Research Article
BibTex RIS Cite

SELÜLOZİK-POLİESTER KARIŞIMLI KUMAŞLARIN UV KORUMA ÖZELLİKLERİ: LİF TİPİ VE NEM İÇERİĞİNİN ETKİSİ

Year 2025, Volume: 32 Issue: 139, 268 - 277, 30.09.2025
https://doi.org/10.7216/teksmuh.1726585

Abstract

Bu çalışma, selülozik–poliester karışım kumaşların ultraviyole (UV) koruma özellikleri üzerindeki lif türü ve nem içeriği etkilerini incelemektedir. Pamuk, viskon ve lyocell liflerinin poliester ile karıştırılmasıyla elde edilen, benzer yapı ve birim alan kütlesine sahip dimi dokuma kumaşlar analiz edilmiştir. Kumaşların kuru ve ıslak koşullardaki performansını değerlendirmek amacıyla Ultraviyole Koruma Faktörü (UPF) ölçümleri ile hava geçirgenliği testleri gerçekleştirilmiştir. Elde edilen sonuçlar, karışım kumaşlarda en yüksek UV korumasını poliester liflerinin sağladığını, bunu sırasıyla pamuk, viskon ve lyocell liflerinin izlediğini ortaya koymuştur. Ayrıca, poliester liflerinin enine kesit şeklinin UV koruma üzerinde önemli bir etkisi olduğu belirlenmiş; altı kanallı liflerin en yüksek korumayı sağladığı, bunu mikro ve dairesel kesitli liflerin izlediği görülmüştür. Nem içeriğinin artması, kumaşların UV koruma performansını azaltırken; daha düşük hava geçirgenliği, UV engelleme etkinliğini artırmaktadır. Bu bulgular, özellikle yazlık giysiler için UV koruyucu tekstil ürünlerinin geliştirilmesine katkı sağlamakta ve tekstil üretiminde modelleme ve optimizasyon çalışmaları için fırsatlar sunmaktadır.

References

  • Verma, A., Zanoletti, A., Kareem, K.Y., Kareem, K.Y., Adelodun, B., Kumar, P., Ajibade, F.O., Silva, L.F.O., Philips, A.J., Kartheeswaran, T., Bontempi, E., Dwivedi, A., (2024), Skin protection from solar ultraviolet radiation using natural compounds: a review, Environmental Chemistry Letters, 22, 1, 273–295.
  • Tang, X., Yang, T., Yu, D., Xiong, H., Zhang, S., (2024), Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin, Environment International, 185, 1–15.
  • Correa, M.D.S.S., Saavedra, M.E.R.R., Parra, E.A.E., (2023), Ultraviolet radiation and its effects on plants. In: Oliveira M, Fernandes-Silva A, eds. Abiotic Stress in Plants - Adaptations to Climate Change. London: IntechOpen.
  • Gefeller, O., Diehl, K., (2022), Children and ultraviolet radiation, Children, 9, 537, 1–4.
  • Goon, P., Banfield, C., Bello, O., Levell, N.J., (2021), Skin cancers in skin types IV–VI: does the Fitzpatrick scale give a false sense of security?, Skin Health and Disease, 1, 3, 1–5.
  • Kibria, G., Repon, M.R., Hossain, M.F., et al., (2022), UV-blocking cotton fabric design for comfortable summer wears: factors, durability and nanomaterials, Cellulose, 29, 14, 7555–7585.
  • Saha, B., Saha, A., Das, P., et al., (2024), A comprehensive review of ultraviolet radiation and functionally modified textile fabric with special emphasis on UV protection, Heliyon, 10, 1–14.
  • Boothby‐Shoemaker, W.T., Mohammad, T.F., Ozog, D.M., Lim, H.W., (2022), Photoprotection by clothing: a review, Photodermatology, Photoimmunology&Photomedicine, 38, 5, 478–488.
  • Dubrovski, P.D., (2010), Woven fabrics and ultraviolet protection. In: Dubrovski PD, ed. Woven Fabr. Eng. London: IntechOpen.
  • Sankaran, A., Kamboj, A., Samant, L., Jose, S., (2021), Synthetic and natural UV protective agents for textile finishing. In: Rather LJ, Haji A, Shabbir M, eds. Innovative and Emerging Technologies for Textile Dyeing and Finishing. Wiley.
  • Üren, N., (2024), Ecological dyeing and UV-protective functionalization of cotton/lyocell blend fabrics designed for high comfort summer clothing, International Advanced Research Engineering Journal, 8, 1, 43–50.
  • Davis, S., Capjack, L., Kerr, N., Fedosejcvs, R., (1997), Clothing as protection from ultraviolet radiation: which fabric is most effective?, International Journal of Dermatology, 36, 5, 374–379.
  • Algaba, I., Riva, A., Pepió, M., (2007), Modelization of the influence of the wearing conditions of the garments on the ultraviolet protection factor, Textile Research Journal, 77, 11, 826–836.
  • Algaba, I.M., Pepió, M., Riva, A., (2007), Modelization of the influence of the treatment with two optical brighteners on the ultraviolet protection factor of cellulosic fabrics, Industrial & Engineering Chemistry Research, 46, 9, 2677–2682.
  • Kursun, S., Ozcan, G., (2010), An investigation of UV protection of swimwear fabrics, Textile Research Journal, 80, 17, 1811–1818.
  • Karakas, H.C., Ereke, S., Acikalin, P., Turkoz, E., (2010), Comparison of the ultraviolet blocking effect of knitted fabrics, Tekstil, 59, 9, 397–402.
  • Dai, L., Zhang, Y., (2011), The influences of material and structure on the UV protection of summer fabrics, Advanced Materials Research, 298, 73–77.
  • Badr, A.A., Hassanin, A., Moursey, M., (2016), Influence of Tencel/cotton blends on knitted fabric performance, Alexandria Engineering Journal, 55, 3, 2439–2447.
  • Cole, Y., Ilyas, A.M., Ilyas, E.N., Ilyas, E.N., (2023), Assessment of UV protection for children's summer clothing, Cureus, 15, 8, 1–8.
  • Duru, S.C., Candan, C., Nergis, B., (2025), Development of UV‐protective hemp-based eco‐friendly textiles, Journal of Applied Polymer Science, 142, 1–20.
  • Tomljenović, A., Živičnjak, J., Skenderi, Z., (2024), Wearing quality of ribbed knits made from viscose and lyocell fibers for underwear, Fibers, 12, 10, 83, 1–20.
  • Akgun, M., (2015), Effect of yarn filament fineness on the surface roughness of polyester woven fabrics, Journal of Engineered Fibers and Fabrics, 10, 2, 121–128.
  • Bogner, P., Mahmud-Ali, A., Bechtold, T., Pham, T., Manian, A.P., (2024), Alkali induced changes in spatial distribution of functional groups in carboxymethylated cellulose – comparison of cotton and viscose fibers, Cellulose, 31, 12, 7313–7324.
  • Jiang, X., Bai, Y., Chen, X., Liu, W., (2020), A review on raw materials, commercial production and properties of lyocell fiber, Journal of Bioresources and Bioproducts, 5, 1, 16–25.
  • Sharma, A., Wankhede, P., Samant, R., et al., (2021), Process-induced microstructure in viscose and lyocell regenerated cellulose fibers revealed by SAXS and SEM of acid-etched samples, ACS Applied Polymer Materials, 3, 5, 2598–2607.
  • Gambichler, T., Hatch, K.L., Avermaete, A., Altmeyer, P., Hoffmann, K., (2002), Influence of wetness on the ultraviolet protection factor (UPF) of textiles: in vitro and in vivo measurements, Photodermatology, Photoimmunology&Photomedicine, 18, 1, 29–35.
  • Kocić, A., Bizjak, M., Popović, D., Poparić, G.B., Stanković, S.B., (2019), UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres, Journal of Cleaner Production, 228, 1229–1237.
  • Babaarslan, O., Hacıoğulları, S.Ö., (2013), Effect of fibre cross-sectional shape on the properties of POY continuous filaments yarns, Fibers and Polymers, 14, 146–151.
  • Kaynak, H.K., Babaarslan, O., (2016), Effects of filament linear density on the comfort related properties of polyester knitted fabrics, Fibres& Textiles in Eastern Europe, 24, 1, 89–94.
  • Ibbett, R.N., Hsieh, Y.L., (2001), Effect of fiber swelling on the structure of lyocell fabrics, Textile Research Journal, 71, 2, 164–173.
  • Kaenthong, S., (2006), Accessibility and reactivity study on lyocell, viscose and modal fibres using exhaust dyeing of reactive dyes. PhD thesis, The University of Manchester.
  • Salo, H.M., Jokinen, E.I., Markkula, S.E., Aaltonen, T.M., Penttilä, H.T., (2000), Comparative effects of UVA and UVB irradiation on the immune system of fish, Journal of Photochemistry and Photobiology B: Biology, 56, 2–3, 154–162.
  • Turan, R.B., Okur, A., Deveci, R., Açikel, M., (2012), Predicting the intra-yarn porosity by image analysis method, Textile Research Journal, 82, 16, 1720–1728.
  • Militky, J., Travnickova, M., Bajzik, V., (1999), Air permeability and light transmission of weaves, International Journal of Clothing Science and Technology, 11, 2/3, 116–125.
  • Akduman, Ç., Oğlakçıoğlu, N., (2023), Tailoring the porosity and breathability of nanofiber webs with mesh size of the deposition material, Sakarya University Journal of Science, 27, 3, 680–686.

UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT

Year 2025, Volume: 32 Issue: 139, 268 - 277, 30.09.2025
https://doi.org/10.7216/teksmuh.1726585

Abstract

This study investigates the effects of fiber type and moisture content on the ultraviolet (UV) protection properties of cellulosic–polyester blend fabrics. Twill-woven fabrics composed of cotton, viscose, and lyocell fibers blended with polyester, all with comparable structures and areal densities, were analyzed. Ultraviolet Protection Factor (UPF) measurements and air permeability tests were conducted to assess performance under both dry and wet conditions. The results revealed that polyester fibers provided the highest UV shielding effectiveness in blended fabrics, followed by cotton, viscose, and lyocell. Furthermore, the cross-sectional shape of polyester fibers significantly influenced UV protection, with hexa-channel fibers showing the highest UV protection, followed by micro- and circular-types. It was also observed that increasing moisture content reduced the UV protection of fabrics, while lower air permeability enhances their UV-blocking efficiency. These findings provide valuable insights for the development of UV-protective clothing, particularly for summer garments, and highlight opportunities for modeling and optimization in textile production.

References

  • Verma, A., Zanoletti, A., Kareem, K.Y., Kareem, K.Y., Adelodun, B., Kumar, P., Ajibade, F.O., Silva, L.F.O., Philips, A.J., Kartheeswaran, T., Bontempi, E., Dwivedi, A., (2024), Skin protection from solar ultraviolet radiation using natural compounds: a review, Environmental Chemistry Letters, 22, 1, 273–295.
  • Tang, X., Yang, T., Yu, D., Xiong, H., Zhang, S., (2024), Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin, Environment International, 185, 1–15.
  • Correa, M.D.S.S., Saavedra, M.E.R.R., Parra, E.A.E., (2023), Ultraviolet radiation and its effects on plants. In: Oliveira M, Fernandes-Silva A, eds. Abiotic Stress in Plants - Adaptations to Climate Change. London: IntechOpen.
  • Gefeller, O., Diehl, K., (2022), Children and ultraviolet radiation, Children, 9, 537, 1–4.
  • Goon, P., Banfield, C., Bello, O., Levell, N.J., (2021), Skin cancers in skin types IV–VI: does the Fitzpatrick scale give a false sense of security?, Skin Health and Disease, 1, 3, 1–5.
  • Kibria, G., Repon, M.R., Hossain, M.F., et al., (2022), UV-blocking cotton fabric design for comfortable summer wears: factors, durability and nanomaterials, Cellulose, 29, 14, 7555–7585.
  • Saha, B., Saha, A., Das, P., et al., (2024), A comprehensive review of ultraviolet radiation and functionally modified textile fabric with special emphasis on UV protection, Heliyon, 10, 1–14.
  • Boothby‐Shoemaker, W.T., Mohammad, T.F., Ozog, D.M., Lim, H.W., (2022), Photoprotection by clothing: a review, Photodermatology, Photoimmunology&Photomedicine, 38, 5, 478–488.
  • Dubrovski, P.D., (2010), Woven fabrics and ultraviolet protection. In: Dubrovski PD, ed. Woven Fabr. Eng. London: IntechOpen.
  • Sankaran, A., Kamboj, A., Samant, L., Jose, S., (2021), Synthetic and natural UV protective agents for textile finishing. In: Rather LJ, Haji A, Shabbir M, eds. Innovative and Emerging Technologies for Textile Dyeing and Finishing. Wiley.
  • Üren, N., (2024), Ecological dyeing and UV-protective functionalization of cotton/lyocell blend fabrics designed for high comfort summer clothing, International Advanced Research Engineering Journal, 8, 1, 43–50.
  • Davis, S., Capjack, L., Kerr, N., Fedosejcvs, R., (1997), Clothing as protection from ultraviolet radiation: which fabric is most effective?, International Journal of Dermatology, 36, 5, 374–379.
  • Algaba, I., Riva, A., Pepió, M., (2007), Modelization of the influence of the wearing conditions of the garments on the ultraviolet protection factor, Textile Research Journal, 77, 11, 826–836.
  • Algaba, I.M., Pepió, M., Riva, A., (2007), Modelization of the influence of the treatment with two optical brighteners on the ultraviolet protection factor of cellulosic fabrics, Industrial & Engineering Chemistry Research, 46, 9, 2677–2682.
  • Kursun, S., Ozcan, G., (2010), An investigation of UV protection of swimwear fabrics, Textile Research Journal, 80, 17, 1811–1818.
  • Karakas, H.C., Ereke, S., Acikalin, P., Turkoz, E., (2010), Comparison of the ultraviolet blocking effect of knitted fabrics, Tekstil, 59, 9, 397–402.
  • Dai, L., Zhang, Y., (2011), The influences of material and structure on the UV protection of summer fabrics, Advanced Materials Research, 298, 73–77.
  • Badr, A.A., Hassanin, A., Moursey, M., (2016), Influence of Tencel/cotton blends on knitted fabric performance, Alexandria Engineering Journal, 55, 3, 2439–2447.
  • Cole, Y., Ilyas, A.M., Ilyas, E.N., Ilyas, E.N., (2023), Assessment of UV protection for children's summer clothing, Cureus, 15, 8, 1–8.
  • Duru, S.C., Candan, C., Nergis, B., (2025), Development of UV‐protective hemp-based eco‐friendly textiles, Journal of Applied Polymer Science, 142, 1–20.
  • Tomljenović, A., Živičnjak, J., Skenderi, Z., (2024), Wearing quality of ribbed knits made from viscose and lyocell fibers for underwear, Fibers, 12, 10, 83, 1–20.
  • Akgun, M., (2015), Effect of yarn filament fineness on the surface roughness of polyester woven fabrics, Journal of Engineered Fibers and Fabrics, 10, 2, 121–128.
  • Bogner, P., Mahmud-Ali, A., Bechtold, T., Pham, T., Manian, A.P., (2024), Alkali induced changes in spatial distribution of functional groups in carboxymethylated cellulose – comparison of cotton and viscose fibers, Cellulose, 31, 12, 7313–7324.
  • Jiang, X., Bai, Y., Chen, X., Liu, W., (2020), A review on raw materials, commercial production and properties of lyocell fiber, Journal of Bioresources and Bioproducts, 5, 1, 16–25.
  • Sharma, A., Wankhede, P., Samant, R., et al., (2021), Process-induced microstructure in viscose and lyocell regenerated cellulose fibers revealed by SAXS and SEM of acid-etched samples, ACS Applied Polymer Materials, 3, 5, 2598–2607.
  • Gambichler, T., Hatch, K.L., Avermaete, A., Altmeyer, P., Hoffmann, K., (2002), Influence of wetness on the ultraviolet protection factor (UPF) of textiles: in vitro and in vivo measurements, Photodermatology, Photoimmunology&Photomedicine, 18, 1, 29–35.
  • Kocić, A., Bizjak, M., Popović, D., Poparić, G.B., Stanković, S.B., (2019), UV protection afforded by textile fabrics made of natural and regenerated cellulose fibres, Journal of Cleaner Production, 228, 1229–1237.
  • Babaarslan, O., Hacıoğulları, S.Ö., (2013), Effect of fibre cross-sectional shape on the properties of POY continuous filaments yarns, Fibers and Polymers, 14, 146–151.
  • Kaynak, H.K., Babaarslan, O., (2016), Effects of filament linear density on the comfort related properties of polyester knitted fabrics, Fibres& Textiles in Eastern Europe, 24, 1, 89–94.
  • Ibbett, R.N., Hsieh, Y.L., (2001), Effect of fiber swelling on the structure of lyocell fabrics, Textile Research Journal, 71, 2, 164–173.
  • Kaenthong, S., (2006), Accessibility and reactivity study on lyocell, viscose and modal fibres using exhaust dyeing of reactive dyes. PhD thesis, The University of Manchester.
  • Salo, H.M., Jokinen, E.I., Markkula, S.E., Aaltonen, T.M., Penttilä, H.T., (2000), Comparative effects of UVA and UVB irradiation on the immune system of fish, Journal of Photochemistry and Photobiology B: Biology, 56, 2–3, 154–162.
  • Turan, R.B., Okur, A., Deveci, R., Açikel, M., (2012), Predicting the intra-yarn porosity by image analysis method, Textile Research Journal, 82, 16, 1720–1728.
  • Militky, J., Travnickova, M., Bajzik, V., (1999), Air permeability and light transmission of weaves, International Journal of Clothing Science and Technology, 11, 2/3, 116–125.
  • Akduman, Ç., Oğlakçıoğlu, N., (2023), Tailoring the porosity and breathability of nanofiber webs with mesh size of the deposition material, Sakarya University Journal of Science, 27, 3, 680–686.
There are 35 citations in total.

Details

Primary Language English
Subjects Textile Sciences and Engineering (Other)
Journal Section Articles
Authors

Seniha Morsümbül 0000-0002-4929-0681

Publication Date September 30, 2025
Submission Date June 24, 2025
Acceptance Date September 12, 2025
Published in Issue Year 2025 Volume: 32 Issue: 139

Cite

APA Morsümbül, S. (2025). UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT. Tekstil Ve Mühendis, 32(139), 268-277. https://doi.org/10.7216/teksmuh.1726585
AMA Morsümbül S. UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT. Tekstil ve Mühendis. September 2025;32(139):268-277. doi:10.7216/teksmuh.1726585
Chicago Morsümbül, Seniha. “UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT”. Tekstil Ve Mühendis 32, no. 139 (September 2025): 268-77. https://doi.org/10.7216/teksmuh.1726585.
EndNote Morsümbül S (September 1, 2025) UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT. Tekstil ve Mühendis 32 139 268–277.
IEEE S. Morsümbül, “UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT”, Tekstil ve Mühendis, vol. 32, no. 139, pp. 268–277, 2025, doi: 10.7216/teksmuh.1726585.
ISNAD Morsümbül, Seniha. “UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT”. Tekstil ve Mühendis 32/139 (September2025), 268-277. https://doi.org/10.7216/teksmuh.1726585.
JAMA Morsümbül S. UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT. Tekstil ve Mühendis. 2025;32:268–277.
MLA Morsümbül, Seniha. “UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT”. Tekstil Ve Mühendis, vol. 32, no. 139, 2025, pp. 268-77, doi:10.7216/teksmuh.1726585.
Vancouver Morsümbül S. UV PROTECTION PROPERTIES OF CELLULOSIC-POLYESTER BLEND FABRICS: EFFECTS OF FIBER TYPE AND MOISTURE CONTENT. Tekstil ve Mühendis. 2025;32(139):268-77.