Review
BibTex RIS Cite

APPLICATIONS AND CHARACTERIZATION METHODS OF NONWOVENS IN BIOMEDICAL FIELD

Year 2024, Volume: 31 Issue: 136, 277 - 297, 31.12.2024
https://doi.org/10.7216/teksmuh.1480467

Abstract

Technological advancements and increasing demands have led to significant innovations in the field of materials science. Nonwoven materials, a crucial subfield of the textile industry, have garnered substantial interest and have a broad range of applications in the biomedical field in recent years. Nonwoven fabrics are produced through methods that bind or interlace fibers directly, rather
than using traditional weaving or knitting techniques. These materials are characterized by their flexibility, light weight, and costeffectiveness. Due to their production process involving irregular fiber arrangement and various bonding techniques, nonwoven materials offer advantages such as low cost, lightweight, flexibility, and rapid production. Their properties, including high durability, low weight, and high air permeability, make nonwoven materials effective solutions for applications such as wound dressings, drug delivery, hygiene products, and biological signal monitoring. The broad application scope of nonwoven materials necessitates precise characterization of their physical, mechanical, and chemical properties. This characterization is crucial for determining the performance, quality, and application potential of the materials. Characterization methods for nonwoven materials involve evaluating the structure,
strength, permeability, absorption capacity, and other essential attributes of the material. This paper provides a comprehensive review of the characterization methods for nonwoven materials, focusing on their applications in the biomedical field. Various characterization techniques employed to determine the properties of nonwoven materials are discussed in detail, based on current research literature.

References

  • 1. Patel, B. M., & Bhrambhatt, D. (2008). Nonwoven technology. Textile Technology, 1-54.
  • 2. Russell, S. J. (2022). Handbook of nonwovens. Woodhead Publishing.
  • 3. Ajmeri, J. R., & Ajmeri, C. J. (2011). Nonwoven materials and technologies for medical applications. In Handbook of medical textiles (pp. 106-131). Woodhead Publishing.
  • 4. Cerkez, I., Koçer, H. B., & Broughton, R. M. (2018). Airlaid nonwoven panels for use as structural thermal insulation. The Journal of The Textile Institute, 109(1), 17-23.
  • 5. Wilson, A. (2010). The formation of dry, wet, spunlaid and other types of nonwovens. In Applications of nonwovens in technical textiles (pp. 3-17). Woodhead Publishing.
  • 6. Kalebek, N. A., & Babaarslan, O. (2009). Evaluation of friction and stiffness behaviour of nonwovens produced with spunbond and spunlace methods. Textile and Apparel, 19(2), 145-150.
  • 7. Peng, M., Jia, H., Jiang, L., Zhou, Y., & Ma, J. (2019). Study on structure and property of PP/TPU melt-blown nonwovens. The Journal of The Textile Institute, 110(3), 468-475.
  • 8. Midha, V. K., & Dakuri, A. (2017). Spun bonding technology and fabric properties: a review. Journal of Textile Engineering & Fashion Technology, 1(4), 1-9.
  • 9. Gupta, B. S., & Smith, D. K. (2002). Nonwovens in absorbent materials. In Textile Science and Technology (Vol. 13, pp. 349-388). Elsevier.
  • 10. Das, A., & Raghav, R. J. (2010). Bursting behavior of spunbonded nonwoven fabrics: Part I–Effect of various parameters.
  • 11. Purdy, A. T. (1983). Developments in non-woven fabrics. Textile Progress, 12(4), 1-86.
  • 12. Ajmeri, J. R., & Ajmeri, C. J. (2010). Nonwoven personal hygiene materials and products. In Applications of nonwovens in technical textiles (pp. 85-102). Woodhead Publishing.
  • 13. Smith, P. A. (2000). Technical fabric structures–3. Nonwoven fabrics. Handbook of technical textiles, 12, 130.
  • 14. Santos, A. S., Ferreira, P. J. T., & Maloney, T. (2021). Bio-based materials for nonwovens. Cellulose, 28(14), 8939-8969.
  • 15. Iqbal, M. K. (2009). The applications of nonwovens in technical textiles. Technical textile and nonwovens, 35-39.
  • 16. Das, D., Pradhan, A. K., Chattopadhyay, R., & Singh, S. N. (2012). Composite nonwovens. Textile Progress, 44(1), 1-84.
  • 17. Das, D., & Pourdeyhimi, B. (2014). Composite nonwoven materials: structure, properties and applications. Elsevier.
  • 18. Gogotsi, Y. (2006). Nanomaterials handbook. CRC press.
  • 19. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703.
  • 20. Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning approaches toward scaffold engineering—a brief overview. Artificial organs, 30(10), 785-792.
  • 21. Bartels, V. (Ed.). (2011). Handbook of medical textiles. Elsevier.
  • 22. Zannini Luz, H., & Loureiro dos Santos, L. A. (2023). Centrifugal spinning for biomedical use: A review. Critical Reviews in Solid State and Materials Sciences, 48(4), 519-534.
  • 23. Scott, R. A. (Ed.). (2005). Textiles for protection. Elsevier.
  • 24. Daristotle, J. L., Behrens, A. M., Sandler, A. D., & Kofinas, P. (2016). A review of the fundamental principles and applications of solution blow spinning. ACS applied materials & interfaces, 8(51), 34951-34963.
  • 25. Huang, W., & Leonas, K. K. (2000). Evaluating a one-bath process for imparting antimicrobial activity and repellency to nonwoven surgical gown fabrics. Textile Research Journal, 70(9), 774-782.
  • 26. Collier, B. J. (2010). Nonwovens in specialist and consumer apparel. In Applications of nonwovens in technical textiles (pp. 120-135). Woodhead Publishing.
  • 27. Gurbaxani, B. M., Hill, A. N., Paul, P., Prasad, P. V., & Slayton, R. B. (2022). Evaluation of different types of face masks to limit the spread of SARS-CoV-2: a modeling study. Scientific reports, 12(1), 8630.
  • 28. He, W., Yue, Y., Guo, Y., Zhao, Y. B., Liu, J., & Wang, J. (2023). A comparison study of the filtration behavior of air filtering materials of masks against inert and biological particles. Separation and Purification Technology, 313, 123472.
  • 29. Wang, A. B., Zhang, X., Gao, L. J., Zhang, T., Xu, H. J., & Bi, Y. J. (2023). A review of filtration performance of protective masks. International journal of environmental research and public health, 20(3), 2346.
  • 30. Katzer, K. (2002). Polyethylene polymers for hygiene market. ASIAN TEXTILE JOURNAL-BOMBAY-, 11(6), 30-34.
  • 31. Fang, J., Niu, H., Lin, T., & Wang, X. (2008). Applications of electrospun nanofibers. Chinese science bulletin, 53, 2265-2286.
  • 32. Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical society reviews, 38(4), 1139-1151.
  • 33. Sankar, S., Sharma, C. S., Rath, S. N., & Ramakrishna, S. (2017). Electrospun fibers for recruitment and differentiation of stem cells in regenerative medicine. Biotechnology journal, 12(12), 1700263.
  • 34. Chaurey, V., Block, F., Su, Y. H., Chiang, P. C., Botchwey, E., Chou, C. F., & Swami, N. S. (2012). Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta biomaterialia, 8(11), 3982-3990.
  • 35. Lu, P., & Ding, B. (2008). Applications of electrospun fibers. Recent patents on nanotechnology, 2(3), 169-182.
  • 36. Uludağ, H. (2014). Grand challenges in biomaterials. Frontiers in bioengineering and biotechnology, 2, 43.
  • 37. Son, Y. J., Kim, W. J., & Yoo, H. S. (2014). Therapeutic applications of electrospun nanolifs for drug delivery systems. Archives of pharmacal research, 37, 69-78.
  • 38. Yu, D. G., Li, J. J., Williams, G. R., & Zhao, M. (2018). Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. Journal of controlled release, 292, 91-110.
  • 39. Ohta, S., Nishiyama, T., Sakoda, M., Machioka, K., Fuke, M., Ichimura, S., ... & Ito, T. (2015). Development of carboxymethyl cellulose nonwoven sheet as a novel hemostatic agent. Journal of bioscience and bioengineering, 119(6), 718-723.
  • 40. Yan, D., Hu, S., Zhou, Z., Zeenat, S., Cheng, F., Li, Y., ... & Chen, X. (2018). Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International journal of biological macromolecules, 107, 463-469.
  • 41. White, W. C., & Olderman, J. M. (1984). Antimicrobial Techniques for Medical Nonwovens: A Case Study. Book of Papers, 12, 13-46.
  • 42. Wong, S. Y., Li, Q., Veselinovic, J., Kim, B. S., Klibanov, A. M., & Hammond, P. T. (2010). Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials, 31(14), 4079-4087.
  • 43. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.
  • 44. Li, L., Pu, T., Zhanel, G., Zhao, N., Ens, W., & Liu, S. (2012). New biocide with both N‐Chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced healthcare materials, 1(5), 609-620.
  • 45. Palermo, E. F., & Kuroda, K. (2010). Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied microbiology and biotechnology, 87, 1605-1615.
  • 46. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465.
  • 47. Timofeeva, L., & Kleshcheva, N. (2011). Antimicrobial polymers: mechanism of action, factors of activity, and applications. Applied microbiology and biotechnology, 89, 475-492.
  • 48. Abdou, E. S., Elkholy, S. S., Elsabee, M. Z., & Mohamed, E. (2008). Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan. Journal of Applied Polymer Science, 108(4), 2290-2296.
  • 49. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8(5), 1396-1399.
  • 50. Radheshkumar, C., & Münstedt, H. (2006). Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. Reactive and Functional Polymers, 66(7), 780-788.
  • 51. Zahedi, P., Rezaeian, I., Ranaei‐Siadat, S. O., Jafari, S. H., & Supaphol, P. (2010). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 21(2), 77-95.
  • 52. Kang, Y. O., Yoon, I. S., Lee, S. Y., Kim, D. D., Lee, S. J., Park, W. H., & Hudson, S. M. (2010). Chitosan‐coated poly (vinyl alcohol) nanofibers for wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(2), 568-576.
  • 53. Yang, Q., Xie, Z., Hu, J., & Liu, Y. (2021). Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Materials Science and Engineering: C, 128, 112319.
  • 54. Ezhilarasu, H., Vishalli, D., Dheen, S. T., Bay, B. H., & Srinivasan, D. K. (2020). Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials, 10(6), 1234.
  • 55. Islam, M., Karmakar, P. C., Arifuzzaman, M., Karim, N., Akhtar, N., & Asaduzzaman, S. M. (2023). Human amniotic membrane and titanium dioxide nanoparticle derived gel for burn wound healing in a rat model. Regenerative Engineering and Translational Medicine, 9(2), 249-262.
  • 56. Rybka, M., Mazurek, Ł., & Konop, M. (2022). Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice. Life, 13(1), 69.
  • 57. Galante, A. J., Haghanifar, S., Romanowski, E. G., Shanks, R. M., & Leu, P. W. (2020). Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles. ACS applied materials & interfaces, 12(19), 22120-22128.
  • 58. Baysal, G., Önder, S., Göcek, İ., Trabzon, L., Kızıl, H., Kök, F. N., & Kayaoğlu, B. K. (2015). Design and fabrication of a new nonwoven-textile based platform for biosensor construction. Sensors and Actuators B: Chemical, 208, 475-484.
  • 59. Xu, B. (1996). Measurement of pore characteristics in nonwoven fabrics using image analysis. Clothing and Textiles Research Journal, 14(1), 81-88.
  • 60. Holbrook, R. D., Galyean, A. A., Gorham, J. M., Herzing, A., & Pettibone, J. (2015). Overview of nanomaterial characterization and metrology. In Frontiers of nanoscience (Vol. 8, pp. 47-87). Elsevier.
  • 61. McMullan, D. (1965). Scanning Electron. Microscopy, 175-185.
  • 62. Dudkiewicz, A., Tiede, K., Loeschner, K., Jensen, L. H. S., Jensen, E., Wierzbicki, R., ... & Molhave, K. (2011). Characterization of nanomaterials in food by electron microscopy. TrAC Trends in Analytical Chemistry, 30(1), 28-43.
  • 63. Zhu, Y., & Dürr, H. (2015). The future of electron microscopy. Physics Today, 68(4), 32-38.
  • 64. Mohammed, A., & Abdullah, A. (2018, November). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
  • 65. Zadora, G., & Brożek-Mucha, Z. (2003). SEM–EDX—a useful tool for forensic examinations. Materials chemistry and physics, 81(2-3), 345-348.
  • 66. Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., & Chougule, M. B. (2019). i RK Tekade,„Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development “, u Basic Fundamentals of Drug Delivery.
  • 67. Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., & Bonanno, E. (2018). Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European journal of histochemistry: EJH, 62(1).
  • 68. Tang, C. Y., & Yang, Z. (2017). Transmission electron microscopy (TEM). In Membrane characterization (pp. 145-159). Elsevier.
  • 69. Mansoureh, G., & Parisa, V. (2018). Synthesis of metal nanoparticles using laser ablation technique. In Emerging applications of nanoparticles and architecture nanostructures (pp. 575-596). Elsevier.
  • 70. Egerton, R. F., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35(6), 399-409.
  • 71. Birdi, K. S. (2003). Scanning probe microscopes: applications in science and technology. CRC press.
  • 72. Giessibl, F. J. (2003). Advances in atomic force microscopy. Reviews of modern physics, 75(3), 949.
  • 73. Trache, A., & Meininger, G. A. (2008). Atomic force microscopy (AFM). Current protocols in microbiology, 8(1), 2C-2.
  • 74. Wei, Q. F., & Wang, X. Q. (2004). AFM characterisation of technical fibres. Journal of industrial textiles, 34(1), 51-60.
  • 75. Kacher, J., Landon, C., Adams, B. L., & Fullwood, D. (2009). Bragg's Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy, 109(9), 1148-1156.
  • 76. Connolly, J. R. (2012). Elementary crystallography for X-ray diffraction. EPS400-002.
  • 77. Piga, G., Thompson, T. J., Malgosa, A., & Enzo, S. (2009). The potential of X‐ray diffraction in the analysis of burned remains from forensic contexts. Journal of Forensic Sciences, 54(3), 534-539.
  • 78. Ekpunobi, U. E., Duru, C. B., & Obumselu, F. (2013). XRD characterization of sand deposit in river Niger (South Eastern Nigeria).
  • 79. Andreeva, P., Stoilov, V., & Petrov, O. (2011). Application of X-Ray diffraction analysis for sedimentological investigation of Middle Devonian dolomites from Northeastern Bulgaria. Geologica Balcanica, 40(1-3), 31-38.
  • 80. Bunaciu, A. A., UdriŞTioiu, E. G., & Aboul-Enein, H. Y. (2015). X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4), 289-299.
  • 81. Lang, A. R. (1959). Studies of Individual Dislocations in Crystals by X‐Ray Diffraction Microradiography. Journal of Applied Physics, 30(11), 1748-1755.
  • 82. Authier, A. (2001). Dynamical theory of X-ray diffraction. International Union of Crystallography Monographs on Crystallography, 11, Chapter-16.
  • 83. Zolotov, D. A., Buzmakov, A. V., Asadchikov, V. E., Voloshin, A. E., Shkurko, V. N., & Smirnov, I. S. (2011). Study of the internal structure of lithium fluoride single crystal by laboratory X-ray topo-tomography. Crystallography Reports, 56, 393-396.
  • 84. Bowen, D. K., & Tanner, B. K. (1998). High resolution X-ray diffractometry and topography. CRC press.
  • 85. Shul’pina, I. L., & Prokhorov, I. A. (2012). X-ray diffraction topography for materials science. Crystallography Reports, 57, 661-669.
  • 86. Bonse, U. K., Hart, M., & Newkirk, J. B. (1966). X-ray diffraction topography. Advances in X-ray analysis, 10, 1-8.
  • 87. Izumi, K., Sawamura, S., & Ataka, M. (1996). X-ray topography of lysozyme crystals. Journal of crystal growth, 168(1-4), 106-111.
  • 88. Lider, V. V. (2021). X-ray diffraction topography methods. Physics of the Solid State, 63, 189-214.
  • 89. Suvorov, E. V. (2018). X-Ray topography: yesterday, today, and prospects for the future. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 12, 835-852.
  • 90. Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J. J., Buffiere, J. Y., ... & Josserond, C. (2003). X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms, 200, 273-286.
  • 91. Illerhaus, B., Goebbels, J., Kettschau, A., & Reimers, P. (1988). Non Destructive Waste form and Package Characterization by Computerized Tomography. MRS Online Proceedings Library, 127, 507-512.
  • 92. Kastner, J., & Heinzl, C. (2015). X-ray computed tomography for non-destructive testing and materials characterization. Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, 227-250.
  • 93. Kastner, J., Plank, B., Salaberger, D., & Sekelja, J. (2010, November). Defect and porosity determination of fibre reinforced polymers by X-ray computed tomography. In 2nd International Symposium on NDT in Aerospace (pp. 1-12). Hamburg, Germany: NDT.
  • 94. Salaberger, D., Kannappan, K. A., Kastner, J., Reussner, J., & Auinger, T. (2011). Evaluation of computed tomography data from fibre reinforced polymers to determine fibre length distribution. International Polymer Processing, 26(3), 283-291.
  • 95. Chirayil, C. J., Abraham, J., Mishra, R. K., George, S. C., & Thomas, S. (2017). Instrumental techniques for the characterization of nanoparticles. In Thermal and rheological measurement techniques for nanomaterials characterization (pp. 1-36). Elsevier.
  • 96. Chen, Z., Dinh, H. N., & Miller, E. (2013). Photoelectrochemical water splitting (Vol. 344, pp. 6-15). New York: Springer.
  • 97. Łobiński, R., & Marczenko, Z. (1992). Recent advances in ultraviolet-visible spectrophotometry. Critical Reviews in Analytical Chemistry, 23(1-2), 55-111.
  • 98. Ghasempour, R., & Narei, H. (2018). CNT basics and characteristics. In Carbon nanotube-reinforced polymers (pp. 1-24). Elsevier.
  • 99. Akçe, M. A., & Kadıoğlu, Y. K. (2020). Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması. Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99-115.
  • 100. Kranz, C., & Mizaikoff, B. (2019). Nanomaterials| Characterization methods. In Encyclopedia of Analytical Science (pp. 98-107).
  • 101. Araujo, C. F., Nolasco, M. M., Ribeiro, A. M., & Ribeiro-Claro, P. J. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water research, 142, 426-440.
  • 102. Dwivedi, C., Pandey, I., Pandey, H., Ramteke, P. W., Pandey, A. C., Mishra, S. B., & Patil, S. (2017). Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In Nano-and Microscale Drug Delivery Systems (pp. 147-164). Elsevier.
  • 103. Titus, D., Samuel, E. J., & Roopan, S. M. (2019). Green synthesis, characterization and applications of nanoparticles. Micro and Nano Technologies, 12, 303-319
  • 104. Asmatulu, R., & Khan, W. S. (2019). Chapter 13-Characterization of electrospun nanolifs. Synthesis and Applications of Electrospun Nanolifs, 257.
  • 105. Scimeca, M., Orlandi, A., Terrenato, I., Bischetti, S., & Bonanno, E. (2014). Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis. European journal of histochemistry: EJH, 58(3).
  • 106. Fernandez-Segura, E., & Warley, A. (2008). Electron probe X-ray microanalysis for the study of cell physiology. Methods in cell biology, 88, 19-43.
  • 107. Morgan, A. J. (1985). X-ray microanalysis in electron microscopy for biologists. Royal Microscopical Society Microscopy Handbook, 5, 1-79.
  • 108. Mobini, S., Solati-Hashjin, M., Peirovi, H., Osman, N. A. A., Gholipourmalekabadi, M., Barati, M., & Samadikuchaksaraei, A. (2013). Bioactivity and biocompatibility studies on silk-based scaffold for bone tissue engineering. J Med Biol Eng, 33(2), 207-14.
  • 109. Wei, Q., Yu, L., Hou, D., & Huang, F. (2008). Surface characterization and properties of functionalized nonwoven. Journal of Applied Polymer Science, 107(1), 132-137.
  • 110. Paddock, S. W. (1999). Confocal laser scanning microscopy. Biotechniques, 27(5), 992-1004.
  • 111. Alvarez-Román, R., Naik, A., Kalia, Y. N., Fessi, H., & Guy, R. H. (2004). Visualization of skin penetration using confocal laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 301-316.
  • 112. Reichhardt, C., & Parsek, M. R. (2019). Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Frontiers in microbiology, 10, 677.
  • 113. Hamada, H., Bousfield, D. W., & Luu, W. T. (2008, January). The absorption mechanism of aqueous and solvent inks into synthetic nonwoven fabrics. In NIP & Digital Fabrication Conference (Vol. 24, pp. 549-552). Society of Imaging Science and Technology.
  • 114. Mohan, A. (2003). Formation and characterization of electrospun nonwoven webs.
  • 115. Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009). Thermogravimetric analysis (TGA). Thermal analysis of polymers: Fundamentals and applications, 241-317.
  • 116. Bottom, R. (2008). Thermogravimetric analysis. Principles and applications of thermal analysis, 87-118.
  • 117. Lothenbach, B., Durdzinski, P., & De Weerdt, K. (2016). Thermogravimetric analysis. A practical guide to microstructural analysis of cementitious materials, 1, 177-211.
  • 118. De Blasio, C., & De Blasio, C. (2019). Thermogravimetric analysis (TGA). Fundamentals of Biofuels Engineering and Technology, 91-102.
  • 119. Menczel, J. D., Judovits, L., Prime, R. B., Bair, H. E., Reading, M., & Swier, S. (2009). Differential scanning calorimetry (DSC). Thermal analysis of polymers: Fundamentals and applications, 7-239.
  • 120. Spink, C. H. (2008). Differential scanning calorimetry. Methods in cell biology, 84, 115-141.
  • 121. Kim, J. S., & Lee, D. S. (2000). Thermal properties of electrospun polyesters. Polymer journal, 32(7), 616-618.
  • 122. Bais-Singh, S., & Goswami, B. C. (1995). Theoretical determination of the mechanical response of spun-bonded nonwovens. Journal of the Textile Institute, 86(2), 271-288.
  • 123. Zhu, G., Kremenakova, D., Wang, Y., & Militky, J. (2015). Air permeability of polyester nonwoven fabrics. Autex Research Journal, 15(1), 8-12.
  • 124. Zhang, X., & Lu, Y. (2014). Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews, 54(4), 677-701.
  • 125. Hearle, J. W. S., & Stevenson, P. J. (1963). Nonwoven fabric studies: Part III: The anisotropy of nonwoven fabrics. Textile Research Journal, 33(11), 877-888.
  • 126. T.C. Millî Eğitim Bakanlığı. (2015). Renk Haslığı Testleri (Mekanik) 1, Tekstil Teknolojisi, (pp.1-29).
  • 127. T.C. Millî Eğitim Bakanlığı. (2012). Renk Haslığı Testleri (Su ile), Tekstil Teknolojisi, (pp.1- 29).
  • 128. Cenni, E., Ciapetti, G., Granchi, D., Arciola, C. R., Savarino, L., Stea, S., ... & Pizzoferrato, A. (1999). Established cell lines and primary cultures in testing medical devices in vitro. Toxicology in vitro, 13(4-5), 801-810.
  • 129. Thangaraju, P., & Varthya, S. B. (2022). ISO 10993: biological evaluation of medical devices. In Medical device guidelines and regulations handbook (pp. 163-187). Cham: Springer International Publishing. 130. Hanks, C. T., Wataha, J. C., & Sun, Z. (1996). In vitro models of biocompatibility: a review. Dental Materials, 12(3), 186-193.
  • 131. Uzun, İ. H., & Bayındır, F. (2011). Dental materyallerin biyouyumluluk test yöntemleri. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(2), 115-122.
  • 132. Sjögren, G., Sletten, G., & Dahl, J. E. (2000). Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. The Journal of prosthetic dentistry, 84(2), 229-236.
  • 133. Stanford, J. W. (1980). Recommended standard practices for cytotoxicity testing. FDI World Dental Federation in conjunction with International Standards Organization. Dent J, 30, 141-73.
  • 134. Ekwall, B., Silano, V., Paganuzzi-Stammati, A., & Zucco, F. (1990). Toxicity tests with mammalian cell cultures. Short-term toxicity tests for non-genotoxic effects, 41, 75-82.
  • 135. Martinotti, S., & Ranzato, E. (2020). Scratch wound healing assay. Epidermal cells: methods and protocols, 225-229.
  • 136. Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature protocols, 2(2), 329-333.

DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ

Year 2024, Volume: 31 Issue: 136, 277 - 297, 31.12.2024
https://doi.org/10.7216/teksmuh.1480467

Abstract

Teknolojik gelişmeler ve artan ihtiyaçlar, malzeme bilimi alanında önemli yeniliklere yol açmıştır. Tekstil endüstrisinin önemli bir alt dalı olan dokusuz yüzey malzemeler, biyomedikal alanda son yıllarda büyük ilgi gören ve geniş bir uygulama yelpazesine sahip önemli materyallerdir. Dokusuz yüzeyler, geleneksel dokuma veya örme teknikleri yerine lifleri doğrudan bir araya getirme veya bağlama yöntemleri ile üretilen, esnek, hafif ve ekonomik malzemelerdir. Bu malzemeler, üretim sürecindeki düzensiz lif yerleşimi ve çeşitli bağlama yöntemleri sayesinde düşük maliyetli, hafif, esnek ve hızlı üretilebilir olma avantajına sahiptir. Yüksek dayanıklılık, düşük ağırlık ve yüksek hava geçirgenliği gibi özellikleriyle dokusuz yüzeyler, yara örtüsü, ilaç iletimi, hijyen ürünleri ve biyolojik sinyal takibi gibi alanlarda etkili çözümler sunmaktadır. Dokusuz yüzey malzemelerin geniş kullanım alanları, fiziksel, mekanik ve kimyasal özelliklerinin doğru bir şekilde karakterize edilmesini gerektirmektedir. Bu karakterizasyon, malzemenin performansını, kalitesini ve uygulama potansiyelini belirleme açısından kritik bir rol oynamaktadır. Dokusuz yüzeylerin karakterizasyon yöntemleri, malzemenin yapısını, mukavemetini, geçirgenliğini, emme kapasitesini ve diğer önemli özelliklerini değerlendirme sürecini içermektedir. Bu makalede, dokusuz yüzey malzemelerin biyomedikal alanlarına odaklanılarak, bu malzemelerin karakterizasyon yöntemlerine dair kapsamlı bir inceleme sunmaktadır. Dokusuz yüzeylerin özelliklerini belirleme amacıyla kullanılan çeşitli karakterizasyon yöntemleri, literatürdeki güncel araştırmalara dayanarak detaylı bir şekilde ele alınmıştır.

References

  • 1. Patel, B. M., & Bhrambhatt, D. (2008). Nonwoven technology. Textile Technology, 1-54.
  • 2. Russell, S. J. (2022). Handbook of nonwovens. Woodhead Publishing.
  • 3. Ajmeri, J. R., & Ajmeri, C. J. (2011). Nonwoven materials and technologies for medical applications. In Handbook of medical textiles (pp. 106-131). Woodhead Publishing.
  • 4. Cerkez, I., Koçer, H. B., & Broughton, R. M. (2018). Airlaid nonwoven panels for use as structural thermal insulation. The Journal of The Textile Institute, 109(1), 17-23.
  • 5. Wilson, A. (2010). The formation of dry, wet, spunlaid and other types of nonwovens. In Applications of nonwovens in technical textiles (pp. 3-17). Woodhead Publishing.
  • 6. Kalebek, N. A., & Babaarslan, O. (2009). Evaluation of friction and stiffness behaviour of nonwovens produced with spunbond and spunlace methods. Textile and Apparel, 19(2), 145-150.
  • 7. Peng, M., Jia, H., Jiang, L., Zhou, Y., & Ma, J. (2019). Study on structure and property of PP/TPU melt-blown nonwovens. The Journal of The Textile Institute, 110(3), 468-475.
  • 8. Midha, V. K., & Dakuri, A. (2017). Spun bonding technology and fabric properties: a review. Journal of Textile Engineering & Fashion Technology, 1(4), 1-9.
  • 9. Gupta, B. S., & Smith, D. K. (2002). Nonwovens in absorbent materials. In Textile Science and Technology (Vol. 13, pp. 349-388). Elsevier.
  • 10. Das, A., & Raghav, R. J. (2010). Bursting behavior of spunbonded nonwoven fabrics: Part I–Effect of various parameters.
  • 11. Purdy, A. T. (1983). Developments in non-woven fabrics. Textile Progress, 12(4), 1-86.
  • 12. Ajmeri, J. R., & Ajmeri, C. J. (2010). Nonwoven personal hygiene materials and products. In Applications of nonwovens in technical textiles (pp. 85-102). Woodhead Publishing.
  • 13. Smith, P. A. (2000). Technical fabric structures–3. Nonwoven fabrics. Handbook of technical textiles, 12, 130.
  • 14. Santos, A. S., Ferreira, P. J. T., & Maloney, T. (2021). Bio-based materials for nonwovens. Cellulose, 28(14), 8939-8969.
  • 15. Iqbal, M. K. (2009). The applications of nonwovens in technical textiles. Technical textile and nonwovens, 35-39.
  • 16. Das, D., Pradhan, A. K., Chattopadhyay, R., & Singh, S. N. (2012). Composite nonwovens. Textile Progress, 44(1), 1-84.
  • 17. Das, D., & Pourdeyhimi, B. (2014). Composite nonwoven materials: structure, properties and applications. Elsevier.
  • 18. Gogotsi, Y. (2006). Nanomaterials handbook. CRC press.
  • 19. Greiner, A., & Wendorff, J. H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703.
  • 20. Boudriot, U., Dersch, R., Greiner, A., & Wendorff, J. H. (2006). Electrospinning approaches toward scaffold engineering—a brief overview. Artificial organs, 30(10), 785-792.
  • 21. Bartels, V. (Ed.). (2011). Handbook of medical textiles. Elsevier.
  • 22. Zannini Luz, H., & Loureiro dos Santos, L. A. (2023). Centrifugal spinning for biomedical use: A review. Critical Reviews in Solid State and Materials Sciences, 48(4), 519-534.
  • 23. Scott, R. A. (Ed.). (2005). Textiles for protection. Elsevier.
  • 24. Daristotle, J. L., Behrens, A. M., Sandler, A. D., & Kofinas, P. (2016). A review of the fundamental principles and applications of solution blow spinning. ACS applied materials & interfaces, 8(51), 34951-34963.
  • 25. Huang, W., & Leonas, K. K. (2000). Evaluating a one-bath process for imparting antimicrobial activity and repellency to nonwoven surgical gown fabrics. Textile Research Journal, 70(9), 774-782.
  • 26. Collier, B. J. (2010). Nonwovens in specialist and consumer apparel. In Applications of nonwovens in technical textiles (pp. 120-135). Woodhead Publishing.
  • 27. Gurbaxani, B. M., Hill, A. N., Paul, P., Prasad, P. V., & Slayton, R. B. (2022). Evaluation of different types of face masks to limit the spread of SARS-CoV-2: a modeling study. Scientific reports, 12(1), 8630.
  • 28. He, W., Yue, Y., Guo, Y., Zhao, Y. B., Liu, J., & Wang, J. (2023). A comparison study of the filtration behavior of air filtering materials of masks against inert and biological particles. Separation and Purification Technology, 313, 123472.
  • 29. Wang, A. B., Zhang, X., Gao, L. J., Zhang, T., Xu, H. J., & Bi, Y. J. (2023). A review of filtration performance of protective masks. International journal of environmental research and public health, 20(3), 2346.
  • 30. Katzer, K. (2002). Polyethylene polymers for hygiene market. ASIAN TEXTILE JOURNAL-BOMBAY-, 11(6), 30-34.
  • 31. Fang, J., Niu, H., Lin, T., & Wang, X. (2008). Applications of electrospun nanofibers. Chinese science bulletin, 53, 2265-2286.
  • 32. Place, E. S., George, J. H., Williams, C. K., & Stevens, M. M. (2009). Synthetic polymer scaffolds for tissue engineering. Chemical society reviews, 38(4), 1139-1151.
  • 33. Sankar, S., Sharma, C. S., Rath, S. N., & Ramakrishna, S. (2017). Electrospun fibers for recruitment and differentiation of stem cells in regenerative medicine. Biotechnology journal, 12(12), 1700263.
  • 34. Chaurey, V., Block, F., Su, Y. H., Chiang, P. C., Botchwey, E., Chou, C. F., & Swami, N. S. (2012). Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta biomaterialia, 8(11), 3982-3990.
  • 35. Lu, P., & Ding, B. (2008). Applications of electrospun fibers. Recent patents on nanotechnology, 2(3), 169-182.
  • 36. Uludağ, H. (2014). Grand challenges in biomaterials. Frontiers in bioengineering and biotechnology, 2, 43.
  • 37. Son, Y. J., Kim, W. J., & Yoo, H. S. (2014). Therapeutic applications of electrospun nanolifs for drug delivery systems. Archives of pharmacal research, 37, 69-78.
  • 38. Yu, D. G., Li, J. J., Williams, G. R., & Zhao, M. (2018). Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. Journal of controlled release, 292, 91-110.
  • 39. Ohta, S., Nishiyama, T., Sakoda, M., Machioka, K., Fuke, M., Ichimura, S., ... & Ito, T. (2015). Development of carboxymethyl cellulose nonwoven sheet as a novel hemostatic agent. Journal of bioscience and bioengineering, 119(6), 718-723.
  • 40. Yan, D., Hu, S., Zhou, Z., Zeenat, S., Cheng, F., Li, Y., ... & Chen, X. (2018). Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International journal of biological macromolecules, 107, 463-469.
  • 41. White, W. C., & Olderman, J. M. (1984). Antimicrobial Techniques for Medical Nonwovens: A Case Study. Book of Papers, 12, 13-46.
  • 42. Wong, S. Y., Li, Q., Veselinovic, J., Kim, B. S., Klibanov, A. M., & Hammond, P. T. (2010). Bactericidal and virucidal ultrathin films assembled layer by layer from polycationic N-alkylated polyethylenimines and polyanions. Biomaterials, 31(14), 4079-4087.
  • 43. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.
  • 44. Li, L., Pu, T., Zhanel, G., Zhao, N., Ens, W., & Liu, S. (2012). New biocide with both N‐Chloramine and quaternary ammonium moieties exerts enhanced bactericidal activity. Advanced healthcare materials, 1(5), 609-620.
  • 45. Palermo, E. F., & Kuroda, K. (2010). Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Applied microbiology and biotechnology, 87, 1605-1615.
  • 46. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465.
  • 47. Timofeeva, L., & Kleshcheva, N. (2011). Antimicrobial polymers: mechanism of action, factors of activity, and applications. Applied microbiology and biotechnology, 89, 475-492.
  • 48. Abdou, E. S., Elkholy, S. S., Elsabee, M. Z., & Mohamed, E. (2008). Improved antimicrobial activity of polypropylene and cotton nonwoven fabrics by surface treatment and modification with chitosan. Journal of Applied Polymer Science, 108(4), 2290-2296.
  • 49. Huang, J., Murata, H., Koepsel, R. R., Russell, A. J., & Matyjaszewski, K. (2007). Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Biomacromolecules, 8(5), 1396-1399.
  • 50. Radheshkumar, C., & Münstedt, H. (2006). Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. Reactive and Functional Polymers, 66(7), 780-788.
  • 51. Zahedi, P., Rezaeian, I., Ranaei‐Siadat, S. O., Jafari, S. H., & Supaphol, P. (2010). A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polymers for Advanced Technologies, 21(2), 77-95.
  • 52. Kang, Y. O., Yoon, I. S., Lee, S. Y., Kim, D. D., Lee, S. J., Park, W. H., & Hudson, S. M. (2010). Chitosan‐coated poly (vinyl alcohol) nanofibers for wound dressings. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 92(2), 568-576.
  • 53. Yang, Q., Xie, Z., Hu, J., & Liu, Y. (2021). Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Materials Science and Engineering: C, 128, 112319.
  • 54. Ezhilarasu, H., Vishalli, D., Dheen, S. T., Bay, B. H., & Srinivasan, D. K. (2020). Nanoparticle-based therapeutic approach for diabetic wound healing. Nanomaterials, 10(6), 1234.
  • 55. Islam, M., Karmakar, P. C., Arifuzzaman, M., Karim, N., Akhtar, N., & Asaduzzaman, S. M. (2023). Human amniotic membrane and titanium dioxide nanoparticle derived gel for burn wound healing in a rat model. Regenerative Engineering and Translational Medicine, 9(2), 249-262.
  • 56. Rybka, M., Mazurek, Ł., & Konop, M. (2022). Beneficial effect of wound dressings containing silver and silver nanoparticles in wound healing—from experimental studies to clinical practice. Life, 13(1), 69.
  • 57. Galante, A. J., Haghanifar, S., Romanowski, E. G., Shanks, R. M., & Leu, P. W. (2020). Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles. ACS applied materials & interfaces, 12(19), 22120-22128.
  • 58. Baysal, G., Önder, S., Göcek, İ., Trabzon, L., Kızıl, H., Kök, F. N., & Kayaoğlu, B. K. (2015). Design and fabrication of a new nonwoven-textile based platform for biosensor construction. Sensors and Actuators B: Chemical, 208, 475-484.
  • 59. Xu, B. (1996). Measurement of pore characteristics in nonwoven fabrics using image analysis. Clothing and Textiles Research Journal, 14(1), 81-88.
  • 60. Holbrook, R. D., Galyean, A. A., Gorham, J. M., Herzing, A., & Pettibone, J. (2015). Overview of nanomaterial characterization and metrology. In Frontiers of nanoscience (Vol. 8, pp. 47-87). Elsevier.
  • 61. McMullan, D. (1965). Scanning Electron. Microscopy, 175-185.
  • 62. Dudkiewicz, A., Tiede, K., Loeschner, K., Jensen, L. H. S., Jensen, E., Wierzbicki, R., ... & Molhave, K. (2011). Characterization of nanomaterials in food by electron microscopy. TrAC Trends in Analytical Chemistry, 30(1), 28-43.
  • 63. Zhu, Y., & Dürr, H. (2015). The future of electron microscopy. Physics Today, 68(4), 32-38.
  • 64. Mohammed, A., & Abdullah, A. (2018, November). Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania (Vol. 2018, pp. 7-9).
  • 65. Zadora, G., & Brożek-Mucha, Z. (2003). SEM–EDX—a useful tool for forensic examinations. Materials chemistry and physics, 81(2-3), 345-348.
  • 66. Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., & Chougule, M. B. (2019). i RK Tekade,„Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development “, u Basic Fundamentals of Drug Delivery.
  • 67. Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., & Bonanno, E. (2018). Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis. European journal of histochemistry: EJH, 62(1).
  • 68. Tang, C. Y., & Yang, Z. (2017). Transmission electron microscopy (TEM). In Membrane characterization (pp. 145-159). Elsevier.
  • 69. Mansoureh, G., & Parisa, V. (2018). Synthesis of metal nanoparticles using laser ablation technique. In Emerging applications of nanoparticles and architecture nanostructures (pp. 575-596). Elsevier.
  • 70. Egerton, R. F., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35(6), 399-409.
  • 71. Birdi, K. S. (2003). Scanning probe microscopes: applications in science and technology. CRC press.
  • 72. Giessibl, F. J. (2003). Advances in atomic force microscopy. Reviews of modern physics, 75(3), 949.
  • 73. Trache, A., & Meininger, G. A. (2008). Atomic force microscopy (AFM). Current protocols in microbiology, 8(1), 2C-2.
  • 74. Wei, Q. F., & Wang, X. Q. (2004). AFM characterisation of technical fibres. Journal of industrial textiles, 34(1), 51-60.
  • 75. Kacher, J., Landon, C., Adams, B. L., & Fullwood, D. (2009). Bragg's Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy, 109(9), 1148-1156.
  • 76. Connolly, J. R. (2012). Elementary crystallography for X-ray diffraction. EPS400-002.
  • 77. Piga, G., Thompson, T. J., Malgosa, A., & Enzo, S. (2009). The potential of X‐ray diffraction in the analysis of burned remains from forensic contexts. Journal of Forensic Sciences, 54(3), 534-539.
  • 78. Ekpunobi, U. E., Duru, C. B., & Obumselu, F. (2013). XRD characterization of sand deposit in river Niger (South Eastern Nigeria).
  • 79. Andreeva, P., Stoilov, V., & Petrov, O. (2011). Application of X-Ray diffraction analysis for sedimentological investigation of Middle Devonian dolomites from Northeastern Bulgaria. Geologica Balcanica, 40(1-3), 31-38.
  • 80. Bunaciu, A. A., UdriŞTioiu, E. G., & Aboul-Enein, H. Y. (2015). X-ray diffraction: instrumentation and applications. Critical reviews in analytical chemistry, 45(4), 289-299.
  • 81. Lang, A. R. (1959). Studies of Individual Dislocations in Crystals by X‐Ray Diffraction Microradiography. Journal of Applied Physics, 30(11), 1748-1755.
  • 82. Authier, A. (2001). Dynamical theory of X-ray diffraction. International Union of Crystallography Monographs on Crystallography, 11, Chapter-16.
  • 83. Zolotov, D. A., Buzmakov, A. V., Asadchikov, V. E., Voloshin, A. E., Shkurko, V. N., & Smirnov, I. S. (2011). Study of the internal structure of lithium fluoride single crystal by laboratory X-ray topo-tomography. Crystallography Reports, 56, 393-396.
  • 84. Bowen, D. K., & Tanner, B. K. (1998). High resolution X-ray diffractometry and topography. CRC press.
  • 85. Shul’pina, I. L., & Prokhorov, I. A. (2012). X-ray diffraction topography for materials science. Crystallography Reports, 57, 661-669.
  • 86. Bonse, U. K., Hart, M., & Newkirk, J. B. (1966). X-ray diffraction topography. Advances in X-ray analysis, 10, 1-8.
  • 87. Izumi, K., Sawamura, S., & Ataka, M. (1996). X-ray topography of lysozyme crystals. Journal of crystal growth, 168(1-4), 106-111.
  • 88. Lider, V. V. (2021). X-ray diffraction topography methods. Physics of the Solid State, 63, 189-214.
  • 89. Suvorov, E. V. (2018). X-Ray topography: yesterday, today, and prospects for the future. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 12, 835-852.
  • 90. Salvo, L., Cloetens, P., Maire, E., Zabler, S., Blandin, J. J., Buffiere, J. Y., ... & Josserond, C. (2003). X-ray micro-tomography an attractive characterisation technique in materials science. Nuclear instruments and methods in physics research section B: Beam interactions with materials and atoms, 200, 273-286.
  • 91. Illerhaus, B., Goebbels, J., Kettschau, A., & Reimers, P. (1988). Non Destructive Waste form and Package Characterization by Computerized Tomography. MRS Online Proceedings Library, 127, 507-512.
  • 92. Kastner, J., & Heinzl, C. (2015). X-ray computed tomography for non-destructive testing and materials characterization. Integrated Imaging and Vision Techniques for Industrial Inspection: Advances and Applications, 227-250.
  • 93. Kastner, J., Plank, B., Salaberger, D., & Sekelja, J. (2010, November). Defect and porosity determination of fibre reinforced polymers by X-ray computed tomography. In 2nd International Symposium on NDT in Aerospace (pp. 1-12). Hamburg, Germany: NDT.
  • 94. Salaberger, D., Kannappan, K. A., Kastner, J., Reussner, J., & Auinger, T. (2011). Evaluation of computed tomography data from fibre reinforced polymers to determine fibre length distribution. International Polymer Processing, 26(3), 283-291.
  • 95. Chirayil, C. J., Abraham, J., Mishra, R. K., George, S. C., & Thomas, S. (2017). Instrumental techniques for the characterization of nanoparticles. In Thermal and rheological measurement techniques for nanomaterials characterization (pp. 1-36). Elsevier.
  • 96. Chen, Z., Dinh, H. N., & Miller, E. (2013). Photoelectrochemical water splitting (Vol. 344, pp. 6-15). New York: Springer.
  • 97. Łobiński, R., & Marczenko, Z. (1992). Recent advances in ultraviolet-visible spectrophotometry. Critical Reviews in Analytical Chemistry, 23(1-2), 55-111.
  • 98. Ghasempour, R., & Narei, H. (2018). CNT basics and characteristics. In Carbon nanotube-reinforced polymers (pp. 1-24). Elsevier.
  • 99. Akçe, M. A., & Kadıoğlu, Y. K. (2020). Raman spektroskopisinin ilkeleri ve mineral tanımlamalarında kullanılması. Nevşehir Bilim ve Teknoloji Dergisi, 9(2), 99-115.
  • 100. Kranz, C., & Mizaikoff, B. (2019). Nanomaterials| Characterization methods. In Encyclopedia of Analytical Science (pp. 98-107).
  • 101. Araujo, C. F., Nolasco, M. M., Ribeiro, A. M., & Ribeiro-Claro, P. J. (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water research, 142, 426-440.
  • 102. Dwivedi, C., Pandey, I., Pandey, H., Ramteke, P. W., Pandey, A. C., Mishra, S. B., & Patil, S. (2017). Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In Nano-and Microscale Drug Delivery Systems (pp. 147-164). Elsevier.
  • 103. Titus, D., Samuel, E. J., & Roopan, S. M. (2019). Green synthesis, characterization and applications of nanoparticles. Micro and Nano Technologies, 12, 303-319
  • 104. Asmatulu, R., & Khan, W. S. (2019). Chapter 13-Characterization of electrospun nanolifs. Synthesis and Applications of Electrospun Nanolifs, 257.
  • 105. Scimeca, M., Orlandi, A., Terrenato, I., Bischetti, S., & Bonanno, E. (2014). Assessment of metal contaminants in non-small cell lung cancer by EDX microanalysis. European journal of histochemistry: EJH, 58(3).
  • 106. Fernandez-Segura, E., & Warley, A. (2008). Electron probe X-ray microanalysis for the study of cell physiology. Methods in cell biology, 88, 19-43.
  • 107. Morgan, A. J. (1985). X-ray microanalysis in electron microscopy for biologists. Royal Microscopical Society Microscopy Handbook, 5, 1-79.
  • 108. Mobini, S., Solati-Hashjin, M., Peirovi, H., Osman, N. A. A., Gholipourmalekabadi, M., Barati, M., & Samadikuchaksaraei, A. (2013). Bioactivity and biocompatibility studies on silk-based scaffold for bone tissue engineering. J Med Biol Eng, 33(2), 207-14.
  • 109. Wei, Q., Yu, L., Hou, D., & Huang, F. (2008). Surface characterization and properties of functionalized nonwoven. Journal of Applied Polymer Science, 107(1), 132-137.
  • 110. Paddock, S. W. (1999). Confocal laser scanning microscopy. Biotechniques, 27(5), 992-1004.
  • 111. Alvarez-Román, R., Naik, A., Kalia, Y. N., Fessi, H., & Guy, R. H. (2004). Visualization of skin penetration using confocal laser scanning microscopy. European Journal of Pharmaceutics and Biopharmaceutics, 58(2), 301-316.
  • 112. Reichhardt, C., & Parsek, M. R. (2019). Confocal laser scanning microscopy for analysis of Pseudomonas aeruginosa biofilm architecture and matrix localization. Frontiers in microbiology, 10, 677.
  • 113. Hamada, H., Bousfield, D. W., & Luu, W. T. (2008, January). The absorption mechanism of aqueous and solvent inks into synthetic nonwoven fabrics. In NIP & Digital Fabrication Conference (Vol. 24, pp. 549-552). Society of Imaging Science and Technology.
  • 114. Mohan, A. (2003). Formation and characterization of electrospun nonwoven webs.
  • 115. Prime, R. B., Bair, H. E., Vyazovkin, S., Gallagher, P. K., & Riga, A. (2009). Thermogravimetric analysis (TGA). Thermal analysis of polymers: Fundamentals and applications, 241-317.
  • 116. Bottom, R. (2008). Thermogravimetric analysis. Principles and applications of thermal analysis, 87-118.
  • 117. Lothenbach, B., Durdzinski, P., & De Weerdt, K. (2016). Thermogravimetric analysis. A practical guide to microstructural analysis of cementitious materials, 1, 177-211.
  • 118. De Blasio, C., & De Blasio, C. (2019). Thermogravimetric analysis (TGA). Fundamentals of Biofuels Engineering and Technology, 91-102.
  • 119. Menczel, J. D., Judovits, L., Prime, R. B., Bair, H. E., Reading, M., & Swier, S. (2009). Differential scanning calorimetry (DSC). Thermal analysis of polymers: Fundamentals and applications, 7-239.
  • 120. Spink, C. H. (2008). Differential scanning calorimetry. Methods in cell biology, 84, 115-141.
  • 121. Kim, J. S., & Lee, D. S. (2000). Thermal properties of electrospun polyesters. Polymer journal, 32(7), 616-618.
  • 122. Bais-Singh, S., & Goswami, B. C. (1995). Theoretical determination of the mechanical response of spun-bonded nonwovens. Journal of the Textile Institute, 86(2), 271-288.
  • 123. Zhu, G., Kremenakova, D., Wang, Y., & Militky, J. (2015). Air permeability of polyester nonwoven fabrics. Autex Research Journal, 15(1), 8-12.
  • 124. Zhang, X., & Lu, Y. (2014). Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polymer Reviews, 54(4), 677-701.
  • 125. Hearle, J. W. S., & Stevenson, P. J. (1963). Nonwoven fabric studies: Part III: The anisotropy of nonwoven fabrics. Textile Research Journal, 33(11), 877-888.
  • 126. T.C. Millî Eğitim Bakanlığı. (2015). Renk Haslığı Testleri (Mekanik) 1, Tekstil Teknolojisi, (pp.1-29).
  • 127. T.C. Millî Eğitim Bakanlığı. (2012). Renk Haslığı Testleri (Su ile), Tekstil Teknolojisi, (pp.1- 29).
  • 128. Cenni, E., Ciapetti, G., Granchi, D., Arciola, C. R., Savarino, L., Stea, S., ... & Pizzoferrato, A. (1999). Established cell lines and primary cultures in testing medical devices in vitro. Toxicology in vitro, 13(4-5), 801-810.
  • 129. Thangaraju, P., & Varthya, S. B. (2022). ISO 10993: biological evaluation of medical devices. In Medical device guidelines and regulations handbook (pp. 163-187). Cham: Springer International Publishing. 130. Hanks, C. T., Wataha, J. C., & Sun, Z. (1996). In vitro models of biocompatibility: a review. Dental Materials, 12(3), 186-193.
  • 131. Uzun, İ. H., & Bayındır, F. (2011). Dental materyallerin biyouyumluluk test yöntemleri. Gazi Üniversitesi Diş Hekimliği Fakültesi Dergisi, 28(2), 115-122.
  • 132. Sjögren, G., Sletten, G., & Dahl, J. E. (2000). Cytotoxicity of dental alloys, metals, and ceramics assessed by millipore filter, agar overlay, and MTT tests. The Journal of prosthetic dentistry, 84(2), 229-236.
  • 133. Stanford, J. W. (1980). Recommended standard practices for cytotoxicity testing. FDI World Dental Federation in conjunction with International Standards Organization. Dent J, 30, 141-73.
  • 134. Ekwall, B., Silano, V., Paganuzzi-Stammati, A., & Zucco, F. (1990). Toxicity tests with mammalian cell cultures. Short-term toxicity tests for non-genotoxic effects, 41, 75-82.
  • 135. Martinotti, S., & Ranzato, E. (2020). Scratch wound healing assay. Epidermal cells: methods and protocols, 225-229.
  • 136. Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature protocols, 2(2), 329-333.
There are 135 citations in total.

Details

Primary Language Turkish
Subjects Material Characterization, Fabric Technologies
Journal Section Articles
Authors

Fatma Altıntaş 0000-0002-7871-1967

Ahmet Koluman 0000-0001-5308-8884

Publication Date December 31, 2024
Submission Date May 8, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2024 Volume: 31 Issue: 136

Cite

APA Altıntaş, F., & Koluman, A. (2024). DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ. Tekstil Ve Mühendis, 31(136), 277-297. https://doi.org/10.7216/teksmuh.1480467
AMA Altıntaş F, Koluman A. DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ. Tekstil ve Mühendis. December 2024;31(136):277-297. doi:10.7216/teksmuh.1480467
Chicago Altıntaş, Fatma, and Ahmet Koluman. “DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ”. Tekstil Ve Mühendis 31, no. 136 (December 2024): 277-97. https://doi.org/10.7216/teksmuh.1480467.
EndNote Altıntaş F, Koluman A (December 1, 2024) DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ. Tekstil ve Mühendis 31 136 277–297.
IEEE F. Altıntaş and A. Koluman, “DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ”, Tekstil ve Mühendis, vol. 31, no. 136, pp. 277–297, 2024, doi: 10.7216/teksmuh.1480467.
ISNAD Altıntaş, Fatma - Koluman, Ahmet. “DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ”. Tekstil ve Mühendis 31/136 (December 2024), 277-297. https://doi.org/10.7216/teksmuh.1480467.
JAMA Altıntaş F, Koluman A. DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ. Tekstil ve Mühendis. 2024;31:277–297.
MLA Altıntaş, Fatma and Ahmet Koluman. “DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ”. Tekstil Ve Mühendis, vol. 31, no. 136, 2024, pp. 277-9, doi:10.7216/teksmuh.1480467.
Vancouver Altıntaş F, Koluman A. DOKUSUZ YÜZEYLERİN BİYOMEDİKAL ALANDA KULLANIMLARI VE KARAKTERİZASYON YÖNTEMLERİ. Tekstil ve Mühendis. 2024;31(136):277-9.