Research Article
BibTex RIS Cite

DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES

Year 2025, Volume: 32 Issue: 137, 14 - 22, 30.03.2025
https://doi.org/10.7216/teksmuh.1560756

Abstract

Nanofibrous polymeric biomaterials that incorporate bioactive agents have emerged as a focal point in various applications due to their distinctive properties. Walnut and pumpkin seed oils, which are rich in bioactive compounds, significantly enhance antioxidant capacity, exhibit anti-inflammatory effects, and support skin hydration. This study aimed to produce and characterize (poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibrous mats and sponges loaded with varying concentrations of walnut and pumpkin seed oils, utilizing electrospinning and wet-electrospinning techniques. The morphologies of the developed biomaterials were investigated through scanning electron microscopy (SEM), revealing that the mats presented smooth, continuous fibers free of beads, while the sponges showcased a three-dimensional, porous structure that was equally bead-free. Fiber diameter analysis using ImageJ software indicated an average range of 500 to 800 nm. Additionally, the percent porosity of the mats was approximately 60%, whereas the sponges exhibited about 75% porosity. To further analyze the chemical structure and confirm the presence of the oils, Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) was employed. The findings from this research demonstrated the successful production of PHBV nanofibrous mats and sponges loaded with walnut and pumpkin seed oils for the first time. These innovative materials show considerable promise for biomedical applications, including bioactive packaging, facial masks, and wound dressing.

References

  • Wei, L., Yu, H., Sun, R., Liu, C., Chen, M., Liu, H., Xiong, J., Quin, X., (2021), Experimental investigation of process parameters for the filtration property of nanofiber membrane fabricated by needleless electrospinning apparatus, Journal of Industrial Textiles, 50, 9, 1528-1541.
  • Dirlik-Uysal, D., Mínguez-García, D., Bou-Belda, E., Gisbert-Payá, J., Bonet-Aracil, M. (2024), Thermo-Regulated Cotton: Enhanced Insulation through PVA Nanofiber-Coated PCM Microcapsules. Applied Sciences, 14, 4725.
  • Sanchaniya, J. V., Lasenko, I., Kanukuntla, S. P., Mannodi, A., Viluma-Gudmona, A., & Gobins, V. (2023), Preparation and characterization of non-crimping laminated textile composites reinforced with electrospun nanofibers. Nanomaterials, 13, 13, 1949.
  • Kara, A., Colpankan Gunes, O., Ziylan Albayrak, A., Bilici, G., Erbil, G., Havitcioglu, H., (2020), Fish scale/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous composite scaffolds for bone regeneration, Journal of Biomaterials Applications, 34, 9, 1201-1215.
  • Colpankan Gunes, O., Kara, A., Baysan, G., Husemoglu, R. B., Akokay, P., Ziylan Albayrak, A., Ergur, B. U., Havitcioglu, H. (2022), Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nanofiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering, Journal of Biomaterials Applications, 37, 4, 683-697.
  • Fahimirad, S., Khaki, M., Ghaznavi-Rad, E., Abtahi, H., (2024), Investigation of a novel bilayered PCL/PVA electrospun nanofiber incorporated Chitosan-LL37 and Chitosan-VEGF nanoparticles as an advanced antibacterial cell growth-promoting wound dressing, International Journal of Pharmaceutics, 661, 124341.
  • Desai, K., Kit, K., Li, J., Davidson, P. M., Zivanovic, S., Meyer, H., (2009), Nanofibrous chitosan non-wovens for filtration applications, Polymer, 50, 15, 3661-3669,
  • Chowdhury, S. A., Saha, M. C., Patterson, S., Robison, T., Liu, Y., (2019), Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications, Advanced Materials Technologies, 4, 1800398.
  • Kalbali, N., Hashemi-Najafabadi, S., Bagheri, F., (2023), Improving pore size of electrospun gelatin scaffolds containing graphene oxide using PEG as a sacrificial agent for bone tissue engineering, International Journal of Polymeric Materials and Polymeric Biomaterials, 73, 12, 1068-1077.
  • Sun, B., Long, Y., Zhang, H., Li, M., Duvail, J., Jiang, X., Yin, H., (2014), Advances in three-dimensional nanofibrous macrostructures via electrospinning, Progress in Polymer Science, 39, 862-890.
  • Kim, M. S., Kim, G., (2014), Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds, Carbohydrate Polymers, 114, 213-221.
  • Kostakova, E., Seps, M., Pokorny, P., Lukas, D., (2014), Study of polycaprolactone wet electrospinning process, Express Polymer Letters, 8, 8, 554-564.
  • Taskin, M. B., Xu, R., Gregersen, H. V., Nygaard, J. V., Besenbacher, F., Chen, M., (2016), Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation, ACS Applied Materials and Interfaces, 8, 25, 15864-15873.
  • Ahmadian, A., Shafiee, A., Aliahmad, N., Agarwal, M., (2021), Overview of nano-fiber bundles fabrication via electrospinning and morphology analysis, Textiles, 1, 2, 206-226.
  • Dong, B., Smith, M., Wnek, G. E., (2009), Encapsulation of multiple biological compounds within a single electrospun fiber. Small, 5, 13, 1508-1512.
  • Amorim, L. F. A., Mouro, C., Gouveia, I. C., (2024), Electrospun fiber materials based on polysaccharides and natural colorants for food packaging applications. Cellulose, 31, 10, 6043-6069.
  • Sultana, N., Wang, M. J., (2008), Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterization of the scaffolds. Journal of Materials Science: Materials in Medicine, 19, 7, 2555-2561.
  • Li, Z., Yang, J., Loh, X., (2016), Polyhydroxyalkanoates: opening doors for a sustainable future, NPG Asia Materials, 8, e265.
  • Kaniuk Ł., Stachewicz U., (2021), Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomaterials Science and Engineering, 7, 12), 5339-5362.
  • Piras, A., Rosa, A., Marongiu, B., Porcedda, S., Falconieri, D., Dessì, M. A., Ozcelik, B., Koca, U., (2013), Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide, Industrial Crops and Products, 46, 317-323.
  • Oliveira, R. L., Gomes, R. S., Almeida, C. F., Júnior, R. M., Rocha, J. R., Silva, D. J. H., Carneiro, P. C. S. (2021), Multitrait selection of pumpkin genotypes aimed at reducing the growth habit and improving seed production, Crop Science, 61, 3, 1620-1629.
  • Bardaa, S., Halima, N., Aloui, F., Mansour, R., Jabeur, H., Bouaziz, M., Sahnoun, Z., (2016), Oil from pumpkin (cucurbita pepo l.) seeds: evaluation of its functional properties on wound healing in rats, Lipids in Health and Disease, 15, 73.
  • Setsiripakdee, A., Lourith, N., Kanlayavattanakul, M., (2019), In vitro and in vivo removal efficacies of a formulated pumpkin seed oil makeup remover. Journal of Surfactants and Detergents, 22, 6, 1461-1467.
  • Seymen, M., Uslu, N., Türkmen, Ö., Juhaimi, F. A., Özcan, M. M., (2016), Chemical compositions and mineral contents of some hull‐less pumpkin seed and oils. Journal of the American Oil Chemists' Society, 93, 8, 1095-1099.
  • Lisa, S. A., Kabir, M. A., Khan, S. (2022), Utilization of seed from cucurbita maxima, a pumpkin variety of bangladesh, converting into refined oil and oilcake. Discover Food, 2, 19.
  • Liao, J., Nai, Y., Li, F., Chen, Y., Mei, L., Xu, H., (2020), Walnut oil prevents scopolamine-induced memory dysfunction in a mouse model, Molecules, 25, 7, 1630.
  • Gao, P., Cao, Y., Liu, R., Jin, Q., Wang, X., (2018), Phytochemical content, minor‐constituent compositions, and antioxidant capacity of screw‐pressed walnut oil obtained from roasted kernels, European Journal of Lipid Science and Technology, 121, 1, 1800292.
  • Özkan, G., Koyuncu, M., (2005), Physical and chemical composition of some walnut (Juglans regia L) genotypes grown in Turkey, Grasas Y Aceites, 56, 2.
  • Tian, L., Zhang, S., Yi, J., Zhu, Z., Decker, E., McClements, D., (2022), The impact of konjac glucomannan on the physical and chemical stability of walnut oil‐in‐water emulsions coated by whey proteins, Journal of the Science of Food and Agriculture, 102, 10, 4003-4011.
  • Ribes, D.D., de Avila Delucis, R., Acosta, A.P., Barbosa, K. T., Piva, E., Alberto Gatto, E. D., Lund, R. G., Beltrame, R., (2024), Exploring diverse vegetable oils in crafting next-gen bio-curatives containing cellulose nanofibrils and chitosan. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-024-05391-x
  • Rezk, M. Y., Ibrahim, S., Khalil, E. A., Saba, D. A., Abdellatif, M., Abdellatif, A., Allam, N. K., (2023), Pumpkin seed oil ‐loaded chitosan/polyvinyl alcohol electrospun nanofiber scaffold for dermal and oral wound dressing. ChemistrySelect, 8, 26.
  • Colpankan Gunes, O., Unalan, I., Cecen, B., Ziylan Albayrak, A., Havitcioglu, H., Ustun O., Ergur, B. U., (2019), Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration, International Journal of Polymeric Materials and Polymeric Biomaterials, 68, 5, 217-228.
  • Choi, J. S., Lee, S. W., Jeong, L., Bae, S. H., Min, B. C., Youk, J. H., Park, W. H., (2004), Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate), International Journal of Biological Macromolecules, 34, 249-256.
  • Yin, M., Liu, M., Cao, Q. Y., Wu, J., Liu, T., Liu, J., (2012), Effect of pre-freezing rate on porosity ratio and mechanical property of pig aorta, Frontiers in Bioscience, 17, 1, 575.
  • Salehi, M., Niyakan, M., Ehterami, A., Haghi-Daredeh, S., Nazarnezhad, S., Abbaszadeh-Goudarzi, G., Mousavi, S., (2019), Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomedical Engineering Letters, 10, 1, 149-161.
  • Berechet, M. D., Gaidău, C., Miletić, A., Pilić, B., Râpă, M., Stanca, M., Lazea-Stoyanova, A., (2020), Bioactive properties of nanofibres based on concentrated collagen hydrolysate loaded with thyme and oregano essential oils, Materials, 13, 7, 1618.
  • Chomachayi, M. D., Solouk, A., Akbari, S., Sadeghi, D., Mirahmadi, F., Mirzadeh, H., (2018), Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. Journal of Biomedical Materials Research Part A, 106, 4, 1092-1103.
  • Cloete, W. J., Hayward, S., Klumperman, B., (2019), Degradation of proteins and starch by combined immobilization of protease, α-amylase and β-galactosidase on a single electrospun nanofibrous membrane, Molecules, 24, 3, 508.
  • Tomić, S. L., Nikodinović‐Runić, J., Vukomanović, M., Babić, M. M., Vuković, J. S., (2021), Novel hydrogel scaffolds based on alginate, gelatin, 2-hydroxyethyl methacrylate, and hydroxyapatite, Polymers, 13, 6, 932.
  • Hosseini, F., Miri, M. A., Najafi, M., Soleimanifard, S., Aran, M. (2021), Encapsulation of rosemary essential oil in zein by electrospinning technique, Journal of Food Science, 86, 9, 4070-4086.
  • Ansarifar, E., Moradinezhad, F., (2022), Encapsulation of thyme essential oil using electrospun zein fiber for strawberry preservation, Chemical and Biological Technologies in Agriculture, 9, 1, 1–11.
  • Arik, N., Horzum, N., Truong, Y. B., (2022), Development and Characterizations of Engineered Electrospun Bio-Based Polyurethane Containing Essential Oils, Membranes, 12, 2, 209.
  • Unalan, I., Endlein, S. J., Slavik, B., Buettner, A., Goldmann, W. H. Detsch, R., Boccaccini, A. R., (2019), Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing, Pharmaceutics 2019, 11, 11, 570
  • Unalan I, Colpankan O, Albayrak, A. Z, Gorgun, C., Sendemir Urkmez, A., (2016), Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration, Materials Science and Engineering: C, 68, 1, 842-850.
  • Lee, B. L. P., Jeon, H., Wang, A., Yan, Z., Yu, J., Grigoropoulos, C. P., Li, S., (2012), Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta Biomaterialia, 8, 7, 2648-2658.
  • Colpankan Gunes, O., Ziylan Albayrak, A., Tasdemir, S., Sendemir, A., (2020), Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair, Journal of Biomaterials Applications, 35, 4–5, 515–531.
  • Liang, P., Chen, C., Zhao, S., Ge, F., Liu, D., Liu, B., Fan, Q., Han, B., Xiong, X., (2013), Application of Fourier Transform Infrared Spectroscopy for the Oxidation and Peroxide Value Evaluation in Virgin Walnut Oil, Journal of Spectroscopy, 138728.
  • Irnawati Riyanto, S., Martono, S., Rohman, A., (2020), The employment of FTIR spectroscopy and chemometrics for authentication of pumpkin seed oil from sesame oil, Food Research, 4, 1, 42-48.

CEVİZ VE KABAK ÇEKİRDEĞİ YAĞI ENTEGRE EDİLMİŞ PHBV NANOLİFLİ YÜZEY VE NANOLİFLİ SÜNGERLERİN GELİŞTİRİLMESİ

Year 2025, Volume: 32 Issue: 137, 14 - 22, 30.03.2025
https://doi.org/10.7216/teksmuh.1560756

Abstract

Biyoaktif maddeler içeren nanolifli polimerik biyomalzemeler benzersiz özellikleri nedeniyle çeşitli alanlarda büyük ilgi çekmektedir. Zengin biyoaktif bileşikleriyle bilinen ceviz ve kabak çekirdeği yağları, antioksidan kapasiteyi artırır, anti-inflamatuar etki gösterir ve cilt nemlenmesini destekler. Bu çalışma, farklı konsantrasyonlarda ceviz yağı ve kabak çekirdeği yağı entegre edilmiş poli (3-hidroksibutirat-ko-3-hidroksivalerat) (PHBV) nanolifli yüzey ve nanolifli süngerlerin elektroeğirme ve ıslak elektroeğirme teknikleri kullanılarak üretilmesini ve karakterize edilmesini amaçlamaktadır. Üretilen biyomalzemelerin morfolojileri taramalı elektron mikroskobu (SEM) ile karakterize edilmiştir. Sonuçlar, matların pürüzsüz, boncuksuz ve sürekli lifler sergilediğini, süngerlerin ise üç boyutlu, gözenekli ve boncuksuz lifli bir yapıya sahip olduğunu göstermiştir. Liflerin ortalama çapı SEM görüntülerinden Image J programı ile 500-800 nm olarak bulunmuştur. Ek olarak, nanolifli yüzeylerin gözeneklilik yüzdesi yaklaşık %60 iken, süngerler yaklaşık %75 gözeneklilik sergilemiştir. Kimyasal yapıyı analiz etmek ve yağların malzeme içerisine dahil edildiğini doğrulamak amacı ile zayıflatılmış toplam yansıma Fourier dönüşümlü kızılötesi spektroskopisi (ATR-FTIR) kullanılmıştır. Bulgular, ceviz ve kabak çekirdeği yağları içeren PHBV nanolifli yüzeylerin ve süngerlerin ilk kez başarıyla üretildiğini göstermiştir. Bu malzemeler biyoaktif ambalaj, yüz maskeleri ve yara örtüsü gibi biyomedikal uygulamalar için umut verici bir potansiyele sahiptir.

References

  • Wei, L., Yu, H., Sun, R., Liu, C., Chen, M., Liu, H., Xiong, J., Quin, X., (2021), Experimental investigation of process parameters for the filtration property of nanofiber membrane fabricated by needleless electrospinning apparatus, Journal of Industrial Textiles, 50, 9, 1528-1541.
  • Dirlik-Uysal, D., Mínguez-García, D., Bou-Belda, E., Gisbert-Payá, J., Bonet-Aracil, M. (2024), Thermo-Regulated Cotton: Enhanced Insulation through PVA Nanofiber-Coated PCM Microcapsules. Applied Sciences, 14, 4725.
  • Sanchaniya, J. V., Lasenko, I., Kanukuntla, S. P., Mannodi, A., Viluma-Gudmona, A., & Gobins, V. (2023), Preparation and characterization of non-crimping laminated textile composites reinforced with electrospun nanofibers. Nanomaterials, 13, 13, 1949.
  • Kara, A., Colpankan Gunes, O., Ziylan Albayrak, A., Bilici, G., Erbil, G., Havitcioglu, H., (2020), Fish scale/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibrous composite scaffolds for bone regeneration, Journal of Biomaterials Applications, 34, 9, 1201-1215.
  • Colpankan Gunes, O., Kara, A., Baysan, G., Husemoglu, R. B., Akokay, P., Ziylan Albayrak, A., Ergur, B. U., Havitcioglu, H. (2022), Fabrication of 3D Printed poly(lactic acid) strut and wet-electrospun cellulose nanofiber reinforced chitosan-collagen hydrogel composite scaffolds for meniscus tissue engineering, Journal of Biomaterials Applications, 37, 4, 683-697.
  • Fahimirad, S., Khaki, M., Ghaznavi-Rad, E., Abtahi, H., (2024), Investigation of a novel bilayered PCL/PVA electrospun nanofiber incorporated Chitosan-LL37 and Chitosan-VEGF nanoparticles as an advanced antibacterial cell growth-promoting wound dressing, International Journal of Pharmaceutics, 661, 124341.
  • Desai, K., Kit, K., Li, J., Davidson, P. M., Zivanovic, S., Meyer, H., (2009), Nanofibrous chitosan non-wovens for filtration applications, Polymer, 50, 15, 3661-3669,
  • Chowdhury, S. A., Saha, M. C., Patterson, S., Robison, T., Liu, Y., (2019), Highly conductive polydimethylsiloxane/carbon nanofiber composites for flexible sensor applications, Advanced Materials Technologies, 4, 1800398.
  • Kalbali, N., Hashemi-Najafabadi, S., Bagheri, F., (2023), Improving pore size of electrospun gelatin scaffolds containing graphene oxide using PEG as a sacrificial agent for bone tissue engineering, International Journal of Polymeric Materials and Polymeric Biomaterials, 73, 12, 1068-1077.
  • Sun, B., Long, Y., Zhang, H., Li, M., Duvail, J., Jiang, X., Yin, H., (2014), Advances in three-dimensional nanofibrous macrostructures via electrospinning, Progress in Polymer Science, 39, 862-890.
  • Kim, M. S., Kim, G., (2014), Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds, Carbohydrate Polymers, 114, 213-221.
  • Kostakova, E., Seps, M., Pokorny, P., Lukas, D., (2014), Study of polycaprolactone wet electrospinning process, Express Polymer Letters, 8, 8, 554-564.
  • Taskin, M. B., Xu, R., Gregersen, H. V., Nygaard, J. V., Besenbacher, F., Chen, M., (2016), Three-dimensional polydopamine functionalized coiled microfibrous scaffolds enhance human mesenchymal stem cells colonization and mild myofibroblastic differentiation, ACS Applied Materials and Interfaces, 8, 25, 15864-15873.
  • Ahmadian, A., Shafiee, A., Aliahmad, N., Agarwal, M., (2021), Overview of nano-fiber bundles fabrication via electrospinning and morphology analysis, Textiles, 1, 2, 206-226.
  • Dong, B., Smith, M., Wnek, G. E., (2009), Encapsulation of multiple biological compounds within a single electrospun fiber. Small, 5, 13, 1508-1512.
  • Amorim, L. F. A., Mouro, C., Gouveia, I. C., (2024), Electrospun fiber materials based on polysaccharides and natural colorants for food packaging applications. Cellulose, 31, 10, 6043-6069.
  • Sultana, N., Wang, M. J., (2008), Fabrication of HA/PHBV composite scaffolds through the emulsion freezing/freeze-drying process and characterization of the scaffolds. Journal of Materials Science: Materials in Medicine, 19, 7, 2555-2561.
  • Li, Z., Yang, J., Loh, X., (2016), Polyhydroxyalkanoates: opening doors for a sustainable future, NPG Asia Materials, 8, e265.
  • Kaniuk Ł., Stachewicz U., (2021), Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomaterials Science and Engineering, 7, 12), 5339-5362.
  • Piras, A., Rosa, A., Marongiu, B., Porcedda, S., Falconieri, D., Dessì, M. A., Ozcelik, B., Koca, U., (2013), Chemical composition and in vitro bioactivity of the volatile and fixed oils of Nigella sativa L. extracted by supercritical carbon dioxide, Industrial Crops and Products, 46, 317-323.
  • Oliveira, R. L., Gomes, R. S., Almeida, C. F., Júnior, R. M., Rocha, J. R., Silva, D. J. H., Carneiro, P. C. S. (2021), Multitrait selection of pumpkin genotypes aimed at reducing the growth habit and improving seed production, Crop Science, 61, 3, 1620-1629.
  • Bardaa, S., Halima, N., Aloui, F., Mansour, R., Jabeur, H., Bouaziz, M., Sahnoun, Z., (2016), Oil from pumpkin (cucurbita pepo l.) seeds: evaluation of its functional properties on wound healing in rats, Lipids in Health and Disease, 15, 73.
  • Setsiripakdee, A., Lourith, N., Kanlayavattanakul, M., (2019), In vitro and in vivo removal efficacies of a formulated pumpkin seed oil makeup remover. Journal of Surfactants and Detergents, 22, 6, 1461-1467.
  • Seymen, M., Uslu, N., Türkmen, Ö., Juhaimi, F. A., Özcan, M. M., (2016), Chemical compositions and mineral contents of some hull‐less pumpkin seed and oils. Journal of the American Oil Chemists' Society, 93, 8, 1095-1099.
  • Lisa, S. A., Kabir, M. A., Khan, S. (2022), Utilization of seed from cucurbita maxima, a pumpkin variety of bangladesh, converting into refined oil and oilcake. Discover Food, 2, 19.
  • Liao, J., Nai, Y., Li, F., Chen, Y., Mei, L., Xu, H., (2020), Walnut oil prevents scopolamine-induced memory dysfunction in a mouse model, Molecules, 25, 7, 1630.
  • Gao, P., Cao, Y., Liu, R., Jin, Q., Wang, X., (2018), Phytochemical content, minor‐constituent compositions, and antioxidant capacity of screw‐pressed walnut oil obtained from roasted kernels, European Journal of Lipid Science and Technology, 121, 1, 1800292.
  • Özkan, G., Koyuncu, M., (2005), Physical and chemical composition of some walnut (Juglans regia L) genotypes grown in Turkey, Grasas Y Aceites, 56, 2.
  • Tian, L., Zhang, S., Yi, J., Zhu, Z., Decker, E., McClements, D., (2022), The impact of konjac glucomannan on the physical and chemical stability of walnut oil‐in‐water emulsions coated by whey proteins, Journal of the Science of Food and Agriculture, 102, 10, 4003-4011.
  • Ribes, D.D., de Avila Delucis, R., Acosta, A.P., Barbosa, K. T., Piva, E., Alberto Gatto, E. D., Lund, R. G., Beltrame, R., (2024), Exploring diverse vegetable oils in crafting next-gen bio-curatives containing cellulose nanofibrils and chitosan. Biomass Conversion and Biorefinery, DOI: 10.1007/s13399-024-05391-x
  • Rezk, M. Y., Ibrahim, S., Khalil, E. A., Saba, D. A., Abdellatif, M., Abdellatif, A., Allam, N. K., (2023), Pumpkin seed oil ‐loaded chitosan/polyvinyl alcohol electrospun nanofiber scaffold for dermal and oral wound dressing. ChemistrySelect, 8, 26.
  • Colpankan Gunes, O., Unalan, I., Cecen, B., Ziylan Albayrak, A., Havitcioglu, H., Ustun O., Ergur, B. U., (2019), Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration, International Journal of Polymeric Materials and Polymeric Biomaterials, 68, 5, 217-228.
  • Choi, J. S., Lee, S. W., Jeong, L., Bae, S. H., Min, B. C., Youk, J. H., Park, W. H., (2004), Effect of organosoluble salts on the nanofibrous structure of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate), International Journal of Biological Macromolecules, 34, 249-256.
  • Yin, M., Liu, M., Cao, Q. Y., Wu, J., Liu, T., Liu, J., (2012), Effect of pre-freezing rate on porosity ratio and mechanical property of pig aorta, Frontiers in Bioscience, 17, 1, 575.
  • Salehi, M., Niyakan, M., Ehterami, A., Haghi-Daredeh, S., Nazarnezhad, S., Abbaszadeh-Goudarzi, G., Mousavi, S., (2019), Porous electrospun poly(ε-caprolactone)/gelatin nanofibrous mat containing cinnamon for wound healing application: in vitro and in vivo study. Biomedical Engineering Letters, 10, 1, 149-161.
  • Berechet, M. D., Gaidău, C., Miletić, A., Pilić, B., Râpă, M., Stanca, M., Lazea-Stoyanova, A., (2020), Bioactive properties of nanofibres based on concentrated collagen hydrolysate loaded with thyme and oregano essential oils, Materials, 13, 7, 1618.
  • Chomachayi, M. D., Solouk, A., Akbari, S., Sadeghi, D., Mirahmadi, F., Mirzadeh, H., (2018), Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: thyme essential oil and doxycycline monohydrate release study. Journal of Biomedical Materials Research Part A, 106, 4, 1092-1103.
  • Cloete, W. J., Hayward, S., Klumperman, B., (2019), Degradation of proteins and starch by combined immobilization of protease, α-amylase and β-galactosidase on a single electrospun nanofibrous membrane, Molecules, 24, 3, 508.
  • Tomić, S. L., Nikodinović‐Runić, J., Vukomanović, M., Babić, M. M., Vuković, J. S., (2021), Novel hydrogel scaffolds based on alginate, gelatin, 2-hydroxyethyl methacrylate, and hydroxyapatite, Polymers, 13, 6, 932.
  • Hosseini, F., Miri, M. A., Najafi, M., Soleimanifard, S., Aran, M. (2021), Encapsulation of rosemary essential oil in zein by electrospinning technique, Journal of Food Science, 86, 9, 4070-4086.
  • Ansarifar, E., Moradinezhad, F., (2022), Encapsulation of thyme essential oil using electrospun zein fiber for strawberry preservation, Chemical and Biological Technologies in Agriculture, 9, 1, 1–11.
  • Arik, N., Horzum, N., Truong, Y. B., (2022), Development and Characterizations of Engineered Electrospun Bio-Based Polyurethane Containing Essential Oils, Membranes, 12, 2, 209.
  • Unalan, I., Endlein, S. J., Slavik, B., Buettner, A., Goldmann, W. H. Detsch, R., Boccaccini, A. R., (2019), Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing, Pharmaceutics 2019, 11, 11, 570
  • Unalan I, Colpankan O, Albayrak, A. Z, Gorgun, C., Sendemir Urkmez, A., (2016), Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration, Materials Science and Engineering: C, 68, 1, 842-850.
  • Lee, B. L. P., Jeon, H., Wang, A., Yan, Z., Yu, J., Grigoropoulos, C. P., Li, S., (2012), Femtosecond laser ablation enhances cell infiltration into three-dimensional electrospun scaffolds, Acta Biomaterialia, 8, 7, 2648-2658.
  • Colpankan Gunes, O., Ziylan Albayrak, A., Tasdemir, S., Sendemir, A., (2020), Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair, Journal of Biomaterials Applications, 35, 4–5, 515–531.
  • Liang, P., Chen, C., Zhao, S., Ge, F., Liu, D., Liu, B., Fan, Q., Han, B., Xiong, X., (2013), Application of Fourier Transform Infrared Spectroscopy for the Oxidation and Peroxide Value Evaluation in Virgin Walnut Oil, Journal of Spectroscopy, 138728.
  • Irnawati Riyanto, S., Martono, S., Rohman, A., (2020), The employment of FTIR spectroscopy and chemometrics for authentication of pumpkin seed oil from sesame oil, Food Research, 4, 1, 42-48.
There are 48 citations in total.

Details

Primary Language English
Subjects Polymer Technologies
Journal Section Articles
Authors

Oylum Çolpankan Güneş

Publication Date March 30, 2025
Submission Date October 3, 2024
Acceptance Date February 1, 2025
Published in Issue Year 2025 Volume: 32 Issue: 137

Cite

APA Çolpankan Güneş, O. (2025). DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES. Tekstil Ve Mühendis, 32(137), 14-22. https://doi.org/10.7216/teksmuh.1560756
AMA Çolpankan Güneş O. DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES. Tekstil ve Mühendis. March 2025;32(137):14-22. doi:10.7216/teksmuh.1560756
Chicago Çolpankan Güneş, Oylum. “DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES”. Tekstil Ve Mühendis 32, no. 137 (March 2025): 14-22. https://doi.org/10.7216/teksmuh.1560756.
EndNote Çolpankan Güneş O (March 1, 2025) DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES. Tekstil ve Mühendis 32 137 14–22.
IEEE O. Çolpankan Güneş, “DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES”, Tekstil ve Mühendis, vol. 32, no. 137, pp. 14–22, 2025, doi: 10.7216/teksmuh.1560756.
ISNAD Çolpankan Güneş, Oylum. “DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES”. Tekstil ve Mühendis 32/137 (March 2025), 14-22. https://doi.org/10.7216/teksmuh.1560756.
JAMA Çolpankan Güneş O. DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES. Tekstil ve Mühendis. 2025;32:14–22.
MLA Çolpankan Güneş, Oylum. “DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES”. Tekstil Ve Mühendis, vol. 32, no. 137, 2025, pp. 14-22, doi:10.7216/teksmuh.1560756.
Vancouver Çolpankan Güneş O. DEVELOPMENT OF WALNUT AND PUMPKIN SEED OIL-LOADED PHBV NANOFIBROUS MATS AND NANOFIBROUS SPONGES. Tekstil ve Mühendis. 2025;32(137):14-22.