Research Article
BibTex RIS Cite

MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN

Year 2025, Volume: 32 Issue: 137, 1 - 13, 30.03.2025
https://doi.org/10.7216/teksmuh.1563481

Abstract

The increasing utilization of multicomponent hybrid yarns in present world highlights their critical role in advancing protective textile technologies. In this study, hybrid yarns with dual sheath and a single core were produced in varying linear densities and twist directions where polyester and ultra-high molecular weight polyethylene (HPPE) were considered as the sheath components and stainless steel (SS)/glass yarn was taken as core component. The failure pattern and energy required for breakage of hybrid yarn were analyzed, showing that glass-core yarns exhibited multiple cracking tendency, while (SS)-core yarns rarely did. This was attributed to the lower breaking extension % of glass fibers (3.61%-3.81%) compared to SS (18.52%-28.05%), HPPE (5.20%-6.21%), and polyester (17.05%). Glass-core yarns reached their breaking extension earlier, leading to premature breakage. A mathematical model developed from load-extension curves demonstrated that HPPE contributed the most to breaking energy (68.67%), followed by polyester (18.49%) and glass (10.92%). The average absolute error of the model was calculated as 4.87% that led to average ~95% accuracy. The reason for this error was the assumptions about HPPE breakage that were considered during modeling. These findings support researchers in identifying high-performance yarns suitable for cut, stab, and slash-resistant fabrics, ensuring compliance with energy failure standards and allied industrial practices.

Project Number

RP04561

References

  • 1. Hallal ,A., Elmarakbi ,A., Shaito ,A., and El‐Hage ,H., (2013), Overview of Composite Materials and their Automotive Applications. in: Adv. Compos. Mater. Automot. Appl., Wiley, pp. 1–28.
  • 2. Puttegowda ,M., Rangappa ,S.M., Jawaid ,M., Shivanna ,P., Basavegowda ,Y., and Saba ,N., (2018), Potential of natural/synthetic hybrid composites for aerospace applications. in: Sustain. Compos. Aerosp. Appl., Elsevier, pp. 315–351.
  • 3. Chen ,M., Deng ,X., Guo ,R., Fu ,C., and Zhang ,J., (2022), Tensile Experiments and Numerical Analysis of Textile-Reinforced Lightweight Engineered Cementitious Composites. Materials. 15 (16), 5494.
  • 4. Rao ,S.V.S., Midha ,V., and Kumar ,N., (2023), Studies on the stab resistance and ergonomic comfort behaviour of multilayer STF-treated tri-component woven fabric and HPPE laminate composite material. Journal of the Textile Institute. 115 (4), 573–580.
  • 5. Vořechovský ,M., Li ,Y., Rypl ,R., and Chudoba ,R., (2021), Tensile behavior of carbon textile concrete composite captured using a probabilistic multiscale multiple cracking model. Composite Structures. 277 114624.
  • 6. Jin ,Y., Zhou ,X., Chen ,M., Zhao ,Z., Huang ,Y., Zhao ,P., et al., (2022), High toughness 3D printed white Portland cement-based materials with glass fiber textile. Materials Letters. 309 131381.
  • 7. Junge ,T., Brendgen ,R., Grassmann ,C., Weide ,T., and Schwarz-Pfeiffer ,A., (2023), Development and Characterization of Hybrid, Temperature Sensing and Heating Yarns with Color Change. Sensors. 23 (16), 7076.
  • 8. Overberg ,M., Hasan ,M.M.B., Rehra ,J., Lohninger ,E., Abdkader, A., and Cherif ,C., (2023), Development of multi-material hybrid yarns consisting of steel, glass and polypropylene filaments for fiber hybrid composites. Textile Research Journal. 93 (21–22), 4865–4878.
  • 9. Hengstermann ,M., Hasan ,M., Abdkader ,A., and Cherif ,C., (2017), Development of a new hybrid yarn construction from recycled carbon fibers (rCF) for high-performance composites. Part-II: Influence of yarn parameters on tensile properties of composites. Textile Research Journal. 87 (13), 1655–1664.
  • 10. Park ,T.Y. and Lee ,S.G., (2017), Properties of hybrid yarn made of paper yarn and filament yarn. Fibers and Polymers. 18 (6), 1208–1214.
  • 11. Dalfi ,H.K., Al-Obaidi ,A., Selver ,E., Yousaf ,Z., and Potluri ,P., (2022), Influence of yarn-hybridisation on the mechanical performance and thermal conductivity of composite laminates. Journal of Industrial Textiles. 51 (3_suppl), 5086S-5112S.
  • 12. Beaumont ,P.W.R. and Soutis ,C., (2016), Structural integrity of engineering composite materials: a cracking good yarn. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2071), 20160057.
  • 13. Rypl ,R., Chudoba ,R., Scholzen ,A., and Vořechovský ,M., (2013), Brittle matrix composites with heterogeneous reinforcement: Multi-scale model of a crack bridge with rigid matrix. Composites Science and Technology. 89 98–109.
  • 14. Li ,Y., Chudoba ,R., Bielak ,J., and Hegger ,J., (2018), A Modelling Framework for the Tensile Behavior of Multiple Cracking Composite. in: pp. 418–426.
  • 15. Junaid ,K., Zyed ,M., Nonna ,A., Gaochuang ,C., and Amir ,S.L., (2024), Tensile and cracking behaviour of crimped textile reinforced mortar (TRM) based on digital image correlation. Construction and Building Materials. 417 135321.
  • 16. Wang ,X., Cai ,D., Silberschmidt ,V. V., Deng ,J., Tian ,H., and Zhou ,G., (2019), Tensile properties of 3D multi-layer wrapping braided composite: Progressive damage analysis. Composites Part B: Engineering. 176 107334.
  • 17. Ishtiaque ,S.M., Rengasamy ,R.S., Sharma ,O.P., and Das ,B.R., (2016), Influence of fibre strength and yarn structural characteristics on tensile failure of blended spun yarns: a prediction model. Journal of the Textile Institute. 107 (1), 127–135.
  • 18. Rengasamy ,R.S., Ishtiaque ,S.M., and Das ,B.R., (2016), Dynamic failure behaviour of blended spun yarns during winding. Journal of the Textile Institute. 107 (2), 242–248.
  • 19. Rebouillat ,S., Steffenino ,B., and Miret-Casas ,A., (2010), Aramid, steel, and glass: Characterization via cut performance testing, of composite knitted fabrics and their constituent yarns, with a review of the art. Journal of Materials Science. 45 (19), 5378–5392.
  • 20. Ceballos, D.M., Tapp ,L.C., and Wiegand ,D.M., (2014), Evaluation of Cut-resistant Sleeves and Possible Fiberglass Fiber Shedding at a Steel Mill. Journal of Occupational and Environmental Hygiene. 11 (2), D28.
  • 21. Daniel (Xuedong) Li, (2019), Choice of materials for cut protective textiles. in: Cut Prot. Text., Woodhead Publishing India pvt ltd, pp. 165–174.
  • 22. Dessureault ,Y.S., Jolowsky ,C., Bell ,S., Spiric ,S., Molyneux ,J., Park ,J.G., et al., (2020), Tensile performance and failure modes of continuous carbon nanotube yarns for composite applications. Materials Science and Engineering: A. 792 (February), 139824.
  • 23. Badrul Hasan ,M.M., Nitsche ,S., Abdkader ,A., and Cherif ,C., (2019), Influence of process parameters on the tensile properties of DREF-3000 friction spun hybrid yarns consisting of waste staple carbon fiber for thermoplastic composites. Textile Research Journal. 89 (1), 32–42.
  • 24. Mankodi ,H. and Patel ,P., (2009), Study The Effect Of Commınglıng Parameters On Glass / Polypropylene Hybrıd Yarns Propertıes. AUTEX Research Journal. 9 (3), 70–73.
  • 25. Schäfer ,J., Stolyarov ,O., Ali ,R., Greb ,C., Seide ,G., and Gries ,T., (2016), Process–structure relationship of carbon/ polyphenylene sulfide commingled hybrid yarns used for thermoplastic composites. Journal of Industrial Textiles. 45 (6), 1661–1673.
  • 26. Shahzad ,A., Ali ,Z., Ali ,U., Khaliq ,Z., Zubair ,M., Kim ,I.S., et al., (2019), Development and characterization of conductive ring spun hybrid yarns. The Journal of The Textile Institute. 110 (1), 141–150.
  • 27. Martín-Meizoso ,A., Martínez-Esnaola ,J.M., Scánchez ,J.M., Puente ,I., Elizalde ,R., Daniel ,A.M., et al., (1997), Modelling the tensile fracture behaviour of the reinforcing fibre yarns in ceramic matrix composites. Fatigue and Fracture of Engineering Materials and Structures. 20 (5), 703–716.
  • 28. Lou ,C.W., Hu ,J.-J., Lu ,P.C., and Lin ,J.-H., (2016), Effect of twist coefficient and thermal treatment temperature on elasticity and tensile strength of wrapped yarns. Textile Research Journal. 86 (1), 24–33.
  • 29. Suvari ,F. and Gurvardar ,H., (2024), Revitalizing high-density polyethylene (HDPE) waste: from environmental collection to high-strength hybrid yarns. Polymer Bulletin. 81 (15), 14011–14029.

ÇIFT MANTOLU TEK ÇEKİRDEKLİ HİBRİT İPLİKTE BİLEŞEN İPLİKLERİN KOPMA ENERJİSİNİN HESAPLANMASI İÇİN MATEMATİKSEL MODEL

Year 2025, Volume: 32 Issue: 137, 1 - 13, 30.03.2025
https://doi.org/10.7216/teksmuh.1563481

Abstract

Çok bileşenli hibrit ipliklerin günümüzde artan kullanımı, koruyucu tekstil teknolojilerinin ilerletilmesindeki kritik rollerini vurgulamaktadır. Bu çalışmada, Çift Mantolu ve tek çekirdekli hibrit iplikler, polyester ve ultra yüksek moleküler ağırlıklı polietilen (HPPE) kılıf bileşenleri, paslanmaz çelik (SS)/cam iplik ise çekirdek bileşeni olarak alınarak farklı doğrusal yoğunluklar ve büküm yönlerinde üretilmiştir. Hibrit ipliklerin kopma paterni ve kopma için gereken enerji analiz edilmiştir; cam çekirdekli ipliklerin çoklu çatlama eğilimi gösterdiği, SS çekirdekli ipliklerin ise nadiren bu durumu sergilediği gözlemlenmiştir. Bu durum, cam liflerinin daha düşük kopma uzaması yüzdesine (%3.61-%3.81) sahip olmasından kaynaklanmaktadır; bu oran SS (%18.52-%28.05), HPPE (%5.20-%6.21) ve polyester (%17.05) liflerinden düşüktür. Cam çekirdekli iplikler, kopma uzamasına daha erken ulaştığından erken kopma meydana gelmiştir. Yük-uzama eğrilerinden geliştirilen matematiksel bir model, HPPE'nin kopma enerjisine en fazla katkıyı (%68.67) sağladığını, bunu polyesterin (%18.49) ve camın (%10.92) izlediğini göstermiştir. Modelin ortalama mutlak hatası %4.87 olarak hesaplanmış ve bu, yaklaşık %95 doğruluk sağlamıştır. Bu hata, modelleme sırasında HPPE kopmasıyla ilgili yapılan varsayımlardan kaynaklanmıştır. Bu bulgular, enerji arıza standartları ve ilgili endüstriyel uygulamalara uygunluğu sağlarken, araştırmacılara kesme, delme ve yırtılmaya karşı dayanıklı kumaşlar için yüksek performanslı ipliklerin belirlenmesinde destek sağlamaktadır.

Project Number

RP04561

References

  • 1. Hallal ,A., Elmarakbi ,A., Shaito ,A., and El‐Hage ,H., (2013), Overview of Composite Materials and their Automotive Applications. in: Adv. Compos. Mater. Automot. Appl., Wiley, pp. 1–28.
  • 2. Puttegowda ,M., Rangappa ,S.M., Jawaid ,M., Shivanna ,P., Basavegowda ,Y., and Saba ,N., (2018), Potential of natural/synthetic hybrid composites for aerospace applications. in: Sustain. Compos. Aerosp. Appl., Elsevier, pp. 315–351.
  • 3. Chen ,M., Deng ,X., Guo ,R., Fu ,C., and Zhang ,J., (2022), Tensile Experiments and Numerical Analysis of Textile-Reinforced Lightweight Engineered Cementitious Composites. Materials. 15 (16), 5494.
  • 4. Rao ,S.V.S., Midha ,V., and Kumar ,N., (2023), Studies on the stab resistance and ergonomic comfort behaviour of multilayer STF-treated tri-component woven fabric and HPPE laminate composite material. Journal of the Textile Institute. 115 (4), 573–580.
  • 5. Vořechovský ,M., Li ,Y., Rypl ,R., and Chudoba ,R., (2021), Tensile behavior of carbon textile concrete composite captured using a probabilistic multiscale multiple cracking model. Composite Structures. 277 114624.
  • 6. Jin ,Y., Zhou ,X., Chen ,M., Zhao ,Z., Huang ,Y., Zhao ,P., et al., (2022), High toughness 3D printed white Portland cement-based materials with glass fiber textile. Materials Letters. 309 131381.
  • 7. Junge ,T., Brendgen ,R., Grassmann ,C., Weide ,T., and Schwarz-Pfeiffer ,A., (2023), Development and Characterization of Hybrid, Temperature Sensing and Heating Yarns with Color Change. Sensors. 23 (16), 7076.
  • 8. Overberg ,M., Hasan ,M.M.B., Rehra ,J., Lohninger ,E., Abdkader, A., and Cherif ,C., (2023), Development of multi-material hybrid yarns consisting of steel, glass and polypropylene filaments for fiber hybrid composites. Textile Research Journal. 93 (21–22), 4865–4878.
  • 9. Hengstermann ,M., Hasan ,M., Abdkader ,A., and Cherif ,C., (2017), Development of a new hybrid yarn construction from recycled carbon fibers (rCF) for high-performance composites. Part-II: Influence of yarn parameters on tensile properties of composites. Textile Research Journal. 87 (13), 1655–1664.
  • 10. Park ,T.Y. and Lee ,S.G., (2017), Properties of hybrid yarn made of paper yarn and filament yarn. Fibers and Polymers. 18 (6), 1208–1214.
  • 11. Dalfi ,H.K., Al-Obaidi ,A., Selver ,E., Yousaf ,Z., and Potluri ,P., (2022), Influence of yarn-hybridisation on the mechanical performance and thermal conductivity of composite laminates. Journal of Industrial Textiles. 51 (3_suppl), 5086S-5112S.
  • 12. Beaumont ,P.W.R. and Soutis ,C., (2016), Structural integrity of engineering composite materials: a cracking good yarn. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 374 (2071), 20160057.
  • 13. Rypl ,R., Chudoba ,R., Scholzen ,A., and Vořechovský ,M., (2013), Brittle matrix composites with heterogeneous reinforcement: Multi-scale model of a crack bridge with rigid matrix. Composites Science and Technology. 89 98–109.
  • 14. Li ,Y., Chudoba ,R., Bielak ,J., and Hegger ,J., (2018), A Modelling Framework for the Tensile Behavior of Multiple Cracking Composite. in: pp. 418–426.
  • 15. Junaid ,K., Zyed ,M., Nonna ,A., Gaochuang ,C., and Amir ,S.L., (2024), Tensile and cracking behaviour of crimped textile reinforced mortar (TRM) based on digital image correlation. Construction and Building Materials. 417 135321.
  • 16. Wang ,X., Cai ,D., Silberschmidt ,V. V., Deng ,J., Tian ,H., and Zhou ,G., (2019), Tensile properties of 3D multi-layer wrapping braided composite: Progressive damage analysis. Composites Part B: Engineering. 176 107334.
  • 17. Ishtiaque ,S.M., Rengasamy ,R.S., Sharma ,O.P., and Das ,B.R., (2016), Influence of fibre strength and yarn structural characteristics on tensile failure of blended spun yarns: a prediction model. Journal of the Textile Institute. 107 (1), 127–135.
  • 18. Rengasamy ,R.S., Ishtiaque ,S.M., and Das ,B.R., (2016), Dynamic failure behaviour of blended spun yarns during winding. Journal of the Textile Institute. 107 (2), 242–248.
  • 19. Rebouillat ,S., Steffenino ,B., and Miret-Casas ,A., (2010), Aramid, steel, and glass: Characterization via cut performance testing, of composite knitted fabrics and their constituent yarns, with a review of the art. Journal of Materials Science. 45 (19), 5378–5392.
  • 20. Ceballos, D.M., Tapp ,L.C., and Wiegand ,D.M., (2014), Evaluation of Cut-resistant Sleeves and Possible Fiberglass Fiber Shedding at a Steel Mill. Journal of Occupational and Environmental Hygiene. 11 (2), D28.
  • 21. Daniel (Xuedong) Li, (2019), Choice of materials for cut protective textiles. in: Cut Prot. Text., Woodhead Publishing India pvt ltd, pp. 165–174.
  • 22. Dessureault ,Y.S., Jolowsky ,C., Bell ,S., Spiric ,S., Molyneux ,J., Park ,J.G., et al., (2020), Tensile performance and failure modes of continuous carbon nanotube yarns for composite applications. Materials Science and Engineering: A. 792 (February), 139824.
  • 23. Badrul Hasan ,M.M., Nitsche ,S., Abdkader ,A., and Cherif ,C., (2019), Influence of process parameters on the tensile properties of DREF-3000 friction spun hybrid yarns consisting of waste staple carbon fiber for thermoplastic composites. Textile Research Journal. 89 (1), 32–42.
  • 24. Mankodi ,H. and Patel ,P., (2009), Study The Effect Of Commınglıng Parameters On Glass / Polypropylene Hybrıd Yarns Propertıes. AUTEX Research Journal. 9 (3), 70–73.
  • 25. Schäfer ,J., Stolyarov ,O., Ali ,R., Greb ,C., Seide ,G., and Gries ,T., (2016), Process–structure relationship of carbon/ polyphenylene sulfide commingled hybrid yarns used for thermoplastic composites. Journal of Industrial Textiles. 45 (6), 1661–1673.
  • 26. Shahzad ,A., Ali ,Z., Ali ,U., Khaliq ,Z., Zubair ,M., Kim ,I.S., et al., (2019), Development and characterization of conductive ring spun hybrid yarns. The Journal of The Textile Institute. 110 (1), 141–150.
  • 27. Martín-Meizoso ,A., Martínez-Esnaola ,J.M., Scánchez ,J.M., Puente ,I., Elizalde ,R., Daniel ,A.M., et al., (1997), Modelling the tensile fracture behaviour of the reinforcing fibre yarns in ceramic matrix composites. Fatigue and Fracture of Engineering Materials and Structures. 20 (5), 703–716.
  • 28. Lou ,C.W., Hu ,J.-J., Lu ,P.C., and Lin ,J.-H., (2016), Effect of twist coefficient and thermal treatment temperature on elasticity and tensile strength of wrapped yarns. Textile Research Journal. 86 (1), 24–33.
  • 29. Suvari ,F. and Gurvardar ,H., (2024), Revitalizing high-density polyethylene (HDPE) waste: from environmental collection to high-strength hybrid yarns. Polymer Bulletin. 81 (15), 14011–14029.
There are 29 citations in total.

Details

Primary Language English
Subjects Textile Technology
Journal Section Articles
Authors

Md. Azharul Islam 0000-0002-8521-0765

Rochak Rathour

Bipin Kumar 0000-0002-9754-8210

Apurba Das This is me 0000-0002-8134-5064

Nandan Numar This is me 0000-0001-6467-2947

Project Number RP04561
Publication Date March 30, 2025
Submission Date October 17, 2024
Acceptance Date March 26, 2025
Published in Issue Year 2025 Volume: 32 Issue: 137

Cite

APA Islam, M. A., Rathour, R., Kumar, B., Das, A., et al. (2025). MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN. Tekstil Ve Mühendis, 32(137), 1-13. https://doi.org/10.7216/teksmuh.1563481
AMA Islam MA, Rathour R, Kumar B, Das A, Numar N. MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN. Tekstil ve Mühendis. March 2025;32(137):1-13. doi:10.7216/teksmuh.1563481
Chicago Islam, Md. Azharul, Rochak Rathour, Bipin Kumar, Apurba Das, and Nandan Numar. “MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN”. Tekstil Ve Mühendis 32, no. 137 (March 2025): 1-13. https://doi.org/10.7216/teksmuh.1563481.
EndNote Islam MA, Rathour R, Kumar B, Das A, Numar N (March 1, 2025) MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN. Tekstil ve Mühendis 32 137 1–13.
IEEE M. A. Islam, R. Rathour, B. Kumar, A. Das, and N. Numar, “MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN”, Tekstil ve Mühendis, vol. 32, no. 137, pp. 1–13, 2025, doi: 10.7216/teksmuh.1563481.
ISNAD Islam, Md. Azharul et al. “MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN”. Tekstil ve Mühendis 32/137 (March 2025), 1-13. https://doi.org/10.7216/teksmuh.1563481.
JAMA Islam MA, Rathour R, Kumar B, Das A, Numar N. MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN. Tekstil ve Mühendis. 2025;32:1–13.
MLA Islam, Md. Azharul et al. “MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN”. Tekstil Ve Mühendis, vol. 32, no. 137, 2025, pp. 1-13, doi:10.7216/teksmuh.1563481.
Vancouver Islam MA, Rathour R, Kumar B, Das A, Numar N. MATHEMATICAL MODEL FOR CALCULATING BREAKING ENERGY OF COMPONENT YARNS IN DUAL-SHEATH SINGLE-CORE HYBRID YARN. Tekstil ve Mühendis. 2025;32(137):1-13.