Research Article
BibTex RIS Cite

ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION

Year 2025, Volume: 32 Issue: 139, 221 - 236, 30.09.2025

Abstract

Graphene oxide (GO)functionalised with meso-tetrakis(N-methyl pyridinium-four-yl) porphyrin (TMP) electrospun nanofibers silk fibroin (SF) resulted in a wound recovery and tissue regeneration dual functional platform. The combination of TMP into SF/GOmatrix improves mechanical properties and possesses antibacterial activity and biocompatibility. As revealed through mechanical testing, as TMP concentration was increased, the Young's Modulus improved, as exhibited by SF/GO/TMP fibres with a peak stiffness of 38 MPa at 1.00 mg/mL TMP and elongation decreased in agreement, demonstrating the potential for an inverse relationship between tension and flexibility. SEM and fibre diameter analyses demonstrated that GO increased the fibre thickness and structural uniformity up to and including an optimal concentration of 200 μg/ml. Antibacterials have demonstrated an inhibitory effect against Staphylococcus aureus (21.4 mm) and Escherichia coli (15.8 mm) by inducing the production of reactive oxygen species (ROS) in the presence of light. MTT assays confirmed the cytocompatibility of nanofibers supporting fibroblast proliferation for 72 h, and haemolysis tests showed a negligible haemolytic potential (0.7%). These results highlight the continued potential of SF/GO/TMP composites as functional wound dressings and scaffolds with improved mechanical stability, antibacterial safety, and biocompatibility, which are required for more advanced biomedical fields.

References

  • Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG (2024) Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2:100081. doi: 10.1016/j.glmedi.2024.100081
  • Almatroudi A (2025) Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. Biology 14:165. doi: 10.3390/biology14020165
  • Bourget J-M, Kérourédan O, Medina M, Rémy M, Thébaud NB, Bareille R, Chassande O, Amédée J, Catros S, Devillard R (2016) Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration. Biomed Res Int 2016:3569843. doi: 10.1155/2016/3569843
  • znar-Cervantes S, Roca MI, Martinez J, Meseguer-Olmo L, Cenis J, Moraleda J, Otero T (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43
  • Choi J, Kim G-J, Hong S, An J, Kim B-J, Ha C (2022) Sequential process optimization for a digital light processing system to minimize trial and error. Scientific Reports 12. doi: 10.1038/s41598-022-17841-5
  • Chung BG, Kang L, Khademhosseini A (2007) Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2:1653–1668. doi: 10.1517/17460441.2.12.1653
  • ÇİRKİN D (2021) Fibroin nanofibers production by electrospinning method. TURKISH JOURNAL OF CHEMISTRY 45:1279–1298. doi: 10.3906/kim-2011-36
  • Cont A, Rossy T, Al-Mayyah Z, Persat A (2020) Biofilms deform soft surfaces and disrupt epithelia. Elife 9:e56533. doi: 10.7554/eLife.56533
  • Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D (2022) Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio 16:100409. doi: 10.1016/j.mtbio.2022.100409
  • Ding X, Huang Y, Li X, Liu S, Tian F, Niu X, Chu Z, Chen D, Liu H, Fan Y (2021) Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration. J Biomed Mater Res A 109:515–523. doi: 10.1002/jbm.a.37034
  • Fernando CA, Dissanayake DT, Hewamana UI, Rathnaweera S, Samanthilake WA, Tudugala R, Jayasekara KB, Kuruppu K (2023) Alternative methods for calculating percentage haemolysis of red cell concentrates in peripheral blood banks in Sri Lanka. Afr J Lab Med 12:1987. doi: 10.4102/ajlm.v12i1.1987
  • Haykal S, Salna M, Zhou Y, Marcus P, Fatehi M, Frost G, Machuca T, Hofer SOP, Waddell TK (2014) Double-chamber rotating bioreactor for dynamic perfusion cell seeding of large-segment tracheal allografts: comparison to conventional static methods. Tissue Eng Part C Methods 20:681–692. doi: 10.1089/ten.TEC.2013.0627
  • Higgins A (2015) Intracellular ice formation in tissue constructs and the effects of mass transport across the cell membrane
  • Hossain TJ (2024) Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp) 14:97–115. doi: 10.1556/1886.2024.00035
  • Kenry, Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials 155:236–250. doi: 10.1016/j.biomaterials.2017.10.004
  • Kumar S, Teow HL, Niakan A, Jeffrey KCL (2016) Densification behavior and properties of iron oxide doped Y-TZP ceramics. Journal of Engineering Science and Technology 11:176–187
  • Li K, Fan Y (2019) Assembly of silk fibroin and graphene-based nanomaterial with enhanced mechanical/conductive properties and its biomedical application. Journal of Materials Chemistry B 7. doi: 10.1039/C9TB01733J
  • Li Q, Wang X, Lou X, Yuan H, Tu H, Li B, Zhang Y (2015) Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydrate Polymers 130. doi: 10.1016/j.carbpol.2015.05.039
  • Lujerdean C, Baci G-M, Cucu A-A, Dezmirean DS (2022) The Contribution of Silk Fibroin in Biomedical Engineering. Insects 13:286. doi: 10.3390/insects13030286
  • Manathanath M, George B, Kandiyil J, Sujatha S, Vasu ST, Athiyanathil S, Panicker UG (2024) Cationic-porphyrin incorporated electrospun fibers for effective photo-inactivation of bacteria. Materials Today Communications 38:107597. doi: 10.1016/j.mtcomm.2023.107597
  • Medeiros FA, Jammal AA, Thompson AC (2019) From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology 126:513–521. doi: 10.1016/j.ophtha.2018.12.033
  • Mohammadalizadeh Z, Toloue E, Karbasi S (2022) Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. Reactive and Functional Polymers 172:105202. doi: 10.1016/j.reactfunctpolym.2022.105202
  • Rodriguez-Cabello JC, Gonzalez De Torre I, González-Pérez M, González-Pérez F, Montequi I (2021) Fibrous Scaffolds From Elastin-Based Materials. Front Bioeng Biotechnol 9. doi: 10.3389/fbioe.2021.652384
  • da Rosa HS, Salgueiro ACF, Colpo AZC, Paula FR, Mendez ASL, Folmer V (2016) Sida tuberculata (Malvaceae): a study based on development of extractive system and in silico and in vitro properties. Braz J Med Biol Res 49:e5282, S0100-879X2016000800602. doi: 10.1590/1414-431X20165282
  • Sasithorn N, Martinová L, Horakova J, Mongkholrattanasit R (2016) Fabrication of Silk Fibroin Nanofibres by Needleless Electrospinning. pp 95–113
  • Sułek A, Pucelik B, Kobielusz M, Łabuz P, Dubin G, Dabrowski J (2019) Surface Modification of Nanocrystalline TiO2 Materials with Sulfonated Porphyrins for Visible Light Antimicrobial Therapy. Catalysts 9:821. doi: 10.3390/catal9100821
  • Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF (2023) A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 18:1219–1243. doi: 10.2147/IJN.S385166
  • Tihăuan B-M, Marinaș I-C, Adascălului M, Dobre A, Pîrcălăbioru GG, Axinie M, Ștefan LM, Duță DE (2023) Nutritional Profiling and Cytotoxicity Assessment of Protein Rich Ingredients Used as Dietary Supplements. Applied Sciences 13:6829. doi: 10.3390/app13116829
  • Tören E (2024) Pullulan/Collagen Scaffolds Promote Chronic Wound Healing via Mesenchymal Stem Cells
  • Tören E, Buzgo M, Mazari A, Khan M (2024) Recent advances in biopolymer based electrospun nanomaterials for drug delivery systems. Polymers for Advanced Technologies 35. doi: 10.1002/pat.6309
  • Wang S-D, Wang K, Ma Q, Qu C-X (2020) Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Materials Today Communications 23:100893. doi: 10.1016/j.mtcomm.2020.100893
  • Xu Z, Ma Y, Dai H, Tan S, Han B (2022) Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers 14:3110. doi: 10.3390/polym14153110
  • Yao J, Weng Y, Yan S, Hou M, Wang H, Shi Q, Zuo G (2015) NOV inhibits proliferation while promoting apoptosis and migration in osteosarcoma cell lines through p38/MAPK and JNK/MAPK pathways. Oncol Rep 34:2011–2021. doi: 10.3892/or.2015.4153
  • Zabaglo M, Leslie SW, Sharman T (2025) Postoperative Wound Infections. In: StatPearls. StatPearls Publishing, Treasure Island (FL)
  • Zhang X, Zhang C, Xu W, Zhong B, Lin F, Zhang J, Wang Q, Ji J, Wei J, Zhang Y (2015) Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering. Int J Nanomedicine 10:6699–6708. doi: 10.2147/IJN.S92598
  • Zhao Y-T, Zhang J, Gao Y, Liu X-F, Liu J-J, Wang X-X, Xiang H-F, Long Y-Z (2020) Self-powered portable melt electrospinning for in situ wound dressing. Journal of Nanobiotechnology 18:111. doi: 10.1186/s12951-020-00671-w
  • Infection prevention and control. https://www.who.int/teams/integrated-health-services/infection-prevention-control/surgical-site-infection. Accessed 13 Apr 2025

IŞIĞA DUYARLI PORFİRİNLERLE İŞLEVSELLEŞTİRİLMİŞ ELEKTROEĞİRME İPEK FİBROİN/GRAFEN NANOLİFLER: DOKU REJENERASYONU İÇİN GELİŞMİŞ BİR BAKTERİSİDAL PLATFORM

Year 2025, Volume: 32 Issue: 139, 221 - 236, 30.09.2025

Abstract

Meso-tetrakis(N-metil piridinyum-dörtil) porfirin (TMP) ile işsevleştirilmişgrafen oksit (GO) – elektro eğirme nanolif ipek fibroin (SF), yara iyileşmesi ve doku rejenerasyonu için çift fonksiyonlu bir platform oluşturmuştur. SF/GO matrisine TMP’nin dahil edilmesi, mekanik özellikleri iyileştirmiş, antibakteriyel aktivite ve biyouyumluluk kazandırmıştır. Mekanik testlerle ortaya konulduğu üzere, TMP konsantrasyonu arttıkça Young Modülü iyileşmiş, 1,00 mg/mL TMP’de SF/GO/TMP lifleri 38 MPa’lık maksimum sertlik göstermiş ve buna karşılık uzama azalmıştır; bu durum gerilme ve esneklik arasında ters bir ilişkinin potansiyelini ortaya koymuştur. SEM ve lif çapı analizleri, GO’nun lif kalınlığını ve yapısal homojenliği 200 μg/mL’lik optimum konsantrasyona kadar artırdığını göstermiştir. Antibakteriyel testler, ışık varlığında reaktif oksijen türleri (ROS) üretimini indükleyerek Staphylococcus aureus’a (21,4 mm) ve Escherichia coli’ye (15,8 mm) karşı inhibe edici etki göstermiştir. MTT testleri, nanoliflerin fibroblast proliferasyonunu 72 saat boyunca desteklediğini ve sitouyumluluğunu doğrulamış, hemoliz testleri ise ihmal edilebilir düzeyde hemolitik potansiyel (0,7%) göstermiştir. Bu sonuçlar, gelişmiş biyomedikal alanlar için gerekli olan artırılmış mekanik stabilite, antibakteriyel güvenlik ve biyouyumluluk özelliklerine sahip fonksiyonel yara örtüleri ve dokular olarak SF/GO/TMP kompozitlerinin devam eden potansiyelini vurgulamaktadır.

References

  • Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG (2024) Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2:100081. doi: 10.1016/j.glmedi.2024.100081
  • Almatroudi A (2025) Biofilm Resilience: Molecular Mechanisms Driving Antibiotic Resistance in Clinical Contexts. Biology 14:165. doi: 10.3390/biology14020165
  • Bourget J-M, Kérourédan O, Medina M, Rémy M, Thébaud NB, Bareille R, Chassande O, Amédée J, Catros S, Devillard R (2016) Patterning of Endothelial Cells and Mesenchymal Stem Cells by Laser-Assisted Bioprinting to Study Cell Migration. Biomed Res Int 2016:3569843. doi: 10.1155/2016/3569843
  • znar-Cervantes S, Roca MI, Martinez J, Meseguer-Olmo L, Cenis J, Moraleda J, Otero T (2012) Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry 85:36–43
  • Choi J, Kim G-J, Hong S, An J, Kim B-J, Ha C (2022) Sequential process optimization for a digital light processing system to minimize trial and error. Scientific Reports 12. doi: 10.1038/s41598-022-17841-5
  • Chung BG, Kang L, Khademhosseini A (2007) Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2:1653–1668. doi: 10.1517/17460441.2.12.1653
  • ÇİRKİN D (2021) Fibroin nanofibers production by electrospinning method. TURKISH JOURNAL OF CHEMISTRY 45:1279–1298. doi: 10.3906/kim-2011-36
  • Cont A, Rossy T, Al-Mayyah Z, Persat A (2020) Biofilms deform soft surfaces and disrupt epithelia. Elife 9:e56533. doi: 10.7554/eLife.56533
  • Cui Y, Liu H, Tian Y, Fan Y, Li S, Wang G, Wang Y, Peng C, Wu D (2022) Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio 16:100409. doi: 10.1016/j.mtbio.2022.100409
  • Ding X, Huang Y, Li X, Liu S, Tian F, Niu X, Chu Z, Chen D, Liu H, Fan Y (2021) Three-dimensional silk fibroin scaffolds incorporated with graphene for bone regeneration. J Biomed Mater Res A 109:515–523. doi: 10.1002/jbm.a.37034
  • Fernando CA, Dissanayake DT, Hewamana UI, Rathnaweera S, Samanthilake WA, Tudugala R, Jayasekara KB, Kuruppu K (2023) Alternative methods for calculating percentage haemolysis of red cell concentrates in peripheral blood banks in Sri Lanka. Afr J Lab Med 12:1987. doi: 10.4102/ajlm.v12i1.1987
  • Haykal S, Salna M, Zhou Y, Marcus P, Fatehi M, Frost G, Machuca T, Hofer SOP, Waddell TK (2014) Double-chamber rotating bioreactor for dynamic perfusion cell seeding of large-segment tracheal allografts: comparison to conventional static methods. Tissue Eng Part C Methods 20:681–692. doi: 10.1089/ten.TEC.2013.0627
  • Higgins A (2015) Intracellular ice formation in tissue constructs and the effects of mass transport across the cell membrane
  • Hossain TJ (2024) Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp) 14:97–115. doi: 10.1556/1886.2024.00035
  • Kenry, Lee WC, Loh KP, Lim CT (2018) When stem cells meet graphene: Opportunities and challenges in regenerative medicine. Biomaterials 155:236–250. doi: 10.1016/j.biomaterials.2017.10.004
  • Kumar S, Teow HL, Niakan A, Jeffrey KCL (2016) Densification behavior and properties of iron oxide doped Y-TZP ceramics. Journal of Engineering Science and Technology 11:176–187
  • Li K, Fan Y (2019) Assembly of silk fibroin and graphene-based nanomaterial with enhanced mechanical/conductive properties and its biomedical application. Journal of Materials Chemistry B 7. doi: 10.1039/C9TB01733J
  • Li Q, Wang X, Lou X, Yuan H, Tu H, Li B, Zhang Y (2015) Genipin-crosslinked electrospun chitosan nanofibers: Determination of crosslinking conditions and evaluation of cytocompatibility. Carbohydrate Polymers 130. doi: 10.1016/j.carbpol.2015.05.039
  • Lujerdean C, Baci G-M, Cucu A-A, Dezmirean DS (2022) The Contribution of Silk Fibroin in Biomedical Engineering. Insects 13:286. doi: 10.3390/insects13030286
  • Manathanath M, George B, Kandiyil J, Sujatha S, Vasu ST, Athiyanathil S, Panicker UG (2024) Cationic-porphyrin incorporated electrospun fibers for effective photo-inactivation of bacteria. Materials Today Communications 38:107597. doi: 10.1016/j.mtcomm.2023.107597
  • Medeiros FA, Jammal AA, Thompson AC (2019) From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology 126:513–521. doi: 10.1016/j.ophtha.2018.12.033
  • Mohammadalizadeh Z, Toloue E, Karbasi S (2022) Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. Reactive and Functional Polymers 172:105202. doi: 10.1016/j.reactfunctpolym.2022.105202
  • Rodriguez-Cabello JC, Gonzalez De Torre I, González-Pérez M, González-Pérez F, Montequi I (2021) Fibrous Scaffolds From Elastin-Based Materials. Front Bioeng Biotechnol 9. doi: 10.3389/fbioe.2021.652384
  • da Rosa HS, Salgueiro ACF, Colpo AZC, Paula FR, Mendez ASL, Folmer V (2016) Sida tuberculata (Malvaceae): a study based on development of extractive system and in silico and in vitro properties. Braz J Med Biol Res 49:e5282, S0100-879X2016000800602. doi: 10.1590/1414-431X20165282
  • Sasithorn N, Martinová L, Horakova J, Mongkholrattanasit R (2016) Fabrication of Silk Fibroin Nanofibres by Needleless Electrospinning. pp 95–113
  • Sułek A, Pucelik B, Kobielusz M, Łabuz P, Dubin G, Dabrowski J (2019) Surface Modification of Nanocrystalline TiO2 Materials with Sulfonated Porphyrins for Visible Light Antimicrobial Therapy. Catalysts 9:821. doi: 10.3390/catal9100821
  • Tawfik NM, Teiama MS, Iskandar SS, Osman A, Hammad SF (2023) A Novel Nanoemulsion Formula for an Improved Delivery of a Thalidomide Analogue to Triple-Negative Breast Cancer; Synthesis, Formulation, Characterization and Molecular Studies. Int J Nanomedicine 18:1219–1243. doi: 10.2147/IJN.S385166
  • Tihăuan B-M, Marinaș I-C, Adascălului M, Dobre A, Pîrcălăbioru GG, Axinie M, Ștefan LM, Duță DE (2023) Nutritional Profiling and Cytotoxicity Assessment of Protein Rich Ingredients Used as Dietary Supplements. Applied Sciences 13:6829. doi: 10.3390/app13116829
  • Tören E (2024) Pullulan/Collagen Scaffolds Promote Chronic Wound Healing via Mesenchymal Stem Cells
  • Tören E, Buzgo M, Mazari A, Khan M (2024) Recent advances in biopolymer based electrospun nanomaterials for drug delivery systems. Polymers for Advanced Technologies 35. doi: 10.1002/pat.6309
  • Wang S-D, Wang K, Ma Q, Qu C-X (2020) Fabrication of the multifunctional durable silk fabric with synthesized graphene oxide nanosheets. Materials Today Communications 23:100893. doi: 10.1016/j.mtcomm.2020.100893
  • Xu Z, Ma Y, Dai H, Tan S, Han B (2022) Advancements and Applications in the Composites of Silk Fibroin and Graphene-Based Materials. Polymers 14:3110. doi: 10.3390/polym14153110
  • Yao J, Weng Y, Yan S, Hou M, Wang H, Shi Q, Zuo G (2015) NOV inhibits proliferation while promoting apoptosis and migration in osteosarcoma cell lines through p38/MAPK and JNK/MAPK pathways. Oncol Rep 34:2011–2021. doi: 10.3892/or.2015.4153
  • Zabaglo M, Leslie SW, Sharman T (2025) Postoperative Wound Infections. In: StatPearls. StatPearls Publishing, Treasure Island (FL)
  • Zhang X, Zhang C, Xu W, Zhong B, Lin F, Zhang J, Wang Q, Ji J, Wei J, Zhang Y (2015) Biodegradable mesoporous calcium-magnesium silicate-polybutylene succinate scaffolds for osseous tissue engineering. Int J Nanomedicine 10:6699–6708. doi: 10.2147/IJN.S92598
  • Zhao Y-T, Zhang J, Gao Y, Liu X-F, Liu J-J, Wang X-X, Xiang H-F, Long Y-Z (2020) Self-powered portable melt electrospinning for in situ wound dressing. Journal of Nanobiotechnology 18:111. doi: 10.1186/s12951-020-00671-w
  • Infection prevention and control. https://www.who.int/teams/integrated-health-services/infection-prevention-control/surgical-site-infection. Accessed 13 Apr 2025
There are 37 citations in total.

Details

Primary Language English
Subjects Polymer Science and Technologies
Journal Section Articles
Authors

Elçin Tören 0000-0002-1491-5389

Sevda Altaş 0000-0002-2504-8794

Publication Date September 30, 2025
Submission Date February 4, 2025
Acceptance Date July 25, 2025
Published in Issue Year 2025 Volume: 32 Issue: 139

Cite

APA Tören, E., & Altaş, S. (2025). ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION. Tekstil Ve Mühendis, 32(139), 221-236.
AMA Tören E, Altaş S. ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION. Tekstil ve Mühendis. September 2025;32(139):221-236.
Chicago Tören, Elçin, and Sevda Altaş. “ELECTROSPUN SILK FIBROIN GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION”. Tekstil Ve Mühendis 32, no. 139 (September 2025): 221-36.
EndNote Tören E, Altaş S (September 1, 2025) ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION. Tekstil ve Mühendis 32 139 221–236.
IEEE E. Tören and S. Altaş, “ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION”, Tekstil ve Mühendis, vol. 32, no. 139, pp. 221–236, 2025.
ISNAD Tören, Elçin - Altaş, Sevda. “ELECTROSPUN SILK FIBROIN GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION”. Tekstil ve Mühendis 32/139 (September2025), 221-236.
JAMA Tören E, Altaş S. ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION. Tekstil ve Mühendis. 2025;32:221–236.
MLA Tören, Elçin and Sevda Altaş. “ELECTROSPUN SILK FIBROIN GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION”. Tekstil Ve Mühendis, vol. 32, no. 139, 2025, pp. 221-36.
Vancouver Tören E, Altaş S. ELECTROSPUN SILK FIBROIN/GRAPHENE NANOFIBERS FUNCTIONALIZED WITH PHOTOSENSITIVE PORPHYRINS: AN ADVANCED BACTERICIDAL PLATFORM FOR TISSUE REGENERATION. Tekstil ve Mühendis. 2025;32(139):221-36.