Research Article
BibTex RIS Cite

TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ

Year 2025, Volume: 32 Issue: 139, 243 - 253, 30.09.2025
https://doi.org/10.7216/teksmuh.1464859

Abstract

Çalışmada ısı düzenleme özellikli pamuklu kumaşların geliştirilmesi amacıyla kullanılmak üzere faz değiştiren malzeme olan 1-tetradekanolün doğal ve biyouyumlu jelatin/arap zamkı duvar yapısı içerisine mikrokapsülasyonu kompleks koaservasyon yöntemi ile gerçekleştirilmiştir. Üretilen mikrokapsüllerin morfolojisi ve parçacık boyut dağılımı taramalı elektron mikroskop (SEM) ve parçacık boyut analizi ile araştırılmıştır. Mikrokapsüllerin kimyasal yapısı Fourier dönüşüm kızılötesi-azaltılmış toplam reflektans (FTIR-ATR) spektroskopisi, ısıl özellikleri diferansiyel taramalı kalorimetre (DSC), termal dayanımları ise termogravimetrik (TG) analiz yöntemi ile belirlenmiştir. Ortalama parçacık boyutu 22,24 µm olan mikrokapsüllerin küresel morfolojiye, oldukça yüksek gizli ısı absorblama kapasitesine (143,96 J/g) ve iyi bir termal dayanıma sahip olduğu görülmüştür. Üretilen mikrokapsüller 100 g/l, 200 g/l ve 300 g/l olmak üzere farklı konsantrasyonlarda pamuklu kumaşlara emdirme yöntemi ile uygulanmıştır. Mikrokapsül uygulanmış kumaşların morfolojileri, ısı düzenleme özellikleri ve hava geçirgenliği, eğilme direnci ve yırtılma mukavemeti araştırılmış, bu özellikler üzerinde kapsül konsantrasyonun etkisi incelenmiştir. Mikrokapsül uygulanmış kumaşların sıcaklık düzenleme özelliği gösterdiği ve soğuk ortamda ham kumaşa göre maksimum 2 °C daha sıcak hissettirdiği tespit edilmiştir. Artan kapsül konsantrasyonuna bağlı olarak kumaşların hava geçirgenliklerinin azaldığı görülürken, atkı yırtılma mukavemetlerinde bir değişim gözlemlenmemiştir. Buna ek olarak 200 g/l konsantrasyona kadar mikrokapsül uygulamasının kumaşların eğilme direncini etkilemediği tespit edilmiştir.

References

  • Xie, W., Jiang, Y., Liu, Z., Wang, B., & Han, T., (2024), Preparation and application of low temperature protection materials by Na2SO4·10H2O/PS phase change microcapsules, Materials Research Express, 11, 1, 015502.
  • Wang, F., Nasajpour-Esfahani, N., Alizadeh, A. A., Smaisim, G. F., Abed, A. M., Hadrawi, S. K., Aminian, S., Sabetvand, R., Toghraie, D., (2023), Thermal performance of a phase change material (PCM) microcapsules containing Au nanoparticles in a nanochannel: a molecular dynamics approach, Journal of Molecular Liquids, 373, 121128.
  • Boan, Y., (2005), Physical Mechanism and Characterization of Smart Thermal Clothing, The Hong Kong Polytechnic University, PhD Thesis, Hong Kong, 267p.
  • Mondal, S., (2008), Phase change materials for smart textiles–An overview, Applied thermal engineering, 28, 11-12, 1536-1550.
  • El Majd, A., Younsi, Z., Youssef, N., Belouaggadia, N., & El Bouari, A., (2023), Experimental study of thermal characteristics of bio-based textiles integrating microencapsulated phase change materials, Energy and Buildings, 297, 113465.
  • Su, Y., Zhao, X., & Han, Y., (2023), Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage, Polymers, 15, 14, 3055.
  • Zeighampour, F., Khoddami, A., & Dolez, P. I., (2023), Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials, Fashion and Textiles, 10, 1, 43.
  • Geng, X., Li, W., Wang, Y., Lu, J., Wang, J., Wang, N., Jianjie, Li., & Zhang, X., (2018), Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing, Applied energy, 217, 281-294.
  • Benmoussa, D., Molnar, K., Hannache, H., & Cherkaoui, O., (2016), Development of thermo-regulating fabric using microcapsules of phase change material, Molecular Crystals and Liquid Crystals, 627, 1, 163-169.
  • Ganesh, G. A., Sinha, S. L., Verma, T. N., & Dewangan, S. K., (2021), Investigation of indoor environment quality and factors afecting human comfort: A critical review, Building and Environment, 204, 108146.
  • Iqbal, K., Khan, A., Sun, D., Ashraf, M., Rehman, A., Safdar, F., Basit, A., Maqsood, H. S., (2019), Phase change materials, their synthesis and application in textiles—a review, The journal of the Textile Institute, 110, 4, 625-638.
  • Tabor, J., Chatterjee, K., & Ghosh, T. K., (2020), Smart textile‐based personal thermal comfort systems: current status and potential solutions, Advanced Materials Technologies, 5, 5, 1901155.
  • Peng, Y., & Cui, Y., (2020), Advanced textiles for personal thermal management and energy, Joule, 4, 4, 724-742.
  • Prajapati, D. G., & Kandasubramanian, B., (2020), A review on polymeric-based phase change material for thermo-regulating fabric application, Polymer Reviews, 60, 3, 389-419.
  • Jamekhorshid, A., Sadrameli, S. M., & Farid, M., (2014), A review ofmicroencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium, Renewable and Sustainable Energy Reviews, 31, 531–542.
  • Özkayalar, S., & Alay-Aksoy, S., (2022), Developing of thermoregulating cotton fabric by incorporating of the poly (methyl methacrylate-co-methacrylamide)/fatty alcohol latent heat storing nanocapsules, The Journal of The Textile Institute, 113, 12, 2585-2601.
  • Qin, S., Li, H., & Hu, C., (2021), Thermal properties and morphology of chitosan/gelatin composite shell microcapsule via multi-emulsion. Materials Letters, 291, 129475.
  • Vijayrakesh, K., & Muthuvel, S., (2019), Synthesis and Characterization of Encapsulated 1-Tetradecanol for Thermal Energy Storage, International Journal of Recent Technology and Engineering, 8, 4S2, 264-268.
  • Wang, Y., Li, X., Shen, C., Mao, Z., Xu, H., Zhong, Y., Sui, X., Feng, X., & Wang, B., (2020), Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management, International Journal of Biological Macromolecules, 146, 1-8.
  • Chen, C., Chen, Z., Zeng, X., Fang, X., & Zhang, Z., (2012), Fabricationand characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation, Colloid and Polymer Science, 290, 4, 307–314.
  • Chen, Z. H., Yu, F., Zeng, X. R., & Zhang, Z. G., (2012), Preparation,characterization and thermal properties of nanocapsules containingphase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier, Applied Energy, 91, 1, 7-12.
  • Geng, L., Wang, S., Wang, T., & Luo, R., (2016), Facile synthesis andthermal properties of nanoencapsulated n-dodecanol with SiO2shellas shape-formed thermal energy storage material, Energy & Fuels, 30, 7, 6153-6160.
  • Li, W., Zong, J., Huang, R., Wang, J., Wang, N., Han, N., & Zhang, X., (2016), Design, controlled fabrication and characterization of nar-row-disperse macrocapsules containing Micro/NanoPCMs, Materials & Design, 99, 225-234.
  • Ma, Y., Zong, J., Li, W., Chen, L., Tang, X., Han, N., Wang, J., &Zhang, X., (2015), Synthesis and characterization of thermal energystorage microencapsulated n-dodecanol with acrylic polymer Shell, Energy, 87, 86-94.
  • Su, J. F., Wang, S. B., Zhou, J. W., Huang, Z., Zhao, Y. H., Yuan,X. Y., Zhang, Y. Y., & Kou, J. B., (2011), Fabrication and interfacial morphologies of methanol–melamine–formaldehyde (MMF) Shell microPCMs/epoxy composites, Colloid and Polymer Science, 289, 2, 169-177.
  • Yu, F., Chen, Z. H., & Zeng, X. R., (2009), Preparation, characteriza-tion, and thermal properties of microPCMs containing n-dodecanolby using different types of styrene-maleic anhydride as emulsifier, Colloid and Polymer Science, 287, 5, 549-560.
  • Wang, H., Gui, P., Zhu, Y., & Hu, S., (2020), Preparation and Characterization of Poly (melamine-urea-fbrmaldehyde) Tetradecanol Microcapsules Coated with Silver Particles, Journal of Wuhan University of Technology-Mater. Sci. Ed., 35, 327-334.
  • Yin, D., Liu, H., Ma, L., & Zhang, Q., (2015), Fabrication and performance of microencapsulated phase change materials with hybrid shell by in situ polymerization in Pickering emulsion, Polymers for Advanced Technologies, 26, 6, 613-619.
  • Alkan, C., Alakara, E. H., Aksoy, S. A., & Demir, İ., (2023), Cement mortar composites including 1-tetradecanol@ PMMA Pickering emulsion particles for thermal energy management of buildings, Chemical Engineering Journal, 476, 146843.
  • Tözüm, M.S. 2021. Microencapsulation of 1-tetradecanol into Gelatin/Gum Arabic Shell Structure by Complex Coacervation Method, 9th International Fiber and Polymer Research Symposium, 19-20 November, Usak.
  • Güler, Z., & Kut, D., (2011)., Poliester perdelik Kumaşta Isıl Regülasyon Sağlamaya Yönelik Mikrokapsül Hazırlanması ve Uygulanması, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 16, 1.
  • Genç, E., & Alay Aksoy, S., (2016)., Fabrication of microencapsulated PCMs with nanoclay doped chitosan shell and their application to cotton fabric, Textile and Apparel, 26, 2, 180-188.
  • Demirbağ, S., & Aksoy, S. A., (2016), Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame-retardant properties of the cotton fabrics, Fibers and Polymers, 17, 408-417.
  • Alkan, C., Aksoy, S. A., & Anayurt, R. A., (2015), Synthesis of poly (methyl methacrylate-co-acrylic acid)/n-eicosane microcapsules for thermal comfort in textiles, Textile Research Journal, 85, 19, 2051-2058.
  • Alay Aksoy, S., Alkan, C., Tözüm, M. S., Demirbağ, S., Altun Anayurt, R., & Ulcay, Y., (2017), Preparation and textile application of poly (methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules, The Journal of the Textile Institute, 108, 1, 30-41.
  • Malekipirbazari, M., Sadrameli, S. M., Dorkoosh, F., & Sharifi, H., (2014), Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications, International Journal of Energy Research, 38, 11, 1492-1500.
  • Bayés-García, L., Ventolà, L., Cordobilla, R., Benages, R., Calvet, T., & Cuevas-Diarte, M. A., 2010, Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability, Solar Energy Materials and Solar Cells, 94, 7, 1235-1240.
  • Tözüm, M. S., Demirbağ Genç, S., & Alay Aksoy, S., (2024), Design of Thermochromic Cotton Fabrics with Thermoregulation Behavior Through Application of Chitosan–Sodium Alginate/Cvl/1-Tetradecanol-Based Thermochromic Phase Change Microcapsules, Fibers and Polymers, 1-13. https://link.springer.com/article/10.1007/s12221-024-00686-2
  • Alkan, C., Alakara, E. H., Aksoy, S. A., & Demir, İ. (2023)., Cement mortar composites including 1-tetradecanol@ PMMA Pickering emulsion particles for thermal energy management of buildings, Chemical Engineering Journal, 476, 146843.
  • Basal, G., Deveci, S., Yalçın, D., & Bayraktar, O., (2011), Properties of n-Eicosane-Loaded Silk Fibroin-Chitosan Microcapsules, Journal of Applied Polymer Science, 121, 1885–1889.
  • Demirbağ, S., & Alay Aksoy, S., (2013). İnorganik Madde İlave Edilerek Geliştirilmiş Termal Stabiliteye Sahip Isi Depolama Özellikli Mikrokapsül Üretimi ve Karakterizasyonu. Tekstil ve Mühendis, 20, 92, 26-35.
  • Özkayalar, S., Adıgüzel, E., Aksoy, S. A., & Alkan, C., (2020), Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes, Materials Chemistry and Physics, 252, 123162.
  • Yılmaz, D., & Alay Aksoy, S., (2023), Temperature Regulatıng Polyester Short Staple Rıng Spun Yarns By Pcm Nanocapsule Applıcatıon, Journal of Textiles & Engineers/Tekstil ve Mühendis, 30, 132.

CHARACTERIZATION OF GELATIN/GUM ARABIC NATURAL WALLED MICROCAPSULES CONTAINING TETRADECANOL AND PRODUCTION OF COTTON FABRICS WITH THERMOREGULATION PROPERTIES

Year 2025, Volume: 32 Issue: 139, 243 - 253, 30.09.2025
https://doi.org/10.7216/teksmuh.1464859

Abstract

In the study, microencapsulation of 1-tetradecanol, a phase change material, into the natural and biocompatible gelatin/gum arabic wall structure to be used for the development of thermoregulating cotton fabrics was carried out by the complex coacervation method. The morphology and particle size distribution of the produced microcapsules were investigated using scanning electron microscopy (SEM) and particle size analysis. The chemical structure of the microcapsules was determined using Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR). Their thermal properties were analyzed through differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis. The microcapsules with an average particle size of 22.24 µm had a spherical morphology, a very high latent heat absorption capacity (143.96 J/g) and good thermal stability. Microcapsules were applied to cotton fabrics at concentrations of 100 g/l, 200 g/l, and 300 g/l using the impregnation method. The morphology, thermoregulation properties, air permeability, bending rigidity and tear strength of microcapsule treated fabrics were investigated and the effect of capsule concentration on these properties was analyzed. It was determined that microcapsule applied fabrics showed temperature regulation feature and felt maximum 2 °C warmer than untreated fabric in cold environment. Although the air permeability of the fabrics decreased with increasing capsule concentration, there was no observed impact on the weft tear strength. In addition, it was determined that microcapsule application up to a concentration of 200 g/l did not affect the bending resistance of the fabrics.

References

  • Xie, W., Jiang, Y., Liu, Z., Wang, B., & Han, T., (2024), Preparation and application of low temperature protection materials by Na2SO4·10H2O/PS phase change microcapsules, Materials Research Express, 11, 1, 015502.
  • Wang, F., Nasajpour-Esfahani, N., Alizadeh, A. A., Smaisim, G. F., Abed, A. M., Hadrawi, S. K., Aminian, S., Sabetvand, R., Toghraie, D., (2023), Thermal performance of a phase change material (PCM) microcapsules containing Au nanoparticles in a nanochannel: a molecular dynamics approach, Journal of Molecular Liquids, 373, 121128.
  • Boan, Y., (2005), Physical Mechanism and Characterization of Smart Thermal Clothing, The Hong Kong Polytechnic University, PhD Thesis, Hong Kong, 267p.
  • Mondal, S., (2008), Phase change materials for smart textiles–An overview, Applied thermal engineering, 28, 11-12, 1536-1550.
  • El Majd, A., Younsi, Z., Youssef, N., Belouaggadia, N., & El Bouari, A., (2023), Experimental study of thermal characteristics of bio-based textiles integrating microencapsulated phase change materials, Energy and Buildings, 297, 113465.
  • Su, Y., Zhao, X., & Han, Y., (2023), Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage, Polymers, 15, 14, 3055.
  • Zeighampour, F., Khoddami, A., & Dolez, P. I., (2023), Innovative flexible thermal storage textile using nanocomposite shape-stabilized phase change materials, Fashion and Textiles, 10, 1, 43.
  • Geng, X., Li, W., Wang, Y., Lu, J., Wang, J., Wang, N., Jianjie, Li., & Zhang, X., (2018), Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing, Applied energy, 217, 281-294.
  • Benmoussa, D., Molnar, K., Hannache, H., & Cherkaoui, O., (2016), Development of thermo-regulating fabric using microcapsules of phase change material, Molecular Crystals and Liquid Crystals, 627, 1, 163-169.
  • Ganesh, G. A., Sinha, S. L., Verma, T. N., & Dewangan, S. K., (2021), Investigation of indoor environment quality and factors afecting human comfort: A critical review, Building and Environment, 204, 108146.
  • Iqbal, K., Khan, A., Sun, D., Ashraf, M., Rehman, A., Safdar, F., Basit, A., Maqsood, H. S., (2019), Phase change materials, their synthesis and application in textiles—a review, The journal of the Textile Institute, 110, 4, 625-638.
  • Tabor, J., Chatterjee, K., & Ghosh, T. K., (2020), Smart textile‐based personal thermal comfort systems: current status and potential solutions, Advanced Materials Technologies, 5, 5, 1901155.
  • Peng, Y., & Cui, Y., (2020), Advanced textiles for personal thermal management and energy, Joule, 4, 4, 724-742.
  • Prajapati, D. G., & Kandasubramanian, B., (2020), A review on polymeric-based phase change material for thermo-regulating fabric application, Polymer Reviews, 60, 3, 389-419.
  • Jamekhorshid, A., Sadrameli, S. M., & Farid, M., (2014), A review ofmicroencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium, Renewable and Sustainable Energy Reviews, 31, 531–542.
  • Özkayalar, S., & Alay-Aksoy, S., (2022), Developing of thermoregulating cotton fabric by incorporating of the poly (methyl methacrylate-co-methacrylamide)/fatty alcohol latent heat storing nanocapsules, The Journal of The Textile Institute, 113, 12, 2585-2601.
  • Qin, S., Li, H., & Hu, C., (2021), Thermal properties and morphology of chitosan/gelatin composite shell microcapsule via multi-emulsion. Materials Letters, 291, 129475.
  • Vijayrakesh, K., & Muthuvel, S., (2019), Synthesis and Characterization of Encapsulated 1-Tetradecanol for Thermal Energy Storage, International Journal of Recent Technology and Engineering, 8, 4S2, 264-268.
  • Wang, Y., Li, X., Shen, C., Mao, Z., Xu, H., Zhong, Y., Sui, X., Feng, X., & Wang, B., (2020), Lignin assisted Pickering emulsion polymerization to microencapsulate 1-tetradecanol for thermal management, International Journal of Biological Macromolecules, 146, 1-8.
  • Chen, C., Chen, Z., Zeng, X., Fang, X., & Zhang, Z., (2012), Fabricationand characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation, Colloid and Polymer Science, 290, 4, 307–314.
  • Chen, Z. H., Yu, F., Zeng, X. R., & Zhang, Z. G., (2012), Preparation,characterization and thermal properties of nanocapsules containingphase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier, Applied Energy, 91, 1, 7-12.
  • Geng, L., Wang, S., Wang, T., & Luo, R., (2016), Facile synthesis andthermal properties of nanoencapsulated n-dodecanol with SiO2shellas shape-formed thermal energy storage material, Energy & Fuels, 30, 7, 6153-6160.
  • Li, W., Zong, J., Huang, R., Wang, J., Wang, N., Han, N., & Zhang, X., (2016), Design, controlled fabrication and characterization of nar-row-disperse macrocapsules containing Micro/NanoPCMs, Materials & Design, 99, 225-234.
  • Ma, Y., Zong, J., Li, W., Chen, L., Tang, X., Han, N., Wang, J., &Zhang, X., (2015), Synthesis and characterization of thermal energystorage microencapsulated n-dodecanol with acrylic polymer Shell, Energy, 87, 86-94.
  • Su, J. F., Wang, S. B., Zhou, J. W., Huang, Z., Zhao, Y. H., Yuan,X. Y., Zhang, Y. Y., & Kou, J. B., (2011), Fabrication and interfacial morphologies of methanol–melamine–formaldehyde (MMF) Shell microPCMs/epoxy composites, Colloid and Polymer Science, 289, 2, 169-177.
  • Yu, F., Chen, Z. H., & Zeng, X. R., (2009), Preparation, characteriza-tion, and thermal properties of microPCMs containing n-dodecanolby using different types of styrene-maleic anhydride as emulsifier, Colloid and Polymer Science, 287, 5, 549-560.
  • Wang, H., Gui, P., Zhu, Y., & Hu, S., (2020), Preparation and Characterization of Poly (melamine-urea-fbrmaldehyde) Tetradecanol Microcapsules Coated with Silver Particles, Journal of Wuhan University of Technology-Mater. Sci. Ed., 35, 327-334.
  • Yin, D., Liu, H., Ma, L., & Zhang, Q., (2015), Fabrication and performance of microencapsulated phase change materials with hybrid shell by in situ polymerization in Pickering emulsion, Polymers for Advanced Technologies, 26, 6, 613-619.
  • Alkan, C., Alakara, E. H., Aksoy, S. A., & Demir, İ., (2023), Cement mortar composites including 1-tetradecanol@ PMMA Pickering emulsion particles for thermal energy management of buildings, Chemical Engineering Journal, 476, 146843.
  • Tözüm, M.S. 2021. Microencapsulation of 1-tetradecanol into Gelatin/Gum Arabic Shell Structure by Complex Coacervation Method, 9th International Fiber and Polymer Research Symposium, 19-20 November, Usak.
  • Güler, Z., & Kut, D., (2011)., Poliester perdelik Kumaşta Isıl Regülasyon Sağlamaya Yönelik Mikrokapsül Hazırlanması ve Uygulanması, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 16, 1.
  • Genç, E., & Alay Aksoy, S., (2016)., Fabrication of microencapsulated PCMs with nanoclay doped chitosan shell and their application to cotton fabric, Textile and Apparel, 26, 2, 180-188.
  • Demirbağ, S., & Aksoy, S. A., (2016), Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame-retardant properties of the cotton fabrics, Fibers and Polymers, 17, 408-417.
  • Alkan, C., Aksoy, S. A., & Anayurt, R. A., (2015), Synthesis of poly (methyl methacrylate-co-acrylic acid)/n-eicosane microcapsules for thermal comfort in textiles, Textile Research Journal, 85, 19, 2051-2058.
  • Alay Aksoy, S., Alkan, C., Tözüm, M. S., Demirbağ, S., Altun Anayurt, R., & Ulcay, Y., (2017), Preparation and textile application of poly (methyl methacrylate-co-methacrylic acid)/n-octadecane and n-eicosane microcapsules, The Journal of the Textile Institute, 108, 1, 30-41.
  • Malekipirbazari, M., Sadrameli, S. M., Dorkoosh, F., & Sharifi, H., (2014), Synthetic and physical characterization of phase change materials microencapsulated by complex coacervation for thermal energy storage applications, International Journal of Energy Research, 38, 11, 1492-1500.
  • Bayés-García, L., Ventolà, L., Cordobilla, R., Benages, R., Calvet, T., & Cuevas-Diarte, M. A., 2010, Phase Change Materials (PCM) microcapsules with different shell compositions: Preparation, characterization and thermal stability, Solar Energy Materials and Solar Cells, 94, 7, 1235-1240.
  • Tözüm, M. S., Demirbağ Genç, S., & Alay Aksoy, S., (2024), Design of Thermochromic Cotton Fabrics with Thermoregulation Behavior Through Application of Chitosan–Sodium Alginate/Cvl/1-Tetradecanol-Based Thermochromic Phase Change Microcapsules, Fibers and Polymers, 1-13. https://link.springer.com/article/10.1007/s12221-024-00686-2
  • Alkan, C., Alakara, E. H., Aksoy, S. A., & Demir, İ. (2023)., Cement mortar composites including 1-tetradecanol@ PMMA Pickering emulsion particles for thermal energy management of buildings, Chemical Engineering Journal, 476, 146843.
  • Basal, G., Deveci, S., Yalçın, D., & Bayraktar, O., (2011), Properties of n-Eicosane-Loaded Silk Fibroin-Chitosan Microcapsules, Journal of Applied Polymer Science, 121, 1885–1889.
  • Demirbağ, S., & Alay Aksoy, S., (2013). İnorganik Madde İlave Edilerek Geliştirilmiş Termal Stabiliteye Sahip Isi Depolama Özellikli Mikrokapsül Üretimi ve Karakterizasyonu. Tekstil ve Mühendis, 20, 92, 26-35.
  • Özkayalar, S., Adıgüzel, E., Aksoy, S. A., & Alkan, C., (2020), Reversible color-changing and thermal-energy storing nanocapsules of three-component thermochromic dyes, Materials Chemistry and Physics, 252, 123162.
  • Yılmaz, D., & Alay Aksoy, S., (2023), Temperature Regulatıng Polyester Short Staple Rıng Spun Yarns By Pcm Nanocapsule Applıcatıon, Journal of Textiles & Engineers/Tekstil ve Mühendis, 30, 132.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Textile Science
Journal Section Articles
Authors

Müyesser Selda Tözüm

Sena Demirbağ Genç

Publication Date September 30, 2025
Submission Date April 4, 2024
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 32 Issue: 139

Cite

APA Tözüm, M. S., & Demirbağ Genç, S. (2025). TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ. Tekstil Ve Mühendis, 32(139), 243-253. https://doi.org/10.7216/teksmuh.1464859
AMA Tözüm MS, Demirbağ Genç S. TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ. Tekstil ve Mühendis. September 2025;32(139):243-253. doi:10.7216/teksmuh.1464859
Chicago Tözüm, Müyesser Selda, and Sena Demirbağ Genç. “TETRADEKANOL İÇERİKLİ JELATİN ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ”. Tekstil Ve Mühendis 32, no. 139 (September 2025): 243-53. https://doi.org/10.7216/teksmuh.1464859.
EndNote Tözüm MS, Demirbağ Genç S (September 1, 2025) TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ. Tekstil ve Mühendis 32 139 243–253.
IEEE M. S. Tözüm and S. Demirbağ Genç, “TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ”, Tekstil ve Mühendis, vol. 32, no. 139, pp. 243–253, 2025, doi: 10.7216/teksmuh.1464859.
ISNAD Tözüm, Müyesser Selda - Demirbağ Genç, Sena. “TETRADEKANOL İÇERİKLİ JELATİN ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ”. Tekstil ve Mühendis 32/139 (September2025), 243-253. https://doi.org/10.7216/teksmuh.1464859.
JAMA Tözüm MS, Demirbağ Genç S. TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ. Tekstil ve Mühendis. 2025;32:243–253.
MLA Tözüm, Müyesser Selda and Sena Demirbağ Genç. “TETRADEKANOL İÇERİKLİ JELATİN ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ”. Tekstil Ve Mühendis, vol. 32, no. 139, 2025, pp. 243-5, doi:10.7216/teksmuh.1464859.
Vancouver Tözüm MS, Demirbağ Genç S. TETRADEKANOL İÇERİKLİ JELATİN/ARAPZAMKI DOĞAL DUVARLI MİKROKAPSÜLLERİN KARAKTERİZASYONU VE TERMOREGÜLASYON ÖZELLİKLİ PAMUKLU KUMAŞLARIN ÜRETİMİ. Tekstil ve Mühendis. 2025;32(139):243-5.