Review
BibTex RIS Cite

AKILLI TEKSTİLLERDE KULLANILAN 3D BASKI TEKNOLOJİLERİ VE MALZEMELERİNE İLİŞKİN KISA BİR DEĞERLENDİRME

Year 2025, Volume: 32 Issue: 139, 305 - 318, 30.09.2025
https://doi.org/10.7216/teksmuh.1599672

Abstract

3D baskı teknolojisinin akıllı tekstillere entegrasyonu, son on yılda akademi ve endüstriden büyük ilgi gördü. 3D baskının karmaşık ve özelleştirilebilir yapılar üretme konusundaki doğal yeteneği, giyilebilir elektronikler, tıbbi tekstiller ve etkileşimli moda gibi temel alanlarda işlevselliği artırır. Erimiş Biriktirme Modelleme (FDM), Seçici Lazer Sinterleme (SLS), Doğrudan Mürekkep Yazımı (DIW) ve PolyJet baskı dahil olmak üzere çeşitli 3D baskı teknikleri şu anda akıllı tekstillerin üretiminde kullanılmaktadır. Ancak, akıllı tekstillerde 3D baskının geniş uygulama yelpazesi, mevcut araştırma başarılarını sentezlemede ve araştırma boşluklarını belirlemede sıklıkla bir zorluk teşkil eder. Bunu ele almak için, bu inceleme makalesi bu belirli 3D baskı tekniklerinin ve giyilebilir teknoloji, tıbbi tekstiller ve akıllı moda tasarımı dahil olmak üzere çeşitli akıllı tekstil uygulamalarında kullanılan malzemelerin kapsamlı, uygulamaya yönelik bir analizini sunmaktadır. Bu analiz, Google Scholar, PubMed ve Scopus (2016-2024) tarafından kaynak gösterilen hakemli literatürün kapsamlı bir incelemesine dayanmaktadır. Bu incelemenin temel amacı, akıllı tekstiller ve etkileşimli moda içinde gelişmiş işlevleri birleştirmek için en uygun yöntemi stratejik olarak seçmek amacıyla bu 3D baskı tekniklerinin kritik anlaşılmasını vurgulamaktır. Akıllı tekstil üretimi için 3D baskının kullanımında önemli ilerleme kaydedilmesine rağmen, çeşitli giyilebilir sensörlerin etkili bir şekilde entegre edilmesinde önemli zorluklar devam etmekte olup, yenilikçi hibrit üretim stratejileri geliştirmek için disiplinler arası iş birliğini gerekli kılmaktadır.

References

  • Xiao Y-Q, Kan C-W (2022) Review on Development and Application of 3D-Printing Technology in Textile and Fashion Design. Coatings 12:267. https://doi.org/10.3390/coatings12020267
  • Tan WS, Suwarno SR, An J, et al (2017) Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication. J Memb Sci 537:283–296. https://doi.org/10.1016/ j.memsci.2017.05.037
  • Muthuram N, Sriram Madhav P, Keerthi Vasan D, et al (2022) A review of recent literatures in poly jet printing process. Mater Today Proc 68:1906–1920. https://doi.org/10.1016/j.matpr.2022.08.090
  • Júnior HLO, Neves RM, Monticeli FM, Dall Agnol L (2022) Smart Fabric Textiles: Recent Advances and Challenges. Textiles 2:582–605. https://doi.org/10.3390/textiles2040034
  • Ruckdashel RR, Khadse N, Park JH (2022) Smart E-Textiles: Overview of Components and Outlook. Sensors 22:. https://doi.org/10.3390/s22166055
  • Eutionnat-Diffo PA, Cayla A, Chen Y, et al (2020) Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing. Polymers (Basel) 12:2300. https://doi.org/10.3390/polym12102300
  • Stoppa M, Chiolerio A (2014) Wearable Electronics and Smart Textiles: A Critical Review. Sensors 14:11957–11992. https:// doi.org/10.3390/s140711957
  • Xu D, Ouyang Z, Dong Y, et al (2023) Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management. Adv Fiber Mater 5:282–295. https://doi.org/10.1007/s42765-022-00221-z
  • Bunea A-C, Dediu V, Laszlo EA, et al (2021) E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines 12:1091. https://doi.org/10.3390/mi12091091
  • Takagi T (1999) Present State and Future of the Intelligent Materials and Systems in Japan. J Intell Mater Syst Struct 10:575–581. https://doi.org/10.1106/33UC-FBCW-342W-P2WW
  • Rotari E, Negara C (2017) Possibilities and applications of smart textiles. MATEC Web Conf 112:1–6. https://doi.org/10.1051/ matecconf/201711204025
  • Razzaq MY, Gonzalez-Gutierrez J, Mertz G, et al (2022) 4D Printing of Multicomponent Shape-Memory Polymer Formulations. Appl Sci 12:. https://doi.org/10.3390/app12157880
  • Younes B (2023) Smart E-textiles: A review of their aspects and applications. J Ind Text 53:1–23. https://doi.org/10.1177/ 15280837231215493
  • Valentine AD, Busbee TA, Boley JW, et al (2017) Hybrid 3D Printing of Soft Electronics. Adv Mater 29:1703817. https://doi.org/https://doi.org/10.1002/adma.201703817
  • Yang H, Leow WR, Chen X (2018) 3D Printing of Flexible Electronic Devices. Small Methods 2:1–7. https://doi.org/10.1002 /smtd.201700259
  • Tumbleston JR, Shirvanyants D, Ermoshkin N, et al (2015) Continuous liquid interface production of 3D objects. Science (80- ) 347:1349–1352. https://doi.org/10.1126/science.aaa2397
  • Kelly BE, Bhattacharya I, Heidari H, et al (2019) Volumetric additive manufacturing via tomographic reconstruction. Science (80- ) 363:1075–1079. https://doi.org/10.1126/science.aau7114
  • Lim S, Buswell RA, Le TT, et al (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268. https://doi.org/10.1016/j.autcon.2011.06.010
  • Vanderploeg A, Lee S-E, Mamp M (2017) The application of 3D printing technology in the fashion industry. Int J Fash Des Technol Educ 10:170–179. https://doi.org/10.1080/17543266.2016.1223355
  • Pasricha A, Greeninger R (2018) Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. Fash Text 5:30. https://doi.org/10.1186/s40691-018-0152-2
  • Manaia JP, Cerejo F, Duarte J (2023) Revolutionising textile manufacturing: a comprehensive review on 3D and 4D printing technologies. Fash Text 10:20. https://doi.org/10.1186/s40691-023-00339-7
  • Komolafe A, Zaghari B, Torah R, et al (2021) E-Textile Technology Review–From Materials to Application. IEEE Access 9:97152–97179. https://doi.org/10.1109/ACCESS.2021.3094303
  • de Albuquerque TL, Marques Júnior JE, de Queiroz LP, et al (2021) Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 186:933–951. https://doi.org/10.1016/ j.ijbiomac. 2021.07.074
  • Franco Urquiza EA (2024) Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing—A Review. Polymers (Basel) 16:700. https://doi.org/10.3390/polym16050700
  • Goncu-Berk G (2023) 3D Printing of Conductive Flexible Filaments for E-Textile Applications. IOP Conf Ser Mater Sci Eng 1266:012001. https://doi.org/10.1088/1757-899X/1266/1/012001
  • Hart KR, Wetzel ED (2017) Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Eng Fract Mech 177:1–13. https://doi.org/10.1016/j.engfracmech. 2017.03.028
  • Awasthi P, Banerjee SS (2021) Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities. Addit Manuf 46:102177. https://doi.org/10.1016/j.addma. 2021.102177
  • Arioli M, Puiggalí J, Franco L (2024) Nylons with Applications in Energy Generators, 3D Printing and Biomedicine. Molecules 29:2443. https://doi.org/10.3390/molecules29112443
  • Iftekar SF, Aabid A, Amir A, Baig M (2023) Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers (Basel) 15:2519. https://doi.org/10.3390 /polym15112519
  • Wilson S, Laing R (2019) Fabrics and Garments as Sensors: A Research Update. Sensors 19:3570. https://doi.org/10.3390/ s19163570
  • Calignano F, Manfredi D, Ambrosio EP, et al (2017) Overview on additive manufacturing technologies. Proc IEEE 105:593–612. https://doi.org/10.1109/JPROC.2016.2625098
  • Mogan J, Harun WSW, Kadirgama K, et al (2022) Fused Deposition Modelling of Polymer Composite: A Progress. Polymers (Basel) 15:28. https://doi.org/10.3390/polym15010028
  • Morehead S, Oliver R, O’Connor N, et al (2016) The Power of ‘Soft.’ MRS Adv 1:69–80. https://doi.org/10.1557/adv.2016.96
  • Gowthaman S, Chidambaram GS, Rao DBG, et al (2018) A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics. J Inst Eng Ser C 99:435–447. https://doi.org/1 0.1007/s40032-016-0267-4
  • Grimmelsmann N, Martens Y, Schäl P, et al (2016) Mechanical and Electrical Contacting of Electronic Components on Textiles by 3D Printing. Procedia Technol 26:66–71. https://doi.org/10.1016/ j.protcy.2016.08.010
  • Leist SK, Gao D, Chiou R, Zhou J (2017) Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys Prototyp 12:290–300. https://doi.org/ 10.1080/17452759.2017.1341815
  • Ly ST, Kim JY (2017) 4D printing – fused deposition modeling printing with thermal-responsive shape memory polymers. Int J Precis Eng Manuf Technol 4:267–272. https://doi.org/10.1007 /s40684-017-0032-z
  • Eutionnat-Diffo PA, Chen Y, Guan J, et al (2019) Optimization of adhesion of poly lactic acid 3D printed onto polyethylene terephthalate woven fabrics through modelling using textile properties. Rapid Prototyp J 26:390–401. https://doi.org/10.1108/ RPJ-05-2019-0138
  • Eutionnat-Diffo PA, Chen Y, Guan J, et al (2019) Stress, strain and deformation of poly-lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process. Sci Rep 9:14333. https://doi.org/10.1038/s41598-019-50832-7
  • Eutionnat-Diffo PA, Chen Y, Guan J, et al (2020) Study of the Wear Resistance of Conductive Poly Lactic Acid Monofilament 3D Printed onto Polyethylene Terephthalate Woven Materials. Materials (Basel) 13:2334. https://doi.org/10.3390/ma13102334
  • Nguyen TT, Kim J (2020) 4D-Printing — Fused Deposition Modeling Printing and PolyJet Printing with Shape Memory Polymers Composite. Fibers Polym 21:2364–2372. https://doi.org/10.1007/s12221-020-9882-z
  • Hofmann AI, Östergren I, Kim Y, et al (2020) All-Polymer Conducting Fibers and 3D Prints via Melt Processing and Templated Polymerization. ACS Appl Mater Interfaces 12:8713–8721. https://doi.org/10.1021/acsami.9b20615
  • Ertuna I, Güngör Y, Karaoğlu F, et al (2021) Design and Production of Smart Wearable Textile Products Using Layered Manufacturing Technology with Photovoltaic Energy. South Florida J Dev 2:1636–1644. https://doi.org/10.46932/sfjdv2n2-040
  • Yang Z, Ma Y, Jia S, et al (2022) 3D-Printed Flexible Phase-Change Nonwoven Fabrics toward Multifunctional Clothing. ACS Appl Mater Interfaces 14:7283–7291. https://doi.org/10.1021/ acsami.1c21778
  • Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assem Autom 23:357–371. https://doi.org/10.1108/01445150310698652
  • Kim S, Seong H, Her Y, Chun J (2019) A study of the development and improvement of fashion products using a FDM type 3D printer. Fash Text 6:9. https://doi.org/10.1186/s40691-018-0162-0
  • Kruth J, Mercelis P, Van Vaerenbergh J, et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36. https://doi.org/10.1108/13552540510573365
  • Rosenkrantz J, Louis‐Rosenberg J (2017) Dress/Code Democratising Design Through Computation and Digital Fabrication. Archit Des 87:48–57. https://doi.org/10.1002/ad.2237
  • Bloomfield M, Borstrock S (2018) Modeclix. The additively manufactured adaptable textile. Mater Today Commun 16:212–216. https://doi.org/10.1016/j.mtcomm.2018.04.002
  • Beecroft M (2019) Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder. Int J Fash Des Technol Educ 12:218–224. https://doi.org/10.1080/17543266.2019.1573269
  • Ukobitz D, Faullant R (2021) Leveraging 3D Printing Technologies: The Case of Mexico’s Footwear Industry. Res Manag 64:20–30. https://doi.org/10.1080/08956308.2021.1864919
  • Paek SW, Balasubramanian S, Stupples D (2022) Composites Additive Manufacturing for Space Applications: A Review. Materials (Basel) 15:4709. https://doi.org/10.3390/ma15134709
  • Szewczyk PK, Busolo T, Kar-Narayan S, Stachewicz U (2023) Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns. ACS Appl Mater Interfaces 15:56575–56586. https://doi.org/10.1021/acsami.3c14156
  • Sharma V, Roozbahani H, Alizadeh M, Handroos H (2021) 3D Printing of Plant-Derived Compounds and a Proposed Nozzle Design for the More Effective 3D FDM Printing. IEEE Access 9:57107–57119. https://doi.org/10.1109/ACCESS.2021.3071459
  • Nocheseda CJC, Fazley Elahee GM, Santos MFA, et al (2023) On the 3D printability of one-part moisture-curable polyurethanes via direct ink writing (DIW). MRS Commun 13:647–656. https://doi.org/10.1557/s43579-023-00407-5
  • Hou Z, Lu H, Li Y, et al (2021) Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review. Front Mater 8:1–8. https://doi.org/10.3389/fmats.2021.647229
  • Wan X, Luo L, Liu Y, Leng J (2020) Direct Ink Writing Based 4D Printing of Materials and Their Applications. Adv Sci 7:1–29. https://doi.org/10.1002/advs.202001000
  • Palanisamy S, Tunakova V, Militky J (2018) Fiber-based structures for electromagnetic shielding – comparison of different materials and textile structures. Text Res J 88:1992–2012. https://doi.org/10.1177/0040517517715085
  • Tay RY, Song Y, Yao DR, Gao W (2023) Direct-ink-writing 3D-printed bioelectronics. Mater Today 71:135–151. https://doi.org/10.1016/j.mattod.2023.09.006
  • Chen Y, Deng Z, Ouyang R, et al (2021) 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 84:105866. https://doi.org/10.1016/j.nanoen.2021.105866
  • Zhang C, Ouyang W, Zhang L, Li D (2023) A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications. Microsystems Nanoeng 9:. https://doi.org/10.1038/s41378-023-00634-9
  • Badar F, Vandi L-J, Carluccio D, et al (2024) Preliminary colour characterisation of a Stratasys J750 digital anatomy printer with different fillings and face orientations. Prog Addit Manuf 9:1277–1287. https://doi.org/10.1007/s40964-023-00519-3
  • Farahi B (2016) Caress of the gaze: A gaze actuated 3D printed body architecture. ACADIA 2016 Posthuman Front Data, Des Cogn Mach - Proc 36th Annu Conf Assoc Comput Aided Des Archit 352–361. https://doi.org/10.52842/conf.acadia.2016.352
  • Park J, Kim D, Choi AY, Kim YT (2018) Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics. APL Mater 6:. https://doi.org/10.1063/1.5048553
  • Diatezo L, Le MQ, Tonellato C, et al (2023) Development and Optimization of 3D-Printed Flexible Electronic Coatings: A New Generation of Smart Heating Fabrics for Automobile Applications. Micromachines 14:. https://doi.org/10.3390/mi14040762
  • Sapkota A, Ghimire SK, Adanur S (2024) A review on fused deposition modeling (FDM)-based additive manufacturing (AM) methods, materials and applications for flexible fabric structures. J Ind Text 54:1–51. https://doi.org/10.1177/15280837241282110
  • Bi H, Xu M, Ye G, et al (2018) Mechanical, thermal, and shape memory properties of three-dimensional printing biomass composites. Polymers (Basel) 10:. https://doi.org/10.3390/polym10111234
  • Kalaoglu-Altan OI, Kayaoglu BK, Trabzon L (2022) Improving thermal conductivities of textile materials by nanohybrid approaches. iScience 25:103825. https://doi.org/10.1016/j.isci.2022.103825
  • Kočevar TN (2023) 3D Printing on Textiles – Overview of Research on Adhesion to Woven Fabrics. Tekstilec 66:164–177. https://doi.org/10.14502/tekstilec.66.2023055
  • Kačergis L, Mitkus R, Sinapius M (2019) Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structures. Smart Mater Struct 28:. https://doi.org/10.1088/1361-665X/ab3d18
  • Uysal R, Stubbs JB (2019) A New Method of Printing Multi-Material Textiles by Fused Deposition Modelling (FDM). TEKSTILEC 62:248–257. https://doi.org/ 10.14502/Tekstilec2019. 62.248-257
  • Çevik Ü, Kam M (2020) A Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production. J Nanomater 2020:. https://doi.org/10.1155/2020/6187149
  • Korger Michael, Glogowsky Alexandra, Sanduloff Silke, et al (2020) Testing thermoplastic elastomers selected as flexible three-dimensional printing materials for functional garment and technical textile applications. J Eng Fiber Fabr 15:1558925020924599. https://doi.org/10.1177/1558925020924599
  • Gnanasekaran K, De With G, Friedrich H (2014) On packing, connectivity, and conductivity in mesoscale networks of polydisperse multiwalled carbon nanotubes. J Phys Chem C 118:29796–29803. https://doi.org/10.1021/jp5081669
  • Diak V, Diak A (2024) Features and Limitations of Fused Deposition Modelling (FDM) in Obtaining Textile-like Structures. Tekstilec 67:397–411. https://doi.org/10.14502/tekstilec.67.2024106
  • Unger L, Scheideler M, Meyer P, et al (2018) Increasing adhesion of 3D printing on textile fabrics by polymer coating. Tekstilec 61:265–271. https://doi.org/10.14502/Tekstilec2018.61.265-271
  • Acierno D, Patti A (2023) Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials (Basel) 16:. https://doi.org/10.3390/ma16247664
  • Shanmugam V, Das O, Babu K, et al (2021) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007. https://doi.org/10.1016/j.ijfatigue.2020.106007
  • Kafle A, Luis E, Silwal R, et al (2021) 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel) 13:3101. https://doi.org/10.3390/polym13183101
  • Barkane A, Jurinovs M, Briede S, et al (2023) Biobased Resin for Sustainable Stereolithography: 3D Printed Vegetable Oil Acrylate Reinforced with Ultra-Low Content of Nanocellulose for Fossil Resin Substitution. 3D Print Addit Manuf 10:1272–1286. https://doi.org/10.1089/3dp.2021.0294
  • Tuvshinbayar K, Mpofu NS, Berger T, et al (2024) Comparison of FDM and SLA printing on woven fabrics. 169–177. https://doi.org/10.25367/cdatp.2024.5.p169-177
  • Popescu D, Amza CG (2024) 3D Printing onto Textiles: A Systematic Analysis of the Adhesion Studies. 3D Print Addit Manuf 11:E586–E606. https://doi.org/10.1089/3dp.2022.0100
  • Kornfellner E, Königshofer M, Unger E, Moscato F (2023) Elastic and dimensional properties of newly combined 3D-printed multimaterials fabricated by DLP stereolithography. Front Mater 10:1–8. https://doi.org/10.3389/fmats.2023.1272147
  • Becker P, Ciesielska-Wrόbel I (2024) Performance of Fabrics with 3D-Printed Photosensitive Acrylic Resin on the Surface. Polymers (Basel) 16:. https://doi.org/10.3390/polym16040486
  • Liu L, Zhu S, Zhang Y, et al (2024) Process Study of Selective Laser Sintering of PS/GF/HGM Composites. Materials (Basel) 17:. https://doi.org/10.3390/ma17051066
  • Hassan MS, Billah KMM, Hall SE, et al (2022) Selective laser sintering of high temperature thermoset. 12044:9. https://doi.org/10.1117/12.2614779
  • Beecroft M (2016) 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder. IOP Conf Ser Mater Sci Eng 137:0–7. https://doi.org/10.1088/1757-899X/137/1/012017
  • Khazaee S, Kiani A, Badrossamay M, Foroozmehr E (2021) Selective Laser Sintering of Polystyrene: Preserving Mechanical Properties without Post-processing. J Mater Eng Perform 30:3068–3078. https://doi.org/10.1007/s11665-021-05606-6
  • Rahman MM, Ahmed KA, Karim M, et al (2023) Optimization of Selective Laser Sintering Three-Dimensional Printing of Thermoplastic Polyurethane Elastomer: A Statistical Approach. J Manuf Mater Process 7:. https://doi.org/10.3390/jmmp7040144
  • Choudhury D, Ponneganti S, Radhakrishnanand P, et al (2023) Selective laser sintering additive manufacturing of solid oral dosage form: Effect of laser power and hatch spacing on the physico-technical behaviour of sintered printlets. Appl Mater Today 35:101943. https://doi.org/10.1016/j.apmt.2023.101943
  • Bao X, Meng J, Tan Z, et al (2024) Direct-ink-write 3D printing of highly-stretchable polyaniline gel with hierarchical conducting network for customized wearable strain sensors. Chem Eng J 491:151918. https://doi.org/10.1016/j.cej.2024.151918
  • Deshpande AA, Pan Y (2023) Direct Ink Writing on a Rotating Mandrel—Additive Lathe Micro-Manufacturing. J Micro- Nano-Manufacturing 11:. https://doi.org/10.1115/1.4065506
  • Wei P, Cipriani C, Hsieh CM, et al (2023) Go with the flow: Rheological requirements for direct ink write printability. J Appl Phys 134:. https://doi.org/10.1063/5.0155896

A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES

Year 2025, Volume: 32 Issue: 139, 305 - 318, 30.09.2025
https://doi.org/10.7216/teksmuh.1599672

Abstract

The integration of 3D printing technology into smart textiles has witnessed a surge of interest from academia and industry over the past decade. 3D printing’s inherent capability to fabricate intricate and customizable structures enhances functionality across key areas such as wearable electronics, medical textiles, and interactive fashion. Various 3D printing techniques, including Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Direct Ink Writing (DIW), and PolyJet printing, are currently employed in the fabrication of smart textiles. However, the wide range of applications for 3D printing in smart textiles often presents a challenge in synthesizing existing research accomplishments and identifying research gaps. To address this challenge, this review paper offers a comprehensive, application-oriented analysis of these specific 3D printing techniques and the materials utilized across various smart textile applications, including wearable technology, medical textiles, and smart fashion design. Our analysis draws upon a comprehensive review of peer-reviewed literature published between 2016 and 2024, identified through systematic searches of Google Scholar, PubMed, and Scopus. A central aim of this review is to emphasize the critical understanding of these 3D printing techniques for strategically selecting the most suitable method to incorporate advanced functionalities within smart textiles and interactive fashion. Despite significant progress in utilizing 3D printing for smart textile production, substantial challenges persist in the effective integration of diverse wearable sensors, necessitating interdisciplinary collaboration to develop innovative hybrid manufacturing strategies.

Ethical Statement

No potential conflict of interest was reported by the author(s). This review paper consists solely of previously published studies, and as such, does not involve the use of any original data.

Thanks

The authors extend their appreciation to the reviewers and editors for their insightful feedback, recognizing their contributions in improving the quality of the manuscript.

References

  • Xiao Y-Q, Kan C-W (2022) Review on Development and Application of 3D-Printing Technology in Textile and Fashion Design. Coatings 12:267. https://doi.org/10.3390/coatings12020267
  • Tan WS, Suwarno SR, An J, et al (2017) Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication. J Memb Sci 537:283–296. https://doi.org/10.1016/ j.memsci.2017.05.037
  • Muthuram N, Sriram Madhav P, Keerthi Vasan D, et al (2022) A review of recent literatures in poly jet printing process. Mater Today Proc 68:1906–1920. https://doi.org/10.1016/j.matpr.2022.08.090
  • Júnior HLO, Neves RM, Monticeli FM, Dall Agnol L (2022) Smart Fabric Textiles: Recent Advances and Challenges. Textiles 2:582–605. https://doi.org/10.3390/textiles2040034
  • Ruckdashel RR, Khadse N, Park JH (2022) Smart E-Textiles: Overview of Components and Outlook. Sensors 22:. https://doi.org/10.3390/s22166055
  • Eutionnat-Diffo PA, Cayla A, Chen Y, et al (2020) Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing. Polymers (Basel) 12:2300. https://doi.org/10.3390/polym12102300
  • Stoppa M, Chiolerio A (2014) Wearable Electronics and Smart Textiles: A Critical Review. Sensors 14:11957–11992. https:// doi.org/10.3390/s140711957
  • Xu D, Ouyang Z, Dong Y, et al (2023) Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management. Adv Fiber Mater 5:282–295. https://doi.org/10.1007/s42765-022-00221-z
  • Bunea A-C, Dediu V, Laszlo EA, et al (2021) E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. Micromachines 12:1091. https://doi.org/10.3390/mi12091091
  • Takagi T (1999) Present State and Future of the Intelligent Materials and Systems in Japan. J Intell Mater Syst Struct 10:575–581. https://doi.org/10.1106/33UC-FBCW-342W-P2WW
  • Rotari E, Negara C (2017) Possibilities and applications of smart textiles. MATEC Web Conf 112:1–6. https://doi.org/10.1051/ matecconf/201711204025
  • Razzaq MY, Gonzalez-Gutierrez J, Mertz G, et al (2022) 4D Printing of Multicomponent Shape-Memory Polymer Formulations. Appl Sci 12:. https://doi.org/10.3390/app12157880
  • Younes B (2023) Smart E-textiles: A review of their aspects and applications. J Ind Text 53:1–23. https://doi.org/10.1177/ 15280837231215493
  • Valentine AD, Busbee TA, Boley JW, et al (2017) Hybrid 3D Printing of Soft Electronics. Adv Mater 29:1703817. https://doi.org/https://doi.org/10.1002/adma.201703817
  • Yang H, Leow WR, Chen X (2018) 3D Printing of Flexible Electronic Devices. Small Methods 2:1–7. https://doi.org/10.1002 /smtd.201700259
  • Tumbleston JR, Shirvanyants D, Ermoshkin N, et al (2015) Continuous liquid interface production of 3D objects. Science (80- ) 347:1349–1352. https://doi.org/10.1126/science.aaa2397
  • Kelly BE, Bhattacharya I, Heidari H, et al (2019) Volumetric additive manufacturing via tomographic reconstruction. Science (80- ) 363:1075–1079. https://doi.org/10.1126/science.aau7114
  • Lim S, Buswell RA, Le TT, et al (2012) Developments in construction-scale additive manufacturing processes. Autom Constr 21:262–268. https://doi.org/10.1016/j.autcon.2011.06.010
  • Vanderploeg A, Lee S-E, Mamp M (2017) The application of 3D printing technology in the fashion industry. Int J Fash Des Technol Educ 10:170–179. https://doi.org/10.1080/17543266.2016.1223355
  • Pasricha A, Greeninger R (2018) Exploration of 3D printing to create zero-waste sustainable fashion notions and jewelry. Fash Text 5:30. https://doi.org/10.1186/s40691-018-0152-2
  • Manaia JP, Cerejo F, Duarte J (2023) Revolutionising textile manufacturing: a comprehensive review on 3D and 4D printing technologies. Fash Text 10:20. https://doi.org/10.1186/s40691-023-00339-7
  • Komolafe A, Zaghari B, Torah R, et al (2021) E-Textile Technology Review–From Materials to Application. IEEE Access 9:97152–97179. https://doi.org/10.1109/ACCESS.2021.3094303
  • de Albuquerque TL, Marques Júnior JE, de Queiroz LP, et al (2021) Polylactic acid production from biotechnological routes: A review. Int J Biol Macromol 186:933–951. https://doi.org/10.1016/ j.ijbiomac. 2021.07.074
  • Franco Urquiza EA (2024) Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing—A Review. Polymers (Basel) 16:700. https://doi.org/10.3390/polym16050700
  • Goncu-Berk G (2023) 3D Printing of Conductive Flexible Filaments for E-Textile Applications. IOP Conf Ser Mater Sci Eng 1266:012001. https://doi.org/10.1088/1757-899X/1266/1/012001
  • Hart KR, Wetzel ED (2017) Fracture behavior of additively manufactured acrylonitrile butadiene styrene (ABS) materials. Eng Fract Mech 177:1–13. https://doi.org/10.1016/j.engfracmech. 2017.03.028
  • Awasthi P, Banerjee SS (2021) Fused deposition modeling of thermoplastic elastomeric materials: Challenges and opportunities. Addit Manuf 46:102177. https://doi.org/10.1016/j.addma. 2021.102177
  • Arioli M, Puiggalí J, Franco L (2024) Nylons with Applications in Energy Generators, 3D Printing and Biomedicine. Molecules 29:2443. https://doi.org/10.3390/molecules29112443
  • Iftekar SF, Aabid A, Amir A, Baig M (2023) Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers (Basel) 15:2519. https://doi.org/10.3390 /polym15112519
  • Wilson S, Laing R (2019) Fabrics and Garments as Sensors: A Research Update. Sensors 19:3570. https://doi.org/10.3390/ s19163570
  • Calignano F, Manfredi D, Ambrosio EP, et al (2017) Overview on additive manufacturing technologies. Proc IEEE 105:593–612. https://doi.org/10.1109/JPROC.2016.2625098
  • Mogan J, Harun WSW, Kadirgama K, et al (2022) Fused Deposition Modelling of Polymer Composite: A Progress. Polymers (Basel) 15:28. https://doi.org/10.3390/polym15010028
  • Morehead S, Oliver R, O’Connor N, et al (2016) The Power of ‘Soft.’ MRS Adv 1:69–80. https://doi.org/10.1557/adv.2016.96
  • Gowthaman S, Chidambaram GS, Rao DBG, et al (2018) A Review on Energy Harvesting Using 3D Printed Fabrics for Wearable Electronics. J Inst Eng Ser C 99:435–447. https://doi.org/1 0.1007/s40032-016-0267-4
  • Grimmelsmann N, Martens Y, Schäl P, et al (2016) Mechanical and Electrical Contacting of Electronic Components on Textiles by 3D Printing. Procedia Technol 26:66–71. https://doi.org/10.1016/ j.protcy.2016.08.010
  • Leist SK, Gao D, Chiou R, Zhou J (2017) Investigating the shape memory properties of 4D printed polylactic acid (PLA) and the concept of 4D printing onto nylon fabrics for the creation of smart textiles. Virtual Phys Prototyp 12:290–300. https://doi.org/ 10.1080/17452759.2017.1341815
  • Ly ST, Kim JY (2017) 4D printing – fused deposition modeling printing with thermal-responsive shape memory polymers. Int J Precis Eng Manuf Technol 4:267–272. https://doi.org/10.1007 /s40684-017-0032-z
  • Eutionnat-Diffo PA, Chen Y, Guan J, et al (2019) Optimization of adhesion of poly lactic acid 3D printed onto polyethylene terephthalate woven fabrics through modelling using textile properties. Rapid Prototyp J 26:390–401. https://doi.org/10.1108/ RPJ-05-2019-0138
  • Eutionnat-Diffo PA, Chen Y, Guan J, et al (2019) Stress, strain and deformation of poly-lactic acid filament deposited onto polyethylene terephthalate woven fabric through 3D printing process. Sci Rep 9:14333. https://doi.org/10.1038/s41598-019-50832-7
  • Eutionnat-Diffo PA, Chen Y, Guan J, et al (2020) Study of the Wear Resistance of Conductive Poly Lactic Acid Monofilament 3D Printed onto Polyethylene Terephthalate Woven Materials. Materials (Basel) 13:2334. https://doi.org/10.3390/ma13102334
  • Nguyen TT, Kim J (2020) 4D-Printing — Fused Deposition Modeling Printing and PolyJet Printing with Shape Memory Polymers Composite. Fibers Polym 21:2364–2372. https://doi.org/10.1007/s12221-020-9882-z
  • Hofmann AI, Östergren I, Kim Y, et al (2020) All-Polymer Conducting Fibers and 3D Prints via Melt Processing and Templated Polymerization. ACS Appl Mater Interfaces 12:8713–8721. https://doi.org/10.1021/acsami.9b20615
  • Ertuna I, Güngör Y, Karaoğlu F, et al (2021) Design and Production of Smart Wearable Textile Products Using Layered Manufacturing Technology with Photovoltaic Energy. South Florida J Dev 2:1636–1644. https://doi.org/10.46932/sfjdv2n2-040
  • Yang Z, Ma Y, Jia S, et al (2022) 3D-Printed Flexible Phase-Change Nonwoven Fabrics toward Multifunctional Clothing. ACS Appl Mater Interfaces 14:7283–7291. https://doi.org/10.1021/ acsami.1c21778
  • Kruth JP, Wang X, Laoui T, Froyen L (2003) Lasers and materials in selective laser sintering. Assem Autom 23:357–371. https://doi.org/10.1108/01445150310698652
  • Kim S, Seong H, Her Y, Chun J (2019) A study of the development and improvement of fashion products using a FDM type 3D printer. Fash Text 6:9. https://doi.org/10.1186/s40691-018-0162-0
  • Kruth J, Mercelis P, Van Vaerenbergh J, et al (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36. https://doi.org/10.1108/13552540510573365
  • Rosenkrantz J, Louis‐Rosenberg J (2017) Dress/Code Democratising Design Through Computation and Digital Fabrication. Archit Des 87:48–57. https://doi.org/10.1002/ad.2237
  • Bloomfield M, Borstrock S (2018) Modeclix. The additively manufactured adaptable textile. Mater Today Commun 16:212–216. https://doi.org/10.1016/j.mtcomm.2018.04.002
  • Beecroft M (2019) Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder. Int J Fash Des Technol Educ 12:218–224. https://doi.org/10.1080/17543266.2019.1573269
  • Ukobitz D, Faullant R (2021) Leveraging 3D Printing Technologies: The Case of Mexico’s Footwear Industry. Res Manag 64:20–30. https://doi.org/10.1080/08956308.2021.1864919
  • Paek SW, Balasubramanian S, Stupples D (2022) Composites Additive Manufacturing for Space Applications: A Review. Materials (Basel) 15:4709. https://doi.org/10.3390/ma15134709
  • Szewczyk PK, Busolo T, Kar-Narayan S, Stachewicz U (2023) Wear-Resistant Smart Textiles Using Nylon-11 Triboelectric Yarns. ACS Appl Mater Interfaces 15:56575–56586. https://doi.org/10.1021/acsami.3c14156
  • Sharma V, Roozbahani H, Alizadeh M, Handroos H (2021) 3D Printing of Plant-Derived Compounds and a Proposed Nozzle Design for the More Effective 3D FDM Printing. IEEE Access 9:57107–57119. https://doi.org/10.1109/ACCESS.2021.3071459
  • Nocheseda CJC, Fazley Elahee GM, Santos MFA, et al (2023) On the 3D printability of one-part moisture-curable polyurethanes via direct ink writing (DIW). MRS Commun 13:647–656. https://doi.org/10.1557/s43579-023-00407-5
  • Hou Z, Lu H, Li Y, et al (2021) Direct Ink Writing of Materials for Electronics-Related Applications: A Mini Review. Front Mater 8:1–8. https://doi.org/10.3389/fmats.2021.647229
  • Wan X, Luo L, Liu Y, Leng J (2020) Direct Ink Writing Based 4D Printing of Materials and Their Applications. Adv Sci 7:1–29. https://doi.org/10.1002/advs.202001000
  • Palanisamy S, Tunakova V, Militky J (2018) Fiber-based structures for electromagnetic shielding – comparison of different materials and textile structures. Text Res J 88:1992–2012. https://doi.org/10.1177/0040517517715085
  • Tay RY, Song Y, Yao DR, Gao W (2023) Direct-ink-writing 3D-printed bioelectronics. Mater Today 71:135–151. https://doi.org/10.1016/j.mattod.2023.09.006
  • Chen Y, Deng Z, Ouyang R, et al (2021) 3D printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 84:105866. https://doi.org/10.1016/j.nanoen.2021.105866
  • Zhang C, Ouyang W, Zhang L, Li D (2023) A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications. Microsystems Nanoeng 9:. https://doi.org/10.1038/s41378-023-00634-9
  • Badar F, Vandi L-J, Carluccio D, et al (2024) Preliminary colour characterisation of a Stratasys J750 digital anatomy printer with different fillings and face orientations. Prog Addit Manuf 9:1277–1287. https://doi.org/10.1007/s40964-023-00519-3
  • Farahi B (2016) Caress of the gaze: A gaze actuated 3D printed body architecture. ACADIA 2016 Posthuman Front Data, Des Cogn Mach - Proc 36th Annu Conf Assoc Comput Aided Des Archit 352–361. https://doi.org/10.52842/conf.acadia.2016.352
  • Park J, Kim D, Choi AY, Kim YT (2018) Flexible single-strand fiber-based woven-structured triboelectric nanogenerator for self-powered electronics. APL Mater 6:. https://doi.org/10.1063/1.5048553
  • Diatezo L, Le MQ, Tonellato C, et al (2023) Development and Optimization of 3D-Printed Flexible Electronic Coatings: A New Generation of Smart Heating Fabrics for Automobile Applications. Micromachines 14:. https://doi.org/10.3390/mi14040762
  • Sapkota A, Ghimire SK, Adanur S (2024) A review on fused deposition modeling (FDM)-based additive manufacturing (AM) methods, materials and applications for flexible fabric structures. J Ind Text 54:1–51. https://doi.org/10.1177/15280837241282110
  • Bi H, Xu M, Ye G, et al (2018) Mechanical, thermal, and shape memory properties of three-dimensional printing biomass composites. Polymers (Basel) 10:. https://doi.org/10.3390/polym10111234
  • Kalaoglu-Altan OI, Kayaoglu BK, Trabzon L (2022) Improving thermal conductivities of textile materials by nanohybrid approaches. iScience 25:103825. https://doi.org/10.1016/j.isci.2022.103825
  • Kočevar TN (2023) 3D Printing on Textiles – Overview of Research on Adhesion to Woven Fabrics. Tekstilec 66:164–177. https://doi.org/10.14502/tekstilec.66.2023055
  • Kačergis L, Mitkus R, Sinapius M (2019) Influence of fused deposition modeling process parameters on the transformation of 4D printed morphing structures. Smart Mater Struct 28:. https://doi.org/10.1088/1361-665X/ab3d18
  • Uysal R, Stubbs JB (2019) A New Method of Printing Multi-Material Textiles by Fused Deposition Modelling (FDM). TEKSTILEC 62:248–257. https://doi.org/ 10.14502/Tekstilec2019. 62.248-257
  • Çevik Ü, Kam M (2020) A Review Study on Mechanical Properties of Obtained Products by FDM Method and Metal/Polymer Composite Filament Production. J Nanomater 2020:. https://doi.org/10.1155/2020/6187149
  • Korger Michael, Glogowsky Alexandra, Sanduloff Silke, et al (2020) Testing thermoplastic elastomers selected as flexible three-dimensional printing materials for functional garment and technical textile applications. J Eng Fiber Fabr 15:1558925020924599. https://doi.org/10.1177/1558925020924599
  • Gnanasekaran K, De With G, Friedrich H (2014) On packing, connectivity, and conductivity in mesoscale networks of polydisperse multiwalled carbon nanotubes. J Phys Chem C 118:29796–29803. https://doi.org/10.1021/jp5081669
  • Diak V, Diak A (2024) Features and Limitations of Fused Deposition Modelling (FDM) in Obtaining Textile-like Structures. Tekstilec 67:397–411. https://doi.org/10.14502/tekstilec.67.2024106
  • Unger L, Scheideler M, Meyer P, et al (2018) Increasing adhesion of 3D printing on textile fabrics by polymer coating. Tekstilec 61:265–271. https://doi.org/10.14502/Tekstilec2018.61.265-271
  • Acierno D, Patti A (2023) Fused Deposition Modelling (FDM) of Thermoplastic-Based Filaments: Process and Rheological Properties—An Overview. Materials (Basel) 16:. https://doi.org/10.3390/ma16247664
  • Shanmugam V, Das O, Babu K, et al (2021) Fatigue behaviour of FDM-3D printed polymers, polymeric composites and architected cellular materials. Int J Fatigue 143:106007. https://doi.org/10.1016/j.ijfatigue.2020.106007
  • Kafle A, Luis E, Silwal R, et al (2021) 3D/4D Printing of Polymers: Fused Deposition Modelling (FDM), Selective Laser Sintering (SLS), and Stereolithography (SLA). Polymers (Basel) 13:3101. https://doi.org/10.3390/polym13183101
  • Barkane A, Jurinovs M, Briede S, et al (2023) Biobased Resin for Sustainable Stereolithography: 3D Printed Vegetable Oil Acrylate Reinforced with Ultra-Low Content of Nanocellulose for Fossil Resin Substitution. 3D Print Addit Manuf 10:1272–1286. https://doi.org/10.1089/3dp.2021.0294
  • Tuvshinbayar K, Mpofu NS, Berger T, et al (2024) Comparison of FDM and SLA printing on woven fabrics. 169–177. https://doi.org/10.25367/cdatp.2024.5.p169-177
  • Popescu D, Amza CG (2024) 3D Printing onto Textiles: A Systematic Analysis of the Adhesion Studies. 3D Print Addit Manuf 11:E586–E606. https://doi.org/10.1089/3dp.2022.0100
  • Kornfellner E, Königshofer M, Unger E, Moscato F (2023) Elastic and dimensional properties of newly combined 3D-printed multimaterials fabricated by DLP stereolithography. Front Mater 10:1–8. https://doi.org/10.3389/fmats.2023.1272147
  • Becker P, Ciesielska-Wrόbel I (2024) Performance of Fabrics with 3D-Printed Photosensitive Acrylic Resin on the Surface. Polymers (Basel) 16:. https://doi.org/10.3390/polym16040486
  • Liu L, Zhu S, Zhang Y, et al (2024) Process Study of Selective Laser Sintering of PS/GF/HGM Composites. Materials (Basel) 17:. https://doi.org/10.3390/ma17051066
  • Hassan MS, Billah KMM, Hall SE, et al (2022) Selective laser sintering of high temperature thermoset. 12044:9. https://doi.org/10.1117/12.2614779
  • Beecroft M (2016) 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder. IOP Conf Ser Mater Sci Eng 137:0–7. https://doi.org/10.1088/1757-899X/137/1/012017
  • Khazaee S, Kiani A, Badrossamay M, Foroozmehr E (2021) Selective Laser Sintering of Polystyrene: Preserving Mechanical Properties without Post-processing. J Mater Eng Perform 30:3068–3078. https://doi.org/10.1007/s11665-021-05606-6
  • Rahman MM, Ahmed KA, Karim M, et al (2023) Optimization of Selective Laser Sintering Three-Dimensional Printing of Thermoplastic Polyurethane Elastomer: A Statistical Approach. J Manuf Mater Process 7:. https://doi.org/10.3390/jmmp7040144
  • Choudhury D, Ponneganti S, Radhakrishnanand P, et al (2023) Selective laser sintering additive manufacturing of solid oral dosage form: Effect of laser power and hatch spacing on the physico-technical behaviour of sintered printlets. Appl Mater Today 35:101943. https://doi.org/10.1016/j.apmt.2023.101943
  • Bao X, Meng J, Tan Z, et al (2024) Direct-ink-write 3D printing of highly-stretchable polyaniline gel with hierarchical conducting network for customized wearable strain sensors. Chem Eng J 491:151918. https://doi.org/10.1016/j.cej.2024.151918
  • Deshpande AA, Pan Y (2023) Direct Ink Writing on a Rotating Mandrel—Additive Lathe Micro-Manufacturing. J Micro- Nano-Manufacturing 11:. https://doi.org/10.1115/1.4065506
  • Wei P, Cipriani C, Hsieh CM, et al (2023) Go with the flow: Rheological requirements for direct ink write printability. J Appl Phys 134:. https://doi.org/10.1063/5.0155896
There are 93 citations in total.

Details

Primary Language English
Subjects Functional Materials, Wearable Materials, Textile Technology
Journal Section Articles
Authors

Mahbub Alam Sayam This is me

Md. Al-amin

Rui Zhou This is me

Abdullah Al Mamun 0000-0002-9199-8974

Publication Date September 30, 2025
Submission Date December 11, 2024
Acceptance Date June 4, 2025
Published in Issue Year 2025 Volume: 32 Issue: 139

Cite

APA Sayam, M. A., Al-amin, M., Zhou, R., Mamun, A. A. (2025). A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES. Tekstil Ve Mühendis, 32(139), 305-318. https://doi.org/10.7216/teksmuh.1599672
AMA Sayam MA, Al-amin M, Zhou R, Mamun AA. A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES. Tekstil ve Mühendis. September 2025;32(139):305-318. doi:10.7216/teksmuh.1599672
Chicago Sayam, Mahbub Alam, Md. Al-amin, Rui Zhou, and Abdullah Al Mamun. “A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES”. Tekstil Ve Mühendis 32, no. 139 (September 2025): 305-18. https://doi.org/10.7216/teksmuh.1599672.
EndNote Sayam MA, Al-amin M, Zhou R, Mamun AA (September 1, 2025) A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES. Tekstil ve Mühendis 32 139 305–318.
IEEE M. A. Sayam, M. Al-amin, R. Zhou, and A. A. Mamun, “A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES”, Tekstil ve Mühendis, vol. 32, no. 139, pp. 305–318, 2025, doi: 10.7216/teksmuh.1599672.
ISNAD Sayam, Mahbub Alam et al. “A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES”. Tekstil ve Mühendis 32/139 (September2025), 305-318. https://doi.org/10.7216/teksmuh.1599672.
JAMA Sayam MA, Al-amin M, Zhou R, Mamun AA. A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES. Tekstil ve Mühendis. 2025;32:305–318.
MLA Sayam, Mahbub Alam et al. “A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES”. Tekstil Ve Mühendis, vol. 32, no. 139, 2025, pp. 305-18, doi:10.7216/teksmuh.1599672.
Vancouver Sayam MA, Al-amin M, Zhou R, Mamun AA. A BRIEFREVIEW OF 3D PRINTING TECHNOLOGIES AND MATERIALS USED IN SMART TEXTILES. Tekstil ve Mühendis. 2025;32(139):305-18.