Issue: 108, 243 - 253, 31.12.2017

Abstract

 In this study, reduced graphene oxide (RGO) was produced via chemical
method using graphene oxide (GO) obtained by modified Hummer's method. Produced
RGO was dispersed in deionized water, dimethylformamide (DMF), N-methyl-2-pyrrolidone
(NMP), tetrahydrofuran (THF), DMF/THF (1/1, wt%) solvents at different
concentrations. These mixtures were spun on nonwoven spunbond surface using multi-needle
electrospinning method at different spinning parameters. It was determined that
RGO in DMF could be coated in nano size without any polymer addition using
electrospinning method. According to results from spectroscopic, morphological
and thermal analyses, it was determined that RGO was successfully coated on
spunbond surface and changed the properties.

References

  • Sengupta R., Bhattacharya M., Bandyopadhyay S., Bhowmick A.K., (2011), A Review on The Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites, Progress in Polymer Science, 36(5), 638–670.
  • Yazıcı, M., Tiyek, İ., Ersoy, M. S., Alma, M. H., Dönmez, U., Yıldırım, B., Salan, T., Karataş, Ş., Uruş, S., Karteri, İ., ve Yıldız, K., (2016), Modifiye Hummers Yöntemiyle Grafen Oksit (GO) Sentezi ve Karakterizasyonu, Gazi Üniversitesi Journal of Science Part C, 4(2), 613-623.
  • Song, J., Wang, X., and Chang, C.T., (2014), Preparation and Characterization of Graphene Oxide, Journal of Nanomaterials, Artical ID 276143, Vol.2014, 6 pages.
  • Ersoy M.S., Dönmez U., Yildiz K., Salan T., Yazici M., Tiyek İ., Alma M.H., (2015), Graphene Applied Textile Materials for Wearable E-Textiles, 5th International Istanbul Textile Congress 2015: Innovative Technologies “Inspire To Innovate, pp. 82-86, 11th -12th September 2015, Istanbul Technical University, Istanbul, Turkey,.
  • Hsiao, M.C., Liao, S.H., Lin, Y.F., Wang, C.A., Pu, N.W., Tsai H.M., and Ma, C.C.M., (2011), Preparation and Characterization of Polypropylene-Grafted-Termally Reduced Graphite Oxide with an Improved Compatibility with Polypropylene-Based Nanocomposite, Nanoscala, 3, 1516-1522.
  • Wang, S., Sun, H., Tade H.M., and Tade, M.O., (2013), Adsorptive Remediation of Enviromental Pollutants Using Novel Graphene-Based Nanomaterials, Chemical Engineering Journal, 226, 336-347.
  • Ryu S.H., and Shanmugharaj, A.M., (2014), Influence of Long-Chain Alkylamine-Modified Graphene Oxide on The Crystallization, Mechanical and Electrical Properties of Isotactic Polypropylene Nanocomposites, Chemical Engineering Journal, 244, 553-560.
  • Yuan, B., Bao, C., Song, L., Hong, N., Liew K.M., and Hu, Y., (2014), Preparation of Functionalized Graphene Oxide/Polypropylene Nanocomposite With Significantly Improved Thermal Stability and Studies on The Crystallization Behavior And Mechanical Properties, Chemical Engineering Journal, 237, 411-420.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Karataş, Ş., Alma, M. H., Yazıcı, M., ve Ersoy, M. S., (2016), Kimyasal Yöntem ile İndirgenmiş Grafen Oksit Sentezi ve Karakterizasyonu, Sakarya Üniversitesi Fen Bilimleri Dergisi, 20(2), 349-357.
  • Shanmugharaj, A.M., Yoon, J. H., Yang, W., and Ryu, S.H., (2013), Synthesis, Characterization, and Surface Wettability Properties of Amine Functionalized Graphene Oxide Films with Varying Amine Chain Lengths, Journal of Colloid and Interface Science, 401, 148-154.
  • Yun, Y.J., Hong, W.G., Kim, W.J., Yun Y., and Kim, B.H., (2013), A Novel Method For Applying Reduced Graphene Oxide Directly To Electronic Textiles From Yarns To Fabrics, Advanced Materials, 25, 5701-5705.
  • Javed, K., Galiba, C.M.A., Yanga, F., Chenb, C.M., and Wanga, C., (2014), A New Aproach To Fabricate Graphene Electro-Conductive Networks on Naturals Fibers By Ultraviolet Curing Method, Synthetic Metals, 193, 41-47.
  • Dong, Z., Jiang, C., Cheng, H., Zhao, Y., Shi, G., Jiang L. and Qu, L., (2012), Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers, Advanced Materials, 24, 1856-1861.
  • Xu, Z., Zhang, Y., Li P., and Gao, C., (2012), Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers with Aligned Pores, American Chemical Society, 6(8), 7103-7113.
  • Ma, F., Yuan N., and Ding, J., (2013), The Conductive Network Made Up by The Reduced Graphene Nanosheet/Polyaniline/Polyvinyl Chloride, Journal of Applied Polymer Science, 128(6), 3870-3875.
  • Shin, M.K., Lee, B., Kim, S.H., Lee, J.A., Spinks, G.M., Gambhir, S., Wallace, G.G., Kozlov, M.E., Baughman R.H., and Kim, S.J., (2012), Synergistic Toughening Of Composite Fibres by Self-Alignment of Reduced Graphene Oxide and Carbon Nanotubes, Nature Communications, 3, 650.
  • Li, X., Sun, P., Fan, L., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., Cheng Y., and Zhu, H., (2012), Multifunctional Graphene Woven Fabrics, Scientific Reports, 2: 395.
  • Park, S., and Ruoff, R., (2009), Chemical Methods for The Production of Graphene, Nature Nanotechnology, 4, 217-224.
  • Loryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo W., and Buasri A., (2013), Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods, Hindawi-Advances In Materials Science and Engineering, no. 2013, p. Article ID 923403.
  • Dittrich, B., Wartig, K.A., Hofmann, D., Mülhaupt, R., Schartel, B., (2013), Flame Retardancy Through Carbon Nanomaterials: Carbon Black, Multiwall Nanotubes, Expanded Graphite, Multi-Layer Graphene and Graphene In Polypropylene, Polymer Degradation and Stability, 98(8), 1495-1505.
  • Zhou Y., Bao Q., Tang L.A.L., Zhong Y., Loh K.P., (2009), Hydrothermal Dehydration For The “Green” Reduced of Exfoliated Grephene Oxide To Graphene and Demonstration of Tunable Optical Limiting Properties, Chemistry of Materials, 21(13), 2950-2956.
  • Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W. and Tour J.M., (2010), Improved Synthesis of Graphene Oxide, American Chemical Society ACS Nano, 4(8), 4806-4814,.
  • Pei, S., and Cheng, H.M., (2012), The Reduction of Graphene Oxide, Carbon, 50(9), 3210-3228.
  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., (2008), High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, Nature Nanotechnology, 3(9), 563-568.
  • Wang, S.R., Zhang, Y., Abidi, N., Cabrales, L., (2009a), Wettability and Surface Free Energy of Graphene Films, Langmuir 25, 11078–11081.
  • Khan, U., Porwal, H., O’Neill, A., Nawaz, K., May, P., Coleman, J.N., (2011), Solvent-Exfoliated Graphene at Extremely High Concentration, Langmuir, 27(15), 9077–9082.
  • Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., (2010), The Chemistry of Graphene Oxide, Chemical Society Reviews, 39(1), 228-240.
  • Konios, D., Stylianakis, M.M., Stratakis, E., and Kymakis, E., (2014), Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide, Journal of Colloid and Interface Science, 430, 108-112.
  • Tiyek İ., Yazıcı M., Alma M.H., Dönmez U., Yıldırım B., Salan T., Uruş S., Karataş Ş., Karteri İ., (2016), Nanolif Yapılı Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yapıların Karakterizasyonu, Tekstil ve Mühendis, 23(102), 81–92.
  • Chen J., Yao B., Li C., Shi G., (2013), An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide, Carbon, 64, 225–229.
  • Shalaby, A., Nihtianova, D., Markov, P., Staneva, A.D., Iordanova, R.S., and Dimitriev, Y.B., (2015), Structural Analysis of Reduced Graphene Oxide By Transmission Electron Microscop, Bulgarian Chemical Communications, 47(1), 291-295.
  • Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., and Ruoff, R.S., (2011), Hydrazine-Reduction of Graphite and Graphene Oxide, Carbon, 49(9), 3019-3023.
  • Arbuzov, A.A., Tarasov P.B., and Muradyan, V.E., (2012), Synthesis of Few-Layer Graphene Sheets via Chemical and Thermal Reduction of Graphite Oxide, In Proceedings of the International Conference Nanomaterials: Applications and Properties (1(1), 1-4, 01NDLCN07-01NDLCN07), Sumy State University Publishing, Ukraine.
  • Feng, H., Cheng, R., Zhao, X., Duan X., and Li, J., (2013), A Low-Temperature Method To Produce Highly Reduced Graphene Oxide, Nature Communications, 4, 1539.
  • Chen, W., Yan, L. ve Bangal, P. R., (2010), Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds, The Journal of Physical Chemistry C., 114(47), 19885-19890.
  • Ferrari, A.C., (2007), Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects, Solid State Communications, 143, 47-57.
  • Abdolhosseinzadeh, S., Asgharzadeh H. and Kim, H.S., (2015), Fast And Fully-Scalable Synthesis of Reduced Graphene Oxide, Scientific Reports, 5, 2015.
  • Bhattacharya, S.S., and Chaudhari, S.B., (2015), Effect of Addition of Silica Nanoparticles on Mechanical Properties of Polypropylene Filament. In International Conference on Application of Nano-materials in Textile (pp. 64-70).
  • Radoičić, M.B., Milošević, M.V., Miličević, D.S., Suljovrujić, E.H., Ćirić-Marjanović, G.N., Radetić, M.M., and Šaponjić, Z.V., (2015), Influence of TiO2 Nanoparticles On Formation Mechanism of PANI/Tio2 Nanocomposite Coating on PET Fabric and Its Structural and Electrical Properties. Surface and Coatings Technology, 278, 38-47.
  • Beams, R., Cançado, L. G., & Novotny, L., (2015). Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27, 083002. (26pp).
  • Li, Z., Kinloch, I.A., Young, R.J., Novoselov, K.S., Anagnostopoulos, G., Parthenios, J, Galiotis, C., Papagelis, K., Lu, C-Y., Britnell, L., (2015), Deformation of Wrinkled Graphene, American Chemical Society Nano, 9(4), 3917-3925.
  • Andanson, J.M., and Kazarian, S.G., (2008), In situ ATR‐FTIR Spectroscopy of Poly (ethylene terephthalate) Subjected to High‐Temperature Methanol, In Macromolecular Symposia, 265, 195-204.
  • Berendjchi, A., Khajavi, R., Yousefi, A.A., and Yazdanshenas, M.E., (2016), Improved Continuity of Reduced Graphene Oxide on Polyester Fabric by Use of Polypyrrole To Achieve A Highly Electro-Conductive and Flexible Substrate, Applied Surface Science, 363, 264-272.
  • Wang, H., Li, Z., Liu, Y., Zhang, X., and Zhang, S., (2009b), Degradation of Poly (Ethylene Terephthalate) Using Ionic Liquids, Green Chemistry, 11(10), 1568-1575.

Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu

Year 2017, Volume: 24 Issue: 108, 243 - 253, 31.12.2017

Abstract

Bu çalışmada, modifiye Hummers
yöntemi ile elde edilen grafen oksitten (GO) kimyasal yöntemle indirgenmiş grafen
oksit (RGO) üretilmiştir. Üretilen RGO, farklı konsantrasyonlarda deiyonize su,
dimetilformamid (DMF), N-metil-2-pirolidon
(NMP), Tetrahidrofuran (THF), DMF/THF  (1/1, ağ.%) çözücüleri içerisinde dispers
edilmiştir. Bu karışımlar çok iğneli elektro çekim yöntemiyle farklı parametrelerde
spunbond dokusuz yüzey üzerine çekilmiştir. RGO’nun kullanılan çözücüler
arasından DMF ile herhangi bir polimere gerek duyulmadan elektro çekim yöntemi
kullanılarak nano boyutta kaplanmasının mümkün olduğu belirlenmiştir. Elde
edilen yüzeylere yapılan spektroskopik, morfolojik ve termal analiz
sonuçlarından RGO’nun başarılı bir şekilde spunbond yüzeye kaplanarak özelliklerini
değiştirdiği tespit edilmiştir.



 

References

  • Sengupta R., Bhattacharya M., Bandyopadhyay S., Bhowmick A.K., (2011), A Review on The Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites, Progress in Polymer Science, 36(5), 638–670.
  • Yazıcı, M., Tiyek, İ., Ersoy, M. S., Alma, M. H., Dönmez, U., Yıldırım, B., Salan, T., Karataş, Ş., Uruş, S., Karteri, İ., ve Yıldız, K., (2016), Modifiye Hummers Yöntemiyle Grafen Oksit (GO) Sentezi ve Karakterizasyonu, Gazi Üniversitesi Journal of Science Part C, 4(2), 613-623.
  • Song, J., Wang, X., and Chang, C.T., (2014), Preparation and Characterization of Graphene Oxide, Journal of Nanomaterials, Artical ID 276143, Vol.2014, 6 pages.
  • Ersoy M.S., Dönmez U., Yildiz K., Salan T., Yazici M., Tiyek İ., Alma M.H., (2015), Graphene Applied Textile Materials for Wearable E-Textiles, 5th International Istanbul Textile Congress 2015: Innovative Technologies “Inspire To Innovate, pp. 82-86, 11th -12th September 2015, Istanbul Technical University, Istanbul, Turkey,.
  • Hsiao, M.C., Liao, S.H., Lin, Y.F., Wang, C.A., Pu, N.W., Tsai H.M., and Ma, C.C.M., (2011), Preparation and Characterization of Polypropylene-Grafted-Termally Reduced Graphite Oxide with an Improved Compatibility with Polypropylene-Based Nanocomposite, Nanoscala, 3, 1516-1522.
  • Wang, S., Sun, H., Tade H.M., and Tade, M.O., (2013), Adsorptive Remediation of Enviromental Pollutants Using Novel Graphene-Based Nanomaterials, Chemical Engineering Journal, 226, 336-347.
  • Ryu S.H., and Shanmugharaj, A.M., (2014), Influence of Long-Chain Alkylamine-Modified Graphene Oxide on The Crystallization, Mechanical and Electrical Properties of Isotactic Polypropylene Nanocomposites, Chemical Engineering Journal, 244, 553-560.
  • Yuan, B., Bao, C., Song, L., Hong, N., Liew K.M., and Hu, Y., (2014), Preparation of Functionalized Graphene Oxide/Polypropylene Nanocomposite With Significantly Improved Thermal Stability and Studies on The Crystallization Behavior And Mechanical Properties, Chemical Engineering Journal, 237, 411-420.
  • Tiyek, İ., Dönmez, U., Yıldırım, B., Karataş, Ş., Alma, M. H., Yazıcı, M., ve Ersoy, M. S., (2016), Kimyasal Yöntem ile İndirgenmiş Grafen Oksit Sentezi ve Karakterizasyonu, Sakarya Üniversitesi Fen Bilimleri Dergisi, 20(2), 349-357.
  • Shanmugharaj, A.M., Yoon, J. H., Yang, W., and Ryu, S.H., (2013), Synthesis, Characterization, and Surface Wettability Properties of Amine Functionalized Graphene Oxide Films with Varying Amine Chain Lengths, Journal of Colloid and Interface Science, 401, 148-154.
  • Yun, Y.J., Hong, W.G., Kim, W.J., Yun Y., and Kim, B.H., (2013), A Novel Method For Applying Reduced Graphene Oxide Directly To Electronic Textiles From Yarns To Fabrics, Advanced Materials, 25, 5701-5705.
  • Javed, K., Galiba, C.M.A., Yanga, F., Chenb, C.M., and Wanga, C., (2014), A New Aproach To Fabricate Graphene Electro-Conductive Networks on Naturals Fibers By Ultraviolet Curing Method, Synthetic Metals, 193, 41-47.
  • Dong, Z., Jiang, C., Cheng, H., Zhao, Y., Shi, G., Jiang L. and Qu, L., (2012), Facile Fabrication of Light, Flexible and Multifunctional Graphene Fibers, Advanced Materials, 24, 1856-1861.
  • Xu, Z., Zhang, Y., Li P., and Gao, C., (2012), Strong, Conductive, Lightweight, Neat Graphene Aerogel Fibers with Aligned Pores, American Chemical Society, 6(8), 7103-7113.
  • Ma, F., Yuan N., and Ding, J., (2013), The Conductive Network Made Up by The Reduced Graphene Nanosheet/Polyaniline/Polyvinyl Chloride, Journal of Applied Polymer Science, 128(6), 3870-3875.
  • Shin, M.K., Lee, B., Kim, S.H., Lee, J.A., Spinks, G.M., Gambhir, S., Wallace, G.G., Kozlov, M.E., Baughman R.H., and Kim, S.J., (2012), Synergistic Toughening Of Composite Fibres by Self-Alignment of Reduced Graphene Oxide and Carbon Nanotubes, Nature Communications, 3, 650.
  • Li, X., Sun, P., Fan, L., Zhu, M., Wang, K., Zhong, M., Wei, J., Wu, D., Cheng Y., and Zhu, H., (2012), Multifunctional Graphene Woven Fabrics, Scientific Reports, 2: 395.
  • Park, S., and Ruoff, R., (2009), Chemical Methods for The Production of Graphene, Nature Nanotechnology, 4, 217-224.
  • Loryuenyong, V., Totepvimarn, K., Eimburanapravat, P., Boonchompoo W., and Buasri A., (2013), Preparation and Characterization of Reduced Graphene Oxide Sheets via Water-Based Exfoliation and Reduction Methods, Hindawi-Advances In Materials Science and Engineering, no. 2013, p. Article ID 923403.
  • Dittrich, B., Wartig, K.A., Hofmann, D., Mülhaupt, R., Schartel, B., (2013), Flame Retardancy Through Carbon Nanomaterials: Carbon Black, Multiwall Nanotubes, Expanded Graphite, Multi-Layer Graphene and Graphene In Polypropylene, Polymer Degradation and Stability, 98(8), 1495-1505.
  • Zhou Y., Bao Q., Tang L.A.L., Zhong Y., Loh K.P., (2009), Hydrothermal Dehydration For The “Green” Reduced of Exfoliated Grephene Oxide To Graphene and Demonstration of Tunable Optical Limiting Properties, Chemistry of Materials, 21(13), 2950-2956.
  • Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W. and Tour J.M., (2010), Improved Synthesis of Graphene Oxide, American Chemical Society ACS Nano, 4(8), 4806-4814,.
  • Pei, S., and Cheng, H.M., (2012), The Reduction of Graphene Oxide, Carbon, 50(9), 3210-3228.
  • Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z.Y., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun’ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., (2008), High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, Nature Nanotechnology, 3(9), 563-568.
  • Wang, S.R., Zhang, Y., Abidi, N., Cabrales, L., (2009a), Wettability and Surface Free Energy of Graphene Films, Langmuir 25, 11078–11081.
  • Khan, U., Porwal, H., O’Neill, A., Nawaz, K., May, P., Coleman, J.N., (2011), Solvent-Exfoliated Graphene at Extremely High Concentration, Langmuir, 27(15), 9077–9082.
  • Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S., (2010), The Chemistry of Graphene Oxide, Chemical Society Reviews, 39(1), 228-240.
  • Konios, D., Stylianakis, M.M., Stratakis, E., and Kymakis, E., (2014), Dispersion Behaviour of Graphene Oxide and Reduced Graphene Oxide, Journal of Colloid and Interface Science, 430, 108-112.
  • Tiyek İ., Yazıcı M., Alma M.H., Dönmez U., Yıldırım B., Salan T., Uruş S., Karataş Ş., Karteri İ., (2016), Nanolif Yapılı Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yapıların Karakterizasyonu, Tekstil ve Mühendis, 23(102), 81–92.
  • Chen J., Yao B., Li C., Shi G., (2013), An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide, Carbon, 64, 225–229.
  • Shalaby, A., Nihtianova, D., Markov, P., Staneva, A.D., Iordanova, R.S., and Dimitriev, Y.B., (2015), Structural Analysis of Reduced Graphene Oxide By Transmission Electron Microscop, Bulgarian Chemical Communications, 47(1), 291-295.
  • Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., and Ruoff, R.S., (2011), Hydrazine-Reduction of Graphite and Graphene Oxide, Carbon, 49(9), 3019-3023.
  • Arbuzov, A.A., Tarasov P.B., and Muradyan, V.E., (2012), Synthesis of Few-Layer Graphene Sheets via Chemical and Thermal Reduction of Graphite Oxide, In Proceedings of the International Conference Nanomaterials: Applications and Properties (1(1), 1-4, 01NDLCN07-01NDLCN07), Sumy State University Publishing, Ukraine.
  • Feng, H., Cheng, R., Zhao, X., Duan X., and Li, J., (2013), A Low-Temperature Method To Produce Highly Reduced Graphene Oxide, Nature Communications, 4, 1539.
  • Chen, W., Yan, L. ve Bangal, P. R., (2010), Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds, The Journal of Physical Chemistry C., 114(47), 19885-19890.
  • Ferrari, A.C., (2007), Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects, Solid State Communications, 143, 47-57.
  • Abdolhosseinzadeh, S., Asgharzadeh H. and Kim, H.S., (2015), Fast And Fully-Scalable Synthesis of Reduced Graphene Oxide, Scientific Reports, 5, 2015.
  • Bhattacharya, S.S., and Chaudhari, S.B., (2015), Effect of Addition of Silica Nanoparticles on Mechanical Properties of Polypropylene Filament. In International Conference on Application of Nano-materials in Textile (pp. 64-70).
  • Radoičić, M.B., Milošević, M.V., Miličević, D.S., Suljovrujić, E.H., Ćirić-Marjanović, G.N., Radetić, M.M., and Šaponjić, Z.V., (2015), Influence of TiO2 Nanoparticles On Formation Mechanism of PANI/Tio2 Nanocomposite Coating on PET Fabric and Its Structural and Electrical Properties. Surface and Coatings Technology, 278, 38-47.
  • Beams, R., Cançado, L. G., & Novotny, L., (2015). Raman characterization of defects and dopants in graphene. Journal of Physics: Condensed Matter, 27, 083002. (26pp).
  • Li, Z., Kinloch, I.A., Young, R.J., Novoselov, K.S., Anagnostopoulos, G., Parthenios, J, Galiotis, C., Papagelis, K., Lu, C-Y., Britnell, L., (2015), Deformation of Wrinkled Graphene, American Chemical Society Nano, 9(4), 3917-3925.
  • Andanson, J.M., and Kazarian, S.G., (2008), In situ ATR‐FTIR Spectroscopy of Poly (ethylene terephthalate) Subjected to High‐Temperature Methanol, In Macromolecular Symposia, 265, 195-204.
  • Berendjchi, A., Khajavi, R., Yousefi, A.A., and Yazdanshenas, M.E., (2016), Improved Continuity of Reduced Graphene Oxide on Polyester Fabric by Use of Polypyrrole To Achieve A Highly Electro-Conductive and Flexible Substrate, Applied Surface Science, 363, 264-272.
  • Wang, H., Li, Z., Liu, Y., Zhang, X., and Zhang, S., (2009b), Degradation of Poly (Ethylene Terephthalate) Using Ionic Liquids, Green Chemistry, 11(10), 1568-1575.
There are 44 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

M. Hakkı Alma This is me

Mustafa Yazıcı This is me

Behzat Yıldırım

İsmail Tiyek This is me

Publication Date December 31, 2017
Published in Issue Year 2017 Volume: 24 Issue: 108

Cite

APA Alma, M. H., Yazıcı, M., Yıldırım, B., Tiyek, İ. (2017). Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil Ve Mühendis, 24(108), 243-253.
AMA Alma MH, Yazıcı M, Yıldırım B, Tiyek İ. Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis. December 2017;24(108):243-253.
Chicago Alma, M. Hakkı, Mustafa Yazıcı, Behzat Yıldırım, and İsmail Tiyek. “Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi Ile Nano Boyutta Grafen Kaplanması Ve Karakterizasyonu”. Tekstil Ve Mühendis 24, no. 108 (December 2017): 243-53.
EndNote Alma MH, Yazıcı M, Yıldırım B, Tiyek İ (December 1, 2017) Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis 24 108 243–253.
IEEE M. H. Alma, M. Yazıcı, B. Yıldırım, and İ. Tiyek, “Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu”, Tekstil ve Mühendis, vol. 24, no. 108, pp. 243–253, 2017.
ISNAD Alma, M. Hakkı et al. “Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi Ile Nano Boyutta Grafen Kaplanması Ve Karakterizasyonu”. Tekstil ve Mühendis 24/108 (December 2017), 243-253.
JAMA Alma MH, Yazıcı M, Yıldırım B, Tiyek İ. Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis. 2017;24:243–253.
MLA Alma, M. Hakkı et al. “Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi Ile Nano Boyutta Grafen Kaplanması Ve Karakterizasyonu”. Tekstil Ve Mühendis, vol. 24, no. 108, 2017, pp. 243-5.
Vancouver Alma MH, Yazıcı M, Yıldırım B, Tiyek İ. Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis. 2017;24(108):243-5.