Review
BibTex RIS Cite

Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications

Year 2024, Volume: 31 Issue: 133, 49 - 62, 31.03.2024
https://doi.org/10.7216/teksmuh.1342520

Abstract

As wearable electronic devices become increasingly integrated into our daily routines, there is a growing demand for soft, flexible, and comfortable devices that can seamlessly deliver electronic functionalities. Electronic textiles (e-textiles) combine the electronic capabilities of devices such as sensors, actuators, energy storage, and communication tools with the comfort and flexibility inherent in traditional textiles. The rising interest in E-textile and sensor applications has thrust the field of printed electronics (PE) into the spotlight. Printed electronics is a rapidly expanding technology that allows the construction of electronic devices on affordable, flexible substrates, including paper and textiles. This is achieved through printing techniques, such as screen printing, 3D printing, gravure printing, offset printing, flexography, and inkjet printing, which are traditionally used in various industries like graphic arts, textiles, and polymers. This paper provides a comprehensive overview of printable conductive inks, with a focus on their role in designing textile-based wearable conductive devices for E-textile applications. Within this scope, it was examined the properties of conductive inks, presented the various printing methods used to fabricate wearable textile materials for potential use in wearable textile devices, and analyzed their performance characteristics. Lastly, it was addressed the key challenges faced in this field and identify future research directions. The aim of this paper is to contribute to the advancement of cost-effective functional conductive inks and formulations, promoting their integration into E-textile applications.

References

  • Barman, J., Tirkey, A., Batra, S., Paul, A. A., Panda, K., Deka, R., Babu, P. J., (2022), The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications, Materials Today Communications, 32, 104055.
  • Si, P., Zhao, B., (2021), Water-based polyurethanes for sustainable advanced manufacture, The Canadian Journal of Chemical Engineering, 99, 9, 1851-1869.
  • Cho, S., Chang, T., Yu, T., (2022), Smart Electronic Textiles for Wearable Sensing and Display, Biosensors, 12, 222, 1-30.
  • Hong, H., Hu, J., Yan, X., (2019), UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags, ACS Applied Materials & Interfaces, 11, 30, 27318-27326.
  • Du, K., Lin, R., Yin, L., Ho, J. S., Wang, J., Lim, C.T., (2022), Electronic textiles for energy, sensing, and communication, iScience, 25, 5, 104174.
  • Reazuddin R. Md., Mikucioniene, D., (2021), Progress in Flexible Electronic Textile for Heating Application A Critical Review, Materials (Basel), 14, 21, 6540.
  • Zhu H. W., Gao, H. L., Zhao, H. Y., Ge, J., Hu, B. C., Huang, J., Yu, S. H., (2020), Printable elastic silver nanowire-based conductor for washable electronic textiles, Nano Research, 13, 10, 2879-2884.
  • Chen, G., Xiao, X., Zhao, X., Tat, T., Bick, M., Chen, J., (2022), Electronic Textiles for Wearable Point-of-Care Systems, Chemical Reviews, 122, 3, 3259-3291,
  • Kazani, I., Hertleer, C., De Mey, G., Schwarz, A., Guxho, G., Van Langenhove, L., (2012), Electrical conductive textiles obtained by screen printing, Fibres & Textiles in Eastern Europe, 90, 1, 57-63.
  • Chatterjee, K., Tabor, J., Ghosh, T. K., (2019), Electrically Conductive Coatings for Fiber-Based E-Textiles, Fibers, 7, 51, 1-46. Tseghai, G. B., Mengistie, D. A., Malengier, B., Fante, K. A., Langenhove, L. V., (2020), PEDOT:PSS Based Conductive Textiles and Their Applications, Sensors, 20, 7, 1881.
  • Sinha, A., Dhanjai, Stavrakis, A. K., Stojanović, G. M., (2022), Textile-based electrochemical sensors and their applications, Talanta, 244, 123425.
  • Tyler, D., Wood, J., Sabir, T., McDonnell, C., Sayem, A. S. M., Whittaker, N., (2019), Wearable electronic textiles, Textile Progress, 51, 4, 299-384.
  • Meng, K., Zhao, S., Zhou, Y., Wu, Y., Zhang, S., He, Q., Wang, X., Zhou, Z., Fan, W., Tan, X., Yang, J., Chen, J., (2020), A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care, Matter, 2, 4, 896-907.
  • Htwe, Y. Z. N., Mariatti, M., (2022), Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges, Journal of Science: Advanced Materials and Devices, 7, 2, 100435.
  • Chen, G., Li, Y., Bick, M., Chen, J., (2020), Smart Textiles for Electricity Generation, Chemical Reviews, 120, 8, 3668-3720. Agcayazi, T., Chatterjee, K., Bozkurt, A., Ghosh, T. K., (2018), Flexible Interconnects for Electronic Textiles, Advanced Materials Technologies, 3, 10, 1700277.
  • Xu, J., Guo, H., Ding, H., Wang, Q., Tang, Z., Li, Z., Sun, G., (2021), Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics, ACS Applied Materials & Interfaces, 13, 6, 7443-7452.
  • Boumegnane, A., Nadi, A., Cherkaoui, O., Tahiri, M., (2022), Inkjet printing of silver conductive ink on textiles for wearable electronic applications, Materials Today Proceedings, 58, 4, 1235-1241.
  • Jia, L. C., Zhou, C. G., Sun W. J., Xu, L., Yan, D. X., Li, Z. M., (2020), Water-based conductive ink for highly efficient electromagnetic interference shielding coating, Chemical Engineering Journal, 384, 123368.
  • Franco, M., Alves, R., Perinka, N., Tubio, C., Costa, P., Lanceros-Mendéz, S., (2020), Water-Based Graphene Inks for All-Printed Temperature and Deformation Sensors, ACS Applied Electronic Materials, 2, 9, 2857-2867.
  • Zhang, F., Liu, W., Wang, S., Jiang, C., Xie, Y., Yang, M., Shi, H., (2019), A novel and feasible approach for polymer amine modified graphene oxide to improve water resistance, thermal, and mechanical ability of waterborne polyurethane, Applied Surface Science, 491, 301-312.
  • Saidina, D. S., Eawwiboonthanakit, N., Mariatti, M., Fontana, S., Hérold, C., (2019), Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics, Journal of Electronic Materials, 48, 6, 428-3450.
  • Strankowski, M., Włodarczyk, D., Piszczyk, Ł., Strankowska, J., (2016), Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide, International Journal of Polymer Science, 2016, 8070327.
  • Aïssa, B., Memon, N. K., Ali, A., Khraisheh, M. K., (2015), Recent progress in the growth and applications of graphene as a smart material: A review, Frontiers in Materials, 2, 58.
  • Mehmood A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Siddiqui, M. T. H., Baloch, H. A., Nizamuddin, S., Mazari, S., (2020), Graphene based nanomaterials for strain sensor application - a review, Journal of Enviromental Chemical Engineering, 8, 3, 103743.
  • Afroj, S., Tan, S., Abdelkader, A. M., Novoselov, K. S., Karim, N., (2020), Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications, Advanced Functional Materials, 30, 23, 2000293.
  • Ponnamma, D., Yin, Y., Salim, N., Parameswaranpillai, J., Thomas, S., Hameed, N., (2021), Recent progress and multifunctional applications of 3D printed graphene nanocomposites, Composites Part B: Engineering, 204, 108493.
  • Mirabedini, A., Ang, A., Nikzad, M., Fox, B., Lau, K. T., Hameed, N., (2020), Evolving Strategies for Producing Multiscale Graphene-Enhanced Fiber-Reinforced Polymer Composites for Smart Structural Applications, Advanced Science, 7, 11, 1903501.
  • Camargo J. R., Orzari, L. O., Araujo, D. A. G., Oliveira, P. R., Kalinke, C., Rocha, D. P., Santos, A. L., Takeuchi, R. M., Munoz, R. A. A., Bonacin, J. A., Janegitz, B. C., (2021), Development of conductive inks for electrochemical sensors and biosensors, Microchemical Journal, 164, 105998.
  • Lawal, A. T., (2019), Graphene-based nano composites and their applications. A review, Biosensensors and Bioelectronics, 141, 111384.
  • Lei, L., Xia, Z., Zhang, L., Zhang, Y., Zhong, L., (2016), Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions, Progress in Organic Coatings, 97, 19-27.
  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., Viana, J. C., (2019), Chemistry of solid metal-based inks and pastes for printed electronics-A review, Applied Materials Today, 15, 416-430.
  • Xia, P., Liu, P., Wu, S., Zhang, Q., Wang, P., Hu, R., Xing, K., Liu, C., Song, A., Yang, X., Huang, Y., (2022), Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics, Composites Science and Technology, 221, 109355.
  • Ahmadi Y., Ahmad, S., (2020), Recent Progress in the Synthesis and Property Enhancement of Waterborne Polyurethane Nanocomposites: Promising and Versatile Macromolecules for Advanced Applications, Polymer Reviews, 60, 2, 226-266.
  • Zhang, W., Wei, L., Ma, Z., Fan, Q., Ma, J., (2021), Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding, Carbon, 177, 412-426.
  • Larraza, I., Vadillo, J., Correas, T. C., Tejado, A., Olza, S., Rodriquez, C. P., Arbelaiz, A., Eceiza, A., (2021), Cellulose and graphene based polyurethane nanocomposites for fdm 3d printing: Filament properties and printability, Polymers, 13, 5, 839.
  • Wan, T., Chen, D., (2018), Mechanical enhancement of self-healing waterborne polyurethane by graphene oxide, Progress in Organic Coatings, 121, 73-79.
  • Wan, T., Chen, D., (2019), In Situ Reduction of Graphene Oxide in Waterborne Polyurethane Matrix and the Healing Behavior of Nanocomposites by Multiple Ways, Journal of Polymer Science Part B, 57, 4, 202-209.
  • Cunha E., Paiva, M. C., (2019), Composite films of waterborne polyurethane and few-layer graphene-enhancing barrier, mechanical, and electrical properties, Journal of Composite Science, 3, 2, 9-11.
  • Rahman, M. M., Zahir, H., Do Kim, H., (2016), Synthesis and Properties of Waterborne Polyurethane/Hydroxyapatite Chemical Hybrids, Polymers, 8, 318.
  • Das, A., Mahanwar, P., (2020), A brief discussion on advances in polyurethane applications, Advanced Industrial and Engineering Polymer Research, 3, 3, 93-101.
  • Kausar, A., (2018), Polyurethane nanocomposite coatings: state of the art and perspectives, Polymer International, 67, 11, 1470-1477.
  • Wang, Y., Zhou, Z., Zhang, J., Tang, J., Wu, P., Wang, K., Zhao, Y., (2020), Properties of Graphene-Thermoplastic Polyurethane Flexible Conductive Film, Coatings, 10, 4, 400.
  • Liman, Md L. R., Islam, M. T., Hossain, Md M., (2022), Mapping the Progress in Flexible Electrodes for Wearable Electronic Textiles: Materials, Durability, and Applications, Advanced Electronic Materials, 8, 2100578.
  • Islam, R., Khair, N., Ahmed, D. M., Shahariar, H., (2019), Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications, Materials Today Communications, 19, 32-38.
  • Chen, Q., Du, X., Chen, G., (2020), A green method of reducing silver nanoparticles based on bagasse pulp extract for preparing ultraviolet (UV)-curable conductive ink, Journal of Vinyl and Additive Technology, 26, 1, 90-96.
  • Song, C., Meng, X., Chen, H., Liu, Z., Zhan, Q., Sun, Y., Lu, W., Dai, Y., (2021), Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding, Composites Communications, 24, 100632.
  • Mohan, V. B., Lau, K. tak., Hui, D., Bhattacharyya, D., (2018), Graphene-based materials and their composites: A review on production, applications and product limitations, Composites Part B: Engineering, 142, 200-220.
  • Litao Huang, Y. Z., Chen, J., Xu, Y., Hu D., Cui, X., Shi, D., (2021), Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles, Applied Surface Science, 548, 149268.
  • Vidhya, C. M., Maithani, Y., Singh, J. P., (2023), Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review, Biosensors, 13, 7, 679.
  • Li, J. W., Huang, C. Y., Zhou, B. H., Hsu, M. F., Chung, S. F., Lee, W. C., Tsai, W. Y., Chiu, C. W., (2022), High stretchability and conductive stability of flexible hybrid electronic materials for smart clothing, Chemical Engineering Journal Advances, 12, 100380.
  • Taherian, R., (2016), Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites, Composites Science and Technology, 123, 2, 17-31.
  • Alemour, B., Yaacob, M. H., Lim, H. N., Hassan, M. R., (2018), Review of electrical properties of graphene conductive composites, International Journal of Nanoelectronics and Materials, 11, 4, 371-398.
  • Volker L., Gehrke, I., (2019), Introduction to Smart Tetiles: Applications and Markets, in Smart Textiles Production: Overview of Materials, Sensor and Production Technologies for Industrial Smart Textiles, MDPI, Basel, Switzerland.
  • Wang Z., Ren, J., Liu, R., Sun, X., Huang, D., Xu, W., Jiang, J., Ma, K., Liu, Y., (2020), Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding, Composites Part A: Applied Science and Manufacturing, 136, 105957.
  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., Viana, J. C., (2019), Chemistry of solid metal-based inks and pastes for printed electronics - A review, Applied Materials Today, 15, 416-430.
  • Lim, T., Kim, H. J., Zhang, H., Lee S., (2021), Screen-printed conductive pattern on spandex for stretchable electronic textiles, Smart Materials and Structures, 30, 7, 075006.
  • Paul, G., Torah, R., Beeby, S., Tudor, J., (2014), The development of screen printed conductive networks on textiles for biopotential monitoring applications, Sensors Actuators, A Physical, 206, 35-41.
  • Yi, Y. P. Q., Li, Y., (2019), Inkjet Conductive Inks for Printing Textile Materials and Applications, Journal of Fiber Bioengineering and Informatics, 12, 1, 11-24.
  • Karim, N., Afroj, S., Malandraki, A., Butterworth, S., Beach, C., Rigout, M., Novoselov, K. S., Casson, A. J., Yeates, S. G., (2017), All inkjet-printed graphene-based conductive patterns for wearable e-textile applications, Journal of Materials Chemistry C, 5, 44, 11640-1648.
  • Khan, A., Winder, M., Hossain, G., (2022), Modified graphene-based nanocomposite material for smart textile biosensor to detect lactate from human sweat, Biosensors and Bioelectronics, 10, 10103.
  • Hu, X., Tian, M., Qu, L., Zhu, S., (2015), Multifunctional cotton fabrics with graphene polyurethane coatings with far-infrared emission, electrical conductivity, and ultravioletblocking properties, Carbon, 95, 625-633.
  • Yan, Q., Xin, B., Chen, Z., Liu, Y., (2021), Preparation and characterization of flexible Polypyrrole/Zirconium carbide/Polyurethane hybrid membranes with enhanced electro-photo-thermal performance, Materials Today Communications, 29, 102877.
  • Larraza, I., Lerma, B. A., Gonzalez, K., Gabilondo, N., Jimenez, R. P., Corcuera, M. A., Arbelaiz, A., Eceiza, A., (2020), Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity, Express Polymer Letters, 14, 11, 1018-1033.
  • Zhang, S., Zhang, D., Li, Z., Yang, Y., Sun, M., Kong, Z., Wang, Y., Bai, H., Dong, W., (2018), Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites, Journal of Coatings Technology and Research, 15, 6, 1333-1341.
  • Ying, W. B., Yu, Z., Kim, D. H., Lee, K. J. Hu, H., Liu, Y., Kong, Z., Wang, K., Shang, J., Zhang, R., Zhu, J., Li, R. W., (2020), Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin, ACS Applied Materials & Interfaces, 12, 9, 11072-11083.
  • Li, Q., Wang, Y., Jiang, S., Li, T., Ding, X., Tao, X., Wang, X., (2020), Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors, Materials and Design, 188, 108451.
  • Zhang Y., Ren, H., Chen, H., Chen, Q., Jin, L., Peng, W., Xin, S., Bai, Y., (2021), Cotton Fabrics Decorated with Conductive Graphene Nanosheet Inks for Flexible Wearable Heaters and Strain Sensors, ACS Applied Nano Materials, 4, 9, 9709-9720.
  • Boumegnane, A., Nadi, A., Cherkaoui, O., Tahiri, M., (2022), Inkjet printing of silver conductive ink on textiles for wearable electronic applications, Material Today Proceedings, 58, 4, 1235-241.
  • Xia, P., Liu, P., Shunge, W., Zhang, Q., Wang, P., Hu, R., Xing, K., Liu, C., Song, A., Yang, X., Huang, Y., (2022), Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics, Composites Science and Technology, 221, 109355.
  • Jiang, L., Hong, H., Hu, J., (2021), Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation, Textile Research Journal, 91, 21–22, 2487-2499.
  • Van Hazendonk, L. S., Pinto, A. M., Arapov, K. P., Pillai, N., Beurskens, M. R. C., Teunissen, J. P., Sneck, A., Smolander, M., Rentrop, C. H. A., Bouten, P. C. P., Friedrich, H., (2022), Printed Stretchable Graphene Conductors for Wearable Technology, Chemistry of Materials, 34, 17, 8031-8042.
  • Joshi, S. R., Kumar, S., Kim, S., 2023, Ecofriendly Polymer-Graphene-Based Conductive Ink for Multifunctional Printed Electronics, Advanced Materials Technologies, 8, 11, 2201917.
  • Jain, K., Wang, Z., Garma, L. D., Engel, E., Çiftçi, G. C., Fager, C., Larsson, Per A., Wagberg, L., (2023), 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics, Applied Materials Today, 30, 101703.
  • Wu, J.-X., Chu, C.-P., Liao, Y.-C., (2023), Solderable conductive paste for electronic textiles, J. Taiwan Inst. Chem. Eng., 142, 104616.
  • Janda, M., Pretl, S., Radouchova, M., Michal, D., Lotfi, S., Reboun, J., (2023), Realization of Stretchable Conductive Traces on Textile Substrate Utilizing Direct Ink Writing, Institute of Electrical and Electronics Engineers, 1-5.
  • Krysiak, Z. J., Abdolmaleki, H., Agarwala, S., Stachewicz, U., (2022), Inkjet Printing of Electrodes on Electrospun Micro- and Nanofiber Hydrophobic Membranes for Flexible and Smart Textile Applications, Polymers, 14, 22, 5043.
  • Farraj, Y., Kanner, A., Magdassi, S., (2023), E-Textile by Printing an All-through Penetrating Copper Complex Ink, ACS Applied Materials & Interfaces, 15, 17, 21651-21658.
  • Boumeganane, A., Nadi, A., Cherkaoui, O., Tahiri, M., (2022), Inkjet printing of silver conductive ink on textiles for wearable electronic applications, Materials Today Proceeding, 58, 4, 1235-1241.
  • Stempien, Z., Khalid, M., Kozicki, M., Kozanecki, M., Varela, H., Filipczak, P., Pawlak, R., Korzeniewska, E., Sqsiadek, E., (2019), In-situ deposition of reduced graphene oxide layers on textile surfaces by the reactive inkjet printing technique and their use in supercapacitor applications, Synthetic Metals, 256, 116144.

Giyilebilir Tekstil Uygulamaları için Esnek ve Gerilebilen Basılabilir İletken Mürekkepler

Year 2024, Volume: 31 Issue: 133, 49 - 62, 31.03.2024
https://doi.org/10.7216/teksmuh.1342520

Abstract

Giyilebilir elektronik cihazlar günlük rutinlerimize giderek daha fazla entegre hale geldikçe, elektronik işlevleri kusursuz bir şekilde sunabilen yumuşak, esnek ve konforlu cihazlara olan talep de artmaktadır. Elektronik tekstiller (e-tekstil), sensörler, aktüatörler, enerji depolama ve iletişim araçları gibi cihazların elektronik yeteneklerini geleneksel tekstillerin doğasında bulunan konfor ve esneklikle birleştirir. E-tekstil ve sensör uygulamalarına artan ilgi, baskılı elektronik alanını ilgi odağı haline getirdi. Baskılı elektronik, elektronik cihazların kâğıt ve tekstil dahil uygun fiyatlı, esnek yüzeyler üzerinde oluşturulmasına olanak tanıyan, hızla genişleyen bir teknolojidir. Bu, grafik sanatlar, tekstil ve polimerler gibi çeşitli endüstrilerde geleneksel olarak kullanılan serigrafi, 3D baskı, gravür baskı, ofset baskı, fleksografi ve inkjet baskı gibi baskı teknikleri ile elde edilir. Bu makale, E-tekstil uygulamaları için tekstil bazlı giyilebilir iletken cihazların tasarlanmasındaki rollerine odaklanarak, yazdırılabilir iletken mürekkeplere kapsamlı bir genel bakış sunmaktadır. Bu kapsamda iletken mürekkeplerin özellikleri incelenmiş, giyilebilir tekstil cihazlarında potansiyel kullanım için giyilebilir tekstil malzemelerinin üretilmesinde kullanılan çeşitli baskı yöntemleri sunulmuş ve performans özellikleri analiz edilmiştir. Son olarak bu alanda karşılaşılan temel zorluklar ele alındı ve gelecekteki araştırma yönleri belirlendi. Bu makalenin amacı, uygun maliyetli fonksiyonel iletken mürekkeplerin ve formülasyonların geliştirilmesine katkıda bulunarak bunların E-tekstil uygulamalarına entegrasyonunu teşvik etmektir.

References

  • Barman, J., Tirkey, A., Batra, S., Paul, A. A., Panda, K., Deka, R., Babu, P. J., (2022), The role of nanotechnology based wearable electronic textiles in biomedical and healthcare applications, Materials Today Communications, 32, 104055.
  • Si, P., Zhao, B., (2021), Water-based polyurethanes for sustainable advanced manufacture, The Canadian Journal of Chemical Engineering, 99, 9, 1851-1869.
  • Cho, S., Chang, T., Yu, T., (2022), Smart Electronic Textiles for Wearable Sensing and Display, Biosensors, 12, 222, 1-30.
  • Hong, H., Hu, J., Yan, X., (2019), UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags, ACS Applied Materials & Interfaces, 11, 30, 27318-27326.
  • Du, K., Lin, R., Yin, L., Ho, J. S., Wang, J., Lim, C.T., (2022), Electronic textiles for energy, sensing, and communication, iScience, 25, 5, 104174.
  • Reazuddin R. Md., Mikucioniene, D., (2021), Progress in Flexible Electronic Textile for Heating Application A Critical Review, Materials (Basel), 14, 21, 6540.
  • Zhu H. W., Gao, H. L., Zhao, H. Y., Ge, J., Hu, B. C., Huang, J., Yu, S. H., (2020), Printable elastic silver nanowire-based conductor for washable electronic textiles, Nano Research, 13, 10, 2879-2884.
  • Chen, G., Xiao, X., Zhao, X., Tat, T., Bick, M., Chen, J., (2022), Electronic Textiles for Wearable Point-of-Care Systems, Chemical Reviews, 122, 3, 3259-3291,
  • Kazani, I., Hertleer, C., De Mey, G., Schwarz, A., Guxho, G., Van Langenhove, L., (2012), Electrical conductive textiles obtained by screen printing, Fibres & Textiles in Eastern Europe, 90, 1, 57-63.
  • Chatterjee, K., Tabor, J., Ghosh, T. K., (2019), Electrically Conductive Coatings for Fiber-Based E-Textiles, Fibers, 7, 51, 1-46. Tseghai, G. B., Mengistie, D. A., Malengier, B., Fante, K. A., Langenhove, L. V., (2020), PEDOT:PSS Based Conductive Textiles and Their Applications, Sensors, 20, 7, 1881.
  • Sinha, A., Dhanjai, Stavrakis, A. K., Stojanović, G. M., (2022), Textile-based electrochemical sensors and their applications, Talanta, 244, 123425.
  • Tyler, D., Wood, J., Sabir, T., McDonnell, C., Sayem, A. S. M., Whittaker, N., (2019), Wearable electronic textiles, Textile Progress, 51, 4, 299-384.
  • Meng, K., Zhao, S., Zhou, Y., Wu, Y., Zhang, S., He, Q., Wang, X., Zhou, Z., Fan, W., Tan, X., Yang, J., Chen, J., (2020), A Wireless Textile Based Sensor System for Self-Powered Personalized Health Care, Matter, 2, 4, 896-907.
  • Htwe, Y. Z. N., Mariatti, M., (2022), Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges, Journal of Science: Advanced Materials and Devices, 7, 2, 100435.
  • Chen, G., Li, Y., Bick, M., Chen, J., (2020), Smart Textiles for Electricity Generation, Chemical Reviews, 120, 8, 3668-3720. Agcayazi, T., Chatterjee, K., Bozkurt, A., Ghosh, T. K., (2018), Flexible Interconnects for Electronic Textiles, Advanced Materials Technologies, 3, 10, 1700277.
  • Xu, J., Guo, H., Ding, H., Wang, Q., Tang, Z., Li, Z., Sun, G., (2021), Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics, ACS Applied Materials & Interfaces, 13, 6, 7443-7452.
  • Boumegnane, A., Nadi, A., Cherkaoui, O., Tahiri, M., (2022), Inkjet printing of silver conductive ink on textiles for wearable electronic applications, Materials Today Proceedings, 58, 4, 1235-1241.
  • Jia, L. C., Zhou, C. G., Sun W. J., Xu, L., Yan, D. X., Li, Z. M., (2020), Water-based conductive ink for highly efficient electromagnetic interference shielding coating, Chemical Engineering Journal, 384, 123368.
  • Franco, M., Alves, R., Perinka, N., Tubio, C., Costa, P., Lanceros-Mendéz, S., (2020), Water-Based Graphene Inks for All-Printed Temperature and Deformation Sensors, ACS Applied Electronic Materials, 2, 9, 2857-2867.
  • Zhang, F., Liu, W., Wang, S., Jiang, C., Xie, Y., Yang, M., Shi, H., (2019), A novel and feasible approach for polymer amine modified graphene oxide to improve water resistance, thermal, and mechanical ability of waterborne polyurethane, Applied Surface Science, 491, 301-312.
  • Saidina, D. S., Eawwiboonthanakit, N., Mariatti, M., Fontana, S., Hérold, C., (2019), Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics, Journal of Electronic Materials, 48, 6, 428-3450.
  • Strankowski, M., Włodarczyk, D., Piszczyk, Ł., Strankowska, J., (2016), Thermal and Mechanical Properties of Microporous Polyurethanes Modified with Reduced Graphene Oxide, International Journal of Polymer Science, 2016, 8070327.
  • Aïssa, B., Memon, N. K., Ali, A., Khraisheh, M. K., (2015), Recent progress in the growth and applications of graphene as a smart material: A review, Frontiers in Materials, 2, 58.
  • Mehmood A., Mubarak, N. M., Khalid, M., Walvekar, R., Abdullah, E. C., Siddiqui, M. T. H., Baloch, H. A., Nizamuddin, S., Mazari, S., (2020), Graphene based nanomaterials for strain sensor application - a review, Journal of Enviromental Chemical Engineering, 8, 3, 103743.
  • Afroj, S., Tan, S., Abdelkader, A. M., Novoselov, K. S., Karim, N., (2020), Highly Conductive, Scalable, and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applications, Advanced Functional Materials, 30, 23, 2000293.
  • Ponnamma, D., Yin, Y., Salim, N., Parameswaranpillai, J., Thomas, S., Hameed, N., (2021), Recent progress and multifunctional applications of 3D printed graphene nanocomposites, Composites Part B: Engineering, 204, 108493.
  • Mirabedini, A., Ang, A., Nikzad, M., Fox, B., Lau, K. T., Hameed, N., (2020), Evolving Strategies for Producing Multiscale Graphene-Enhanced Fiber-Reinforced Polymer Composites for Smart Structural Applications, Advanced Science, 7, 11, 1903501.
  • Camargo J. R., Orzari, L. O., Araujo, D. A. G., Oliveira, P. R., Kalinke, C., Rocha, D. P., Santos, A. L., Takeuchi, R. M., Munoz, R. A. A., Bonacin, J. A., Janegitz, B. C., (2021), Development of conductive inks for electrochemical sensors and biosensors, Microchemical Journal, 164, 105998.
  • Lawal, A. T., (2019), Graphene-based nano composites and their applications. A review, Biosensensors and Bioelectronics, 141, 111384.
  • Lei, L., Xia, Z., Zhang, L., Zhang, Y., Zhong, L., (2016), Preparation and properties of amino-functional reduced graphene oxide/waterborne polyurethane hybrid emulsions, Progress in Organic Coatings, 97, 19-27.
  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., Viana, J. C., (2019), Chemistry of solid metal-based inks and pastes for printed electronics-A review, Applied Materials Today, 15, 416-430.
  • Xia, P., Liu, P., Wu, S., Zhang, Q., Wang, P., Hu, R., Xing, K., Liu, C., Song, A., Yang, X., Huang, Y., (2022), Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics, Composites Science and Technology, 221, 109355.
  • Ahmadi Y., Ahmad, S., (2020), Recent Progress in the Synthesis and Property Enhancement of Waterborne Polyurethane Nanocomposites: Promising and Versatile Macromolecules for Advanced Applications, Polymer Reviews, 60, 2, 226-266.
  • Zhang, W., Wei, L., Ma, Z., Fan, Q., Ma, J., (2021), Advances in waterborne polymer/carbon material composites for electromagnetic interference shielding, Carbon, 177, 412-426.
  • Larraza, I., Vadillo, J., Correas, T. C., Tejado, A., Olza, S., Rodriquez, C. P., Arbelaiz, A., Eceiza, A., (2021), Cellulose and graphene based polyurethane nanocomposites for fdm 3d printing: Filament properties and printability, Polymers, 13, 5, 839.
  • Wan, T., Chen, D., (2018), Mechanical enhancement of self-healing waterborne polyurethane by graphene oxide, Progress in Organic Coatings, 121, 73-79.
  • Wan, T., Chen, D., (2019), In Situ Reduction of Graphene Oxide in Waterborne Polyurethane Matrix and the Healing Behavior of Nanocomposites by Multiple Ways, Journal of Polymer Science Part B, 57, 4, 202-209.
  • Cunha E., Paiva, M. C., (2019), Composite films of waterborne polyurethane and few-layer graphene-enhancing barrier, mechanical, and electrical properties, Journal of Composite Science, 3, 2, 9-11.
  • Rahman, M. M., Zahir, H., Do Kim, H., (2016), Synthesis and Properties of Waterborne Polyurethane/Hydroxyapatite Chemical Hybrids, Polymers, 8, 318.
  • Das, A., Mahanwar, P., (2020), A brief discussion on advances in polyurethane applications, Advanced Industrial and Engineering Polymer Research, 3, 3, 93-101.
  • Kausar, A., (2018), Polyurethane nanocomposite coatings: state of the art and perspectives, Polymer International, 67, 11, 1470-1477.
  • Wang, Y., Zhou, Z., Zhang, J., Tang, J., Wu, P., Wang, K., Zhao, Y., (2020), Properties of Graphene-Thermoplastic Polyurethane Flexible Conductive Film, Coatings, 10, 4, 400.
  • Liman, Md L. R., Islam, M. T., Hossain, Md M., (2022), Mapping the Progress in Flexible Electrodes for Wearable Electronic Textiles: Materials, Durability, and Applications, Advanced Electronic Materials, 8, 2100578.
  • Islam, R., Khair, N., Ahmed, D. M., Shahariar, H., (2019), Fabrication of low cost and scalable carbon-based conductive ink for E-textile applications, Materials Today Communications, 19, 32-38.
  • Chen, Q., Du, X., Chen, G., (2020), A green method of reducing silver nanoparticles based on bagasse pulp extract for preparing ultraviolet (UV)-curable conductive ink, Journal of Vinyl and Additive Technology, 26, 1, 90-96.
  • Song, C., Meng, X., Chen, H., Liu, Z., Zhan, Q., Sun, Y., Lu, W., Dai, Y., (2021), Flexible, graphene-based films with three-dimensional conductive network via simple drop-casting toward electromagnetic interference shielding, Composites Communications, 24, 100632.
  • Mohan, V. B., Lau, K. tak., Hui, D., Bhattacharyya, D., (2018), Graphene-based materials and their composites: A review on production, applications and product limitations, Composites Part B: Engineering, 142, 200-220.
  • Litao Huang, Y. Z., Chen, J., Xu, Y., Hu D., Cui, X., Shi, D., (2021), Three-dimensional light-weight piezoresistive sensors based on conductive polyurethane sponges coated with hybrid CNT/CB nanoparticles, Applied Surface Science, 548, 149268.
  • Vidhya, C. M., Maithani, Y., Singh, J. P., (2023), Recent Advances and Challenges in Textile Electrodes for Wearable Biopotential Signal Monitoring: A Comprehensive Review, Biosensors, 13, 7, 679.
  • Li, J. W., Huang, C. Y., Zhou, B. H., Hsu, M. F., Chung, S. F., Lee, W. C., Tsai, W. Y., Chiu, C. W., (2022), High stretchability and conductive stability of flexible hybrid electronic materials for smart clothing, Chemical Engineering Journal Advances, 12, 100380.
  • Taherian, R., (2016), Experimental and analytical model for the electrical conductivity of polymer-based nanocomposites, Composites Science and Technology, 123, 2, 17-31.
  • Alemour, B., Yaacob, M. H., Lim, H. N., Hassan, M. R., (2018), Review of electrical properties of graphene conductive composites, International Journal of Nanoelectronics and Materials, 11, 4, 371-398.
  • Volker L., Gehrke, I., (2019), Introduction to Smart Tetiles: Applications and Markets, in Smart Textiles Production: Overview of Materials, Sensor and Production Technologies for Industrial Smart Textiles, MDPI, Basel, Switzerland.
  • Wang Z., Ren, J., Liu, R., Sun, X., Huang, D., Xu, W., Jiang, J., Ma, K., Liu, Y., (2020), Three dimensional core-shell structured liquid metal/elastomer composite via coaxial direct ink writing for electromagnetic interference shielding, Composites Part A: Applied Science and Manufacturing, 136, 105957.
  • Cano-Raya, C., Denchev, Z. Z., Cruz, S. F., Viana, J. C., (2019), Chemistry of solid metal-based inks and pastes for printed electronics - A review, Applied Materials Today, 15, 416-430.
  • Lim, T., Kim, H. J., Zhang, H., Lee S., (2021), Screen-printed conductive pattern on spandex for stretchable electronic textiles, Smart Materials and Structures, 30, 7, 075006.
  • Paul, G., Torah, R., Beeby, S., Tudor, J., (2014), The development of screen printed conductive networks on textiles for biopotential monitoring applications, Sensors Actuators, A Physical, 206, 35-41.
  • Yi, Y. P. Q., Li, Y., (2019), Inkjet Conductive Inks for Printing Textile Materials and Applications, Journal of Fiber Bioengineering and Informatics, 12, 1, 11-24.
  • Karim, N., Afroj, S., Malandraki, A., Butterworth, S., Beach, C., Rigout, M., Novoselov, K. S., Casson, A. J., Yeates, S. G., (2017), All inkjet-printed graphene-based conductive patterns for wearable e-textile applications, Journal of Materials Chemistry C, 5, 44, 11640-1648.
  • Khan, A., Winder, M., Hossain, G., (2022), Modified graphene-based nanocomposite material for smart textile biosensor to detect lactate from human sweat, Biosensors and Bioelectronics, 10, 10103.
  • Hu, X., Tian, M., Qu, L., Zhu, S., (2015), Multifunctional cotton fabrics with graphene polyurethane coatings with far-infrared emission, electrical conductivity, and ultravioletblocking properties, Carbon, 95, 625-633.
  • Yan, Q., Xin, B., Chen, Z., Liu, Y., (2021), Preparation and characterization of flexible Polypyrrole/Zirconium carbide/Polyurethane hybrid membranes with enhanced electro-photo-thermal performance, Materials Today Communications, 29, 102877.
  • Larraza, I., Lerma, B. A., Gonzalez, K., Gabilondo, N., Jimenez, R. P., Corcuera, M. A., Arbelaiz, A., Eceiza, A., (2020), Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity, Express Polymer Letters, 14, 11, 1018-1033.
  • Zhang, S., Zhang, D., Li, Z., Yang, Y., Sun, M., Kong, Z., Wang, Y., Bai, H., Dong, W., (2018), Polydopamine functional reduced graphene oxide for enhanced mechanical and electrical properties of waterborne polyurethane nanocomposites, Journal of Coatings Technology and Research, 15, 6, 1333-1341.
  • Ying, W. B., Yu, Z., Kim, D. H., Lee, K. J. Hu, H., Liu, Y., Kong, Z., Wang, K., Shang, J., Zhang, R., Zhu, J., Li, R. W., (2020), Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin, ACS Applied Materials & Interfaces, 12, 9, 11072-11083.
  • Li, Q., Wang, Y., Jiang, S., Li, T., Ding, X., Tao, X., Wang, X., (2020), Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors, Materials and Design, 188, 108451.
  • Zhang Y., Ren, H., Chen, H., Chen, Q., Jin, L., Peng, W., Xin, S., Bai, Y., (2021), Cotton Fabrics Decorated with Conductive Graphene Nanosheet Inks for Flexible Wearable Heaters and Strain Sensors, ACS Applied Nano Materials, 4, 9, 9709-9720.
  • Boumegnane, A., Nadi, A., Cherkaoui, O., Tahiri, M., (2022), Inkjet printing of silver conductive ink on textiles for wearable electronic applications, Material Today Proceedings, 58, 4, 1235-241.
  • Xia, P., Liu, P., Shunge, W., Zhang, Q., Wang, P., Hu, R., Xing, K., Liu, C., Song, A., Yang, X., Huang, Y., (2022), Highly stretchable and sensitive flexible resistive strain sensor based on waterborne polyurethane polymer for wearable electronics, Composites Science and Technology, 221, 109355.
  • Jiang, L., Hong, H., Hu, J., (2021), Facile thermoplastic polyurethane-based multi-walled carbon nanotube ink for fabrication of screen-printed fabric electrodes of wearable e-textiles with high adhesion and resistance stability under large deformation, Textile Research Journal, 91, 21–22, 2487-2499.
  • Van Hazendonk, L. S., Pinto, A. M., Arapov, K. P., Pillai, N., Beurskens, M. R. C., Teunissen, J. P., Sneck, A., Smolander, M., Rentrop, C. H. A., Bouten, P. C. P., Friedrich, H., (2022), Printed Stretchable Graphene Conductors for Wearable Technology, Chemistry of Materials, 34, 17, 8031-8042.
  • Joshi, S. R., Kumar, S., Kim, S., 2023, Ecofriendly Polymer-Graphene-Based Conductive Ink for Multifunctional Printed Electronics, Advanced Materials Technologies, 8, 11, 2201917.
  • Jain, K., Wang, Z., Garma, L. D., Engel, E., Çiftçi, G. C., Fager, C., Larsson, Per A., Wagberg, L., (2023), 3D printable composites of modified cellulose fibers and conductive polymers and their use in wearable electronics, Applied Materials Today, 30, 101703.
  • Wu, J.-X., Chu, C.-P., Liao, Y.-C., (2023), Solderable conductive paste for electronic textiles, J. Taiwan Inst. Chem. Eng., 142, 104616.
  • Janda, M., Pretl, S., Radouchova, M., Michal, D., Lotfi, S., Reboun, J., (2023), Realization of Stretchable Conductive Traces on Textile Substrate Utilizing Direct Ink Writing, Institute of Electrical and Electronics Engineers, 1-5.
  • Krysiak, Z. J., Abdolmaleki, H., Agarwala, S., Stachewicz, U., (2022), Inkjet Printing of Electrodes on Electrospun Micro- and Nanofiber Hydrophobic Membranes for Flexible and Smart Textile Applications, Polymers, 14, 22, 5043.
  • Farraj, Y., Kanner, A., Magdassi, S., (2023), E-Textile by Printing an All-through Penetrating Copper Complex Ink, ACS Applied Materials & Interfaces, 15, 17, 21651-21658.
  • Boumeganane, A., Nadi, A., Cherkaoui, O., Tahiri, M., (2022), Inkjet printing of silver conductive ink on textiles for wearable electronic applications, Materials Today Proceeding, 58, 4, 1235-1241.
  • Stempien, Z., Khalid, M., Kozicki, M., Kozanecki, M., Varela, H., Filipczak, P., Pawlak, R., Korzeniewska, E., Sqsiadek, E., (2019), In-situ deposition of reduced graphene oxide layers on textile surfaces by the reactive inkjet printing technique and their use in supercapacitor applications, Synthetic Metals, 256, 116144.
There are 79 citations in total.

Details

Primary Language English
Subjects Textile Sciences and Engineering (Other)
Journal Section Articles
Authors

Gülçin Baysal 0000-0001-6681-868X

Publication Date March 31, 2024
Published in Issue Year 2024 Volume: 31 Issue: 133

Cite

APA Baysal, G. (2024). Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications. Tekstil Ve Mühendis, 31(133), 49-62. https://doi.org/10.7216/teksmuh.1342520
AMA Baysal G. Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications. Tekstil ve Mühendis. March 2024;31(133):49-62. doi:10.7216/teksmuh.1342520
Chicago Baysal, Gülçin. “Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications”. Tekstil Ve Mühendis 31, no. 133 (March 2024): 49-62. https://doi.org/10.7216/teksmuh.1342520.
EndNote Baysal G (March 1, 2024) Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications. Tekstil ve Mühendis 31 133 49–62.
IEEE G. Baysal, “Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications”, Tekstil ve Mühendis, vol. 31, no. 133, pp. 49–62, 2024, doi: 10.7216/teksmuh.1342520.
ISNAD Baysal, Gülçin. “Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications”. Tekstil ve Mühendis 31/133 (March 2024), 49-62. https://doi.org/10.7216/teksmuh.1342520.
JAMA Baysal G. Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications. Tekstil ve Mühendis. 2024;31:49–62.
MLA Baysal, Gülçin. “Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications”. Tekstil Ve Mühendis, vol. 31, no. 133, 2024, pp. 49-62, doi:10.7216/teksmuh.1342520.
Vancouver Baysal G. Flexible and Stretchable Printable Conductive Inks for Wearable Textile Applications. Tekstil ve Mühendis. 2024;31(133):49-62.