Research Article
BibTex RIS Cite

Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi

Year 2018, Volume: 25 Issue: 111, 189 - 195, 01.10.2018

Abstract

Bu çalışma kapsamında,
Hindistan cevizi liflerinin kimyasal, yapısal, termal ve morfolojik
özelliklerine, bu lifler için yeni bir modifikasyon maddesi olan sodyum
perborat tetrahidratın etkisi incelenmiştir. Lifler sodyum perborat
tetrahidratın farklı konsantrasyonlardaki sulu çözeltileri ile modifiye
edilmiştir. Modifikasyon işlemlerinin liflerin yüzey kimyasına, fonksiyonel
gruplarına, termal bozunma davranışlarına, kristalin yapısına ve yüzey
özelliklerine etkisi sırası ile x-ışını fotoelektron spektroskopisi, fourier dönüşümlü kızılötesi
spektroskopisi, termogravimetrik analiz, x-ışını difraksiyonu ve taramalı
elektron mikroskobu ile incelenmiştir. Yapılan işlemlerin lifin yüzey
karbon/oksijeni arttırarak yüzey hidrofilliğini azalttığı, aynı zamanda lifte
bulunan lignin ve hemiselülozun varlığını gösteren absorpsiyon piklerinin
şiddetinde azalmaya neden olduğu ve lif yüzeyinde temizlik meydana getirdiği
tespit edilmiştir. Hindistan cevizi liflerinin kristalin yapısı yapılan modifikasyon
işlemlerinden önemli derecede etkilenmezken, modifikasyon sonucu ligninin
miktarında meydana gelen değişimle birlikte maksimum bozunma sıcaklıkları azalmıştır.
Modifikasyon sonrası kül miktarında meydana gelen artışla birlikte liflerin güç
tutuşurluk özelliğinde iyileşme meydana gelebileceği belirlenmiştir.

References

  • Sain, M., Suhara, P., Law, S., Bouilloux, A. (2005). Interface Modification And Mechanical Properties Of Natural Fiber-Polyolefin Composite Products. Journal of Reinforced Plastics and Composites, 24 (2), 121-130.
  • Le, A.T., Gacoin, A., Li, A., Mai, T.H., Rebay, M., Delmas, Y., (2014). Experimental Investigation on The Mechanical Performance of Starch–Hemp Composite Materials, Construction and Building Materials, 61, 106-113.
  • Mu, B., Zheng, Y., Wang, A., (2015). Facile Fabrication of Polyaniline/Kapok Fiber Composites Via A Semidry Method And Application in Adsorption And Catalyst Support, Cellulose, 22(1), 615-624.
  • Bisaria, H., Gupta, M.K., Shandilya, P., Srivastava, R.K. (2015). Effect of Fibre Length on Mechanical Properties of Randomly Oriented Short Jute Fibre Reinforced Epoxy Composite, Materials Today: Proceedings, 2(4-5), 1193-1199.
  • Rout, J., Tripathy, S.S., Nayak, S.K., Misra, M., Mohanty, A.K. (2001). Scanning Electron Microscopy Study of Chemically Modified Coir Fibers, Journal of Applied Polymer Science, 79, 1169–1177.
  • Arrakhiz, F.Z., El Achaby, M., Kakou, A.C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., Fassi-Fehri, O., Qaiss, A. (2012). Mechanical Properties of High Density Polyethylene Reinforced with Chemically Modified Coir Fibers: Impact of Chemical Treatments, Materials & Design, 37, 379-383.
  • Rout, J., Misra, M., Tripathy, S.S., Nayak, S.K., Mohanty, A.K. (2001). The Influence of Fibre Treatment on The Performance of Coir-Polyester Composites, Composites Science and Technology, 61(9), 1303-1310.
  • Prasad, S.V., Pavithran, C., Rohatgi, P.K. (1983). Alkali Treatment of Coir Fibres for Coir-Polyester Composites, Journal of Materials Science, 18(5), 1443-1454.
  • Azrin Hani, A.R., Hashim, M.S., Lim, T.Y., Mariatti, M., Ahmad, R., (2016). Impact Behaviour of Woven Coir-Epoxy Composite: Effects of Woven Density and Woven Fabric Treatment, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(1),
  • Geethamma, V.G., Thomas Mathew, K., Lakshminarayanan, R., Thomas, S. (1998). Composite of Short Coir Fibres and Natural Rubber: Effect of Chemical Modification, Loading and Orientation of Fibre, Polymer, 39(6-7), 1483-1491.
  • Kumar Saw, S., Sarkhel, G., Choudhury, A. (2011), Surface Modification of Coir Fibre Involving Oxidation of Lignins Followed by Reaction with Furfuryl Alcohol: Characterization And Stability, Applied Surface Science, 257(8), 3763-3769.
  • Mir, S.S., Hasan, S.M.N., Hossain, J., Hasan, M. (2012). Chemical Modification Effect on the Mechanical Properties of Coir Fiber, Engineering Journal, 16(2).
  • Sumi, S., Unnikrishnan, N., Mathew, L. (2016). Effect of Antimicrobial Agents on Modification of Coir, Procedia Technology, 24, 280-286.
  • Khan, J.A., Khan, M.A., Islam, R., Gafur, A. (2010). Mechanical, Thermal and Interfacial Properties of Jute Fabric-Reinforced Polypropylene Composites: Effect of Potassium Dichromate, Materials Sciences and Applications, 1, 350-357.
  • Wang, W.M., Cai, Z.S., Yu, J.Y., Xia, Z.P. (2009). Changes in Composition, Structure, and Properties of Jute Fibers after Chemical Treatments, Fibers and Polymers, 10(6), 776-780.
  • Khan, M.A., Hassan, M.M., Taslima, R., Mustafa, A.I. (2006). Role of Pretreatment with Potassium Permanganate and Urea on Mechanical and Degradable Properties of Photocured Coir (Cocos Nucifera) Fiber with 1,6‐Hexanediol Diacrylate, Journal of Applied Polymer Science, 100(6), 4361-4368.
  • Bulut, Y., Akşit, A. (2013). A Comparative Study on Chemical Treatment of Jute Fiber: Potassium Dichromate, Potassium Permanganate and Sodium Perborate Trihydrate, Cellulose, 20(6), 3155-3164.
  • Seki, Y., Kılınç, A.Ç., Dalmış, R., Atagür, M., Köktaş, S., Göktaş, A.A., Çelik, E., Seydibeyoğlu, Ö., Önay, A.B. (2018). Surface Modification of New Cellulose Fiber Extracted From Conium Maculatum Plant: A Comparative Study, Cellulose, 25(6), 3267-3280.
  • Seki, Y., Akşit, A., Erdoğan, Ü.H. (2017). Construction of Polypropylene Composite Multifilaments Filled with Sodium Perborate Trihydrate-Treated Jute Microparticles, Science and Engineering of Composite Materials, 24(2).
  • Segal, L., Creely, J. J., Martin Jr, A. E., Conrad, C. M. (1959). An Empirical Method for Estimating The Degree of Crystallinity of Native Cellulose Using The Xray Diffractometer. Textile Research Journal, 29 (10), 786-794.
  • Seki, Y., Sarıkanat, M., Sever, K., Durmuşkahya, C. (2013). Extraction and Properties of Ferula Communis (Chakshir) Fibers as Novel Reinforcement for Composites Materials. Composites Part B: Engineering, 44 (1), 517–523.
  • Morshed, M. M., Alam, M. M., Daniels, S. M. (2010). Plasma treatment of Natural Jute Fibre by Rie 80 Plus Plasma Tool. Plasma Science And Technology, 12 (3), 325-329.
  • Sudha, S., Thilagavathi, G. (2016). Effect of Alkali Treatment on Mechanical Properties of Woven Jute Composites, Journal of Textile Institute, 107(6): 691-701.
  • Cai, M., Takagi, H., Nakagaito, A.N., Katoh, M., Ueki, T., Waterhouse, G.I.N., Li, Y. (2015). Influence of Alkali Treatment on Internal Microstructure and Tensile Properties of Abaca Fibers, Industrial Crops and Products, 65, 27-35.
  • Spiridon, I., Teaca, C. A., Bodirlau, R. (2011). Structural Changes Evidenced by Ftır Spectroscopy in Cellulosic Materials After Pretreatment with Ionic Liquid and Enzymatic Hydrolysis. Bioresources, 6 (1), 400-413.
  • Oh, S. Y., Yoo, D. I., Shin, Y., Seo, G. (2005). FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydrate Research, 340 (3), 417–428.
  • Ouajai, S., Shanks, R. A. (2005). Morphology and Structure of Hemp Fibre after Bioscouring. Macromolecular Bioscience, 5 (2), 124–134.
  • Korte, S. (2006). Processing-Property Relationships of Hemp Fibre. Yüksek Lisans Tezi. Canterbury Üniversitesi, Yeni Zelanda.
  • Carrillo, F., Colom, X., Sunal, J.J., Saurina, J. (2004). Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-Type Fibres, European Polymer Journal, 40(9), 2229-2234.
  • Mwaikambo, L.Y., Ansell, M.P. (2002). Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization, Journal of Applied Polymer Science, 84, 2222-2234.
  • Kılınç, A.Ç., Atagür, M., Özdemir, O., Şen, I., Küçükdoğan, N., Sever, K., Seydibeyoğlu, Ö., Sarıkanat, M., Seki, Y. (2016). Manufacturing and Charcterization of vine stem reinforced high density polyethylene composites, Composites part B: Engineering, 91, 267-274.
  • Reddy, K.O., Uma Maheswari, C., Shukla, M., Song, J.I., Varada Rajulu, A. (2013). Tensile and Structural Characterization of Alkali Treated Borassus Fruit Fine Fibers, Composites Part B: Engineering, 44(1), 433-438.
  • Motaung, T.E., Anandjiwala, R.D. (2015). Effect of Alkali and Acid Treatment on Thermal Degradation kinetics of Sugar Cane Baggasse, Industrial Crops and Products, 74, 472-477.
  • Liu, Z. T., Yang, Y. N., Zhang, L. L., Liu, Z. W., Xiong, H. P. (2007). Study on The Cationic Modification and Dyeing of Ramie Fiber. Cellulose, 14 (4), 337–45.
  • Coseri, S., Nistor, G., Fras, L., Strnad, S., Harabagiu, V., Simionescu, B. C. (2009). Mild and Selective Oxidation of Cellulose Fibers in The Presence of Nhydroxyphthalimide. Biomacromolecules, 10 (8), 2294–2299.
  • Tan, H. S., Yu, Y. Z., Liu, L. L., Xing, L. X. (2010). Effect of Alkali Treatment of Coir Fiber on its Morphology and Performance of The Fiber/LDPE Bio-Composites, Advanced Materials Research, 139-141: 348-351.
  • Akintayo, C.O., Azeez, M.A., Beuerman, S., Akintayo, E.T. (2016). Spectroscopic, Mechanical, and Thermal Characterization of Native and Modified Nigerian Coir Fibers, Journal of Natural Fibers, 13(5), 520-531.
  • Alexander, B., Supriya, M. ve Thomas, L. (2005). Plant Fibers as Reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT, editors. Natural fibers, biopolymers, and their biocomposites. Boca Raton: CRC Press.
  • Prasad, N., Agarwal, V. K. Sinha, S. (2016) Thermal Degradation of Coir Fiber Reinforced Low-Density Polyethylene Composites, Science and Engineering of Composite Materials, DOI: https://doi.org/10.1515/secm-2015-0422.
  • Brebu, M., Vasile, C. (2009). Thermal Degradation of Lignin – A Review, Cellulose Chemistry and Technology, 44(9): 353-363.
  • Krevelen, D.W. (1975). Some Basic Aspects of Flame Resistance of Polymeric Materials, Polymer, 16: 615-620.
  • Liu, Y.L. (2001). Flame-Retardant Epoxy Resins from Novel Phosphorus-Containing Novolac, Polymer, 42(8), 3445-3454.

The Effects of Oxidative Modification on the Surface Properties, Thermal Degradation Behavior and StructuralCharacterization of Coir Fibers

Year 2018, Volume: 25 Issue: 111, 189 - 195, 01.10.2018

Abstract

In this study, the effect of sodium perborate tetra hydrate
that is a new alternative modification agent for coir fibers was investigated on
chemical, structural, thermal and morphological properties of the fibers. The
coir fibers were modified at different concentrations of sodium perborate tetra
hydrate aqueous solutions. The effects of the modifications on surface
chemistry, functional groups, thermal degradation behavior, crystalline
structure and surface properties were investigated by fourier transform
infrared spectroscopy, thermogravimetric analyses, x-ray difraction and
scanning electron microscopy, respectively. According to the results, the
modification processes decreased fiber surface hydrophilicity by increasing
carbon/oxygen ratio and also decreased the intensities of the absorption peaks
indicating hemicellulose and lignin. Cleaner fiber surface was achieved after
the modifications. However, crystalline structure of the fiber was not affected
significantly. The maximum degradation temperatures decreased with changes in
lignin content of the fibers. The char yield values of the fibers increased after
the modification which can possibly indicate enhancement in flame retardancy. 

References

  • Sain, M., Suhara, P., Law, S., Bouilloux, A. (2005). Interface Modification And Mechanical Properties Of Natural Fiber-Polyolefin Composite Products. Journal of Reinforced Plastics and Composites, 24 (2), 121-130.
  • Le, A.T., Gacoin, A., Li, A., Mai, T.H., Rebay, M., Delmas, Y., (2014). Experimental Investigation on The Mechanical Performance of Starch–Hemp Composite Materials, Construction and Building Materials, 61, 106-113.
  • Mu, B., Zheng, Y., Wang, A., (2015). Facile Fabrication of Polyaniline/Kapok Fiber Composites Via A Semidry Method And Application in Adsorption And Catalyst Support, Cellulose, 22(1), 615-624.
  • Bisaria, H., Gupta, M.K., Shandilya, P., Srivastava, R.K. (2015). Effect of Fibre Length on Mechanical Properties of Randomly Oriented Short Jute Fibre Reinforced Epoxy Composite, Materials Today: Proceedings, 2(4-5), 1193-1199.
  • Rout, J., Tripathy, S.S., Nayak, S.K., Misra, M., Mohanty, A.K. (2001). Scanning Electron Microscopy Study of Chemically Modified Coir Fibers, Journal of Applied Polymer Science, 79, 1169–1177.
  • Arrakhiz, F.Z., El Achaby, M., Kakou, A.C., Vaudreuil, S., Benmoussa, K., Bouhfid, R., Fassi-Fehri, O., Qaiss, A. (2012). Mechanical Properties of High Density Polyethylene Reinforced with Chemically Modified Coir Fibers: Impact of Chemical Treatments, Materials & Design, 37, 379-383.
  • Rout, J., Misra, M., Tripathy, S.S., Nayak, S.K., Mohanty, A.K. (2001). The Influence of Fibre Treatment on The Performance of Coir-Polyester Composites, Composites Science and Technology, 61(9), 1303-1310.
  • Prasad, S.V., Pavithran, C., Rohatgi, P.K. (1983). Alkali Treatment of Coir Fibres for Coir-Polyester Composites, Journal of Materials Science, 18(5), 1443-1454.
  • Azrin Hani, A.R., Hashim, M.S., Lim, T.Y., Mariatti, M., Ahmad, R., (2016). Impact Behaviour of Woven Coir-Epoxy Composite: Effects of Woven Density and Woven Fabric Treatment, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 230(1),
  • Geethamma, V.G., Thomas Mathew, K., Lakshminarayanan, R., Thomas, S. (1998). Composite of Short Coir Fibres and Natural Rubber: Effect of Chemical Modification, Loading and Orientation of Fibre, Polymer, 39(6-7), 1483-1491.
  • Kumar Saw, S., Sarkhel, G., Choudhury, A. (2011), Surface Modification of Coir Fibre Involving Oxidation of Lignins Followed by Reaction with Furfuryl Alcohol: Characterization And Stability, Applied Surface Science, 257(8), 3763-3769.
  • Mir, S.S., Hasan, S.M.N., Hossain, J., Hasan, M. (2012). Chemical Modification Effect on the Mechanical Properties of Coir Fiber, Engineering Journal, 16(2).
  • Sumi, S., Unnikrishnan, N., Mathew, L. (2016). Effect of Antimicrobial Agents on Modification of Coir, Procedia Technology, 24, 280-286.
  • Khan, J.A., Khan, M.A., Islam, R., Gafur, A. (2010). Mechanical, Thermal and Interfacial Properties of Jute Fabric-Reinforced Polypropylene Composites: Effect of Potassium Dichromate, Materials Sciences and Applications, 1, 350-357.
  • Wang, W.M., Cai, Z.S., Yu, J.Y., Xia, Z.P. (2009). Changes in Composition, Structure, and Properties of Jute Fibers after Chemical Treatments, Fibers and Polymers, 10(6), 776-780.
  • Khan, M.A., Hassan, M.M., Taslima, R., Mustafa, A.I. (2006). Role of Pretreatment with Potassium Permanganate and Urea on Mechanical and Degradable Properties of Photocured Coir (Cocos Nucifera) Fiber with 1,6‐Hexanediol Diacrylate, Journal of Applied Polymer Science, 100(6), 4361-4368.
  • Bulut, Y., Akşit, A. (2013). A Comparative Study on Chemical Treatment of Jute Fiber: Potassium Dichromate, Potassium Permanganate and Sodium Perborate Trihydrate, Cellulose, 20(6), 3155-3164.
  • Seki, Y., Kılınç, A.Ç., Dalmış, R., Atagür, M., Köktaş, S., Göktaş, A.A., Çelik, E., Seydibeyoğlu, Ö., Önay, A.B. (2018). Surface Modification of New Cellulose Fiber Extracted From Conium Maculatum Plant: A Comparative Study, Cellulose, 25(6), 3267-3280.
  • Seki, Y., Akşit, A., Erdoğan, Ü.H. (2017). Construction of Polypropylene Composite Multifilaments Filled with Sodium Perborate Trihydrate-Treated Jute Microparticles, Science and Engineering of Composite Materials, 24(2).
  • Segal, L., Creely, J. J., Martin Jr, A. E., Conrad, C. M. (1959). An Empirical Method for Estimating The Degree of Crystallinity of Native Cellulose Using The Xray Diffractometer. Textile Research Journal, 29 (10), 786-794.
  • Seki, Y., Sarıkanat, M., Sever, K., Durmuşkahya, C. (2013). Extraction and Properties of Ferula Communis (Chakshir) Fibers as Novel Reinforcement for Composites Materials. Composites Part B: Engineering, 44 (1), 517–523.
  • Morshed, M. M., Alam, M. M., Daniels, S. M. (2010). Plasma treatment of Natural Jute Fibre by Rie 80 Plus Plasma Tool. Plasma Science And Technology, 12 (3), 325-329.
  • Sudha, S., Thilagavathi, G. (2016). Effect of Alkali Treatment on Mechanical Properties of Woven Jute Composites, Journal of Textile Institute, 107(6): 691-701.
  • Cai, M., Takagi, H., Nakagaito, A.N., Katoh, M., Ueki, T., Waterhouse, G.I.N., Li, Y. (2015). Influence of Alkali Treatment on Internal Microstructure and Tensile Properties of Abaca Fibers, Industrial Crops and Products, 65, 27-35.
  • Spiridon, I., Teaca, C. A., Bodirlau, R. (2011). Structural Changes Evidenced by Ftır Spectroscopy in Cellulosic Materials After Pretreatment with Ionic Liquid and Enzymatic Hydrolysis. Bioresources, 6 (1), 400-413.
  • Oh, S. Y., Yoo, D. I., Shin, Y., Seo, G. (2005). FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydrate Research, 340 (3), 417–428.
  • Ouajai, S., Shanks, R. A. (2005). Morphology and Structure of Hemp Fibre after Bioscouring. Macromolecular Bioscience, 5 (2), 124–134.
  • Korte, S. (2006). Processing-Property Relationships of Hemp Fibre. Yüksek Lisans Tezi. Canterbury Üniversitesi, Yeni Zelanda.
  • Carrillo, F., Colom, X., Sunal, J.J., Saurina, J. (2004). Structural FTIR Analysis and Thermal Characterisation of Lyocell and Viscose-Type Fibres, European Polymer Journal, 40(9), 2229-2234.
  • Mwaikambo, L.Y., Ansell, M.P. (2002). Chemical Modification of Hemp, Sisal, Jute, and Kapok Fibers by Alkalization, Journal of Applied Polymer Science, 84, 2222-2234.
  • Kılınç, A.Ç., Atagür, M., Özdemir, O., Şen, I., Küçükdoğan, N., Sever, K., Seydibeyoğlu, Ö., Sarıkanat, M., Seki, Y. (2016). Manufacturing and Charcterization of vine stem reinforced high density polyethylene composites, Composites part B: Engineering, 91, 267-274.
  • Reddy, K.O., Uma Maheswari, C., Shukla, M., Song, J.I., Varada Rajulu, A. (2013). Tensile and Structural Characterization of Alkali Treated Borassus Fruit Fine Fibers, Composites Part B: Engineering, 44(1), 433-438.
  • Motaung, T.E., Anandjiwala, R.D. (2015). Effect of Alkali and Acid Treatment on Thermal Degradation kinetics of Sugar Cane Baggasse, Industrial Crops and Products, 74, 472-477.
  • Liu, Z. T., Yang, Y. N., Zhang, L. L., Liu, Z. W., Xiong, H. P. (2007). Study on The Cationic Modification and Dyeing of Ramie Fiber. Cellulose, 14 (4), 337–45.
  • Coseri, S., Nistor, G., Fras, L., Strnad, S., Harabagiu, V., Simionescu, B. C. (2009). Mild and Selective Oxidation of Cellulose Fibers in The Presence of Nhydroxyphthalimide. Biomacromolecules, 10 (8), 2294–2299.
  • Tan, H. S., Yu, Y. Z., Liu, L. L., Xing, L. X. (2010). Effect of Alkali Treatment of Coir Fiber on its Morphology and Performance of The Fiber/LDPE Bio-Composites, Advanced Materials Research, 139-141: 348-351.
  • Akintayo, C.O., Azeez, M.A., Beuerman, S., Akintayo, E.T. (2016). Spectroscopic, Mechanical, and Thermal Characterization of Native and Modified Nigerian Coir Fibers, Journal of Natural Fibers, 13(5), 520-531.
  • Alexander, B., Supriya, M. ve Thomas, L. (2005). Plant Fibers as Reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT, editors. Natural fibers, biopolymers, and their biocomposites. Boca Raton: CRC Press.
  • Prasad, N., Agarwal, V. K. Sinha, S. (2016) Thermal Degradation of Coir Fiber Reinforced Low-Density Polyethylene Composites, Science and Engineering of Composite Materials, DOI: https://doi.org/10.1515/secm-2015-0422.
  • Brebu, M., Vasile, C. (2009). Thermal Degradation of Lignin – A Review, Cellulose Chemistry and Technology, 44(9): 353-363.
  • Krevelen, D.W. (1975). Some Basic Aspects of Flame Resistance of Polymeric Materials, Polymer, 16: 615-620.
  • Liu, Y.L. (2001). Flame-Retardant Epoxy Resins from Novel Phosphorus-Containing Novolac, Polymer, 42(8), 3445-3454.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Yasemin Seki This is me 0000-0002-9267-922X

Publication Date October 1, 2018
Published in Issue Year 2018 Volume: 25 Issue: 111

Cite

APA Seki, Y. (2018). Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi. Tekstil Ve Mühendis, 25(111), 189-195.
AMA Seki Y. Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi. Tekstil ve Mühendis. October 2018;25(111):189-195.
Chicago Seki, Yasemin. “Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına Ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi”. Tekstil Ve Mühendis 25, no. 111 (October 2018): 189-95.
EndNote Seki Y (October 1, 2018) Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi. Tekstil ve Mühendis 25 111 189–195.
IEEE Y. Seki, “Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi”, Tekstil ve Mühendis, vol. 25, no. 111, pp. 189–195, 2018.
ISNAD Seki, Yasemin. “Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına Ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi”. Tekstil ve Mühendis 25/111 (October 2018), 189-195.
JAMA Seki Y. Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi. Tekstil ve Mühendis. 2018;25:189–195.
MLA Seki, Yasemin. “Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına Ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi”. Tekstil Ve Mühendis, vol. 25, no. 111, 2018, pp. 189-95.
Vancouver Seki Y. Hindistan Cevizi Liflerinin Yüzey Özelliklerine, Termal Bozunma Davranışlarına ve Yapısal Karakterizasyonuna Oksidatif Modifikasyonun Etkisi. Tekstil ve Mühendis. 2018;25(111):189-95.