BibTex RIS Cite

Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması

Year 2015, Volume: 72 Issue: 3, 175 - 272, 01.09.2015

Abstract

Amaç: Antimikrobial direnç sorununun artmakta olması nedeniyle ülkemizde Ulusal Antimikrobiyal Direnç Sürveyans Sistemi UAMDSS kurulma çalışmaları başlatılmıştır. UAMDDS’ye dahil olacak laboratuvarların sisteme güvenilir veri sağlayabilmesi önemlidir. Bu amaçla ülkedeki mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testleri ADT yapabilme kapasitelerini değerlendiren bir anket uygulaması yapılmıştır. Yöntem: Bu çalışma 2009-2010 yılları arasında yapılmış olup mikrobiyoloji laboratuvarlarının kültür ve ADT yapabilme kapasitelerine odaklanan 90 soru içermektedir. Anket formları T.C. Sağlık Bakanlığı tarafından mikrobiyoloji uzmanı bulunduğu bilgisine ulaşılan kamuya bağlı 354 hastanenin tıbbi mikrobiyoloji laboratuvarına gönderilmiştir. Sonuçlar SPSS 18,0 istatistik programı kullanılarak değerlendirilmiştir. Bulgular: Ankete %70,5’i devlet hastanesi, %16,5’i eğitim ve araştırma hastanesi ve %13’ü üniversite hastanesi olmak üzere 322 laboratuvar cevap vermiştir. Birinci basamak sisteme dahil olma kriterleri olan; mikrobiyoloji uzmanı bulunması %99,1 , bakteriyoloji bölümü olması %97,5 ve kan kültürü çalışılması %83,6 sorularının her üçüne de evet cevabı veren 259 %80,4 laboratuvar ileri değerlendirmeye alınmıştır. İkinci aşama olan skor çalışmasında kullanılan sorular ve bu sorulara verilen cevap yüzdeleri şöyledir: i Escherichia coli ortalama: 74,7 , Klebsiella spp. ortalama: 22,9 , Staphylococcus aureus ortalama: 19,6 , Pseudomonas aeruginosa ortalama: 19,5 , Enterococcus spp. ortalama: 16,1 ve Streptococcus pneumoniae ortalama: 3,7 , için uygulanan aylık ADT sayısının ortalama değerlerinin üzerinde olması, ii klinik olarak anlamlı kabul edilen mikroorganizmalara veya izole edilen hastada klinik olarak önemli kabul edilen mikroorganizmalara kan izolatları için sırasıyla %49,2 ve %30,2; BOS izolatları için sırasıyla %88,7 ve %75,5 ADT uygulaması, iii ADT için standart uygulama prosedürünün olması %81,6 , iv iç kalite kontrol sonuçlarının gözden geçiriliyor olması %82,2 , v ADT için standart yöntemlerden herhangi birinin kullanılıyor olması %95,8 , vi ADT sonuçlarının yorumu için standart rehber kullanılması %94,2 vii sonuçların tutarlılığının değerlendirilmesi %96,9 şeklindedir. 259 laboratuvardan 173’ü skor belirleme sorularının tümüne cevap vermiş olup, bu laboratuvarların skor değerleri 4-7; 8-11 ve 12-15 olacak şekilde gruplandırılmıştır. Laboratuvarlardan 43/173 %24,8 ’ünün 12-15 skor grubuna dahil olduğu görülmüştür. Üniversite hastaneleri ve eğitim ve araştırma hastanelerinin büyük bir kısmı 12-15 arası skor puanı alırken sırasıyla %64,9 ve %53,3’ü , devlet hastanelerinin büyük bir bölümünün 4-7 %50 ve 8-11 %47,2 arası skor puanı aldığı belirlenmiştir. Sonuç: UAMDSS için katılımcı laboratuvar belirlerken; skor değerinin yüksek olması, Türkiye İstatistikî Bölge Birimleri Sınıflandırması’na göre belirlenen 12 bölgeye olabildiğince eşit dağılması ve üniversite, eğitim araştırma ve devlet hastanelerini içerecek şekilde olması dikkate alınmıştır. Buna göre UAMDSS’ye güvenilir veri sağlayabilecek katılımcı 78 laboratuvar seçilmiştir.

References

  • 1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia result in supression of homologous revesible co-supression of homologous genes in trans. The Plant Cell, 1990; 2: 279-89.
  • 2. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA. Chalgone synthase cosupression phenotypes in petunia flovers: comparison of sense vs. antisense constructs and single-copy vs.complex T-DNA sequences. Plant Mol Biol, 1996; 32(5): 957-73.
  • 3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998; 391 (6669): 806-11.
  • 4. DaneholtB. Advanced Information: RNA interference. The Nobel Prize in Physiology or Medicine. Archived from the original. Retrieved, 2007.
  • 5. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000; 101: 25-33.
  • 6. Allshire R. RNAi and heterochromatin–a hushedup affair. Science, 2002; 297: 1818-9.
  • 7. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanism and regulations. Genes Dev, 2006; 20: 759-71.
  • 8. Zhao T. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007; 21(94): 1190-203.
  • 9. Sunkar R. Zhu JK. Micro RNAs and Shortinterfering RNAs in Plants. J Integr Plant Biol, 2007; 49: 817-26.
  • 10. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009; 136: 642-55.
  • 11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116: 281-97.
  • 12. Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells, 2005; 19: 1-15.
  • 13. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004; 16: 2001-19.
  • 14. Kim VN. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009; 10: 126-39.
  • 15. Watanabe T, Totoki Y, Sasaki H, Minami N, Imai H. Analysis of small RNA profiles during development. Methods Enzymol, 2007; 427: 155-69.
  • 16. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003: 31; 299(5607): 716-9.
  • 17. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2007: 19; 2(12): e1326.
  • 18. Ashley J, Ian J. The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Biol Chem, 2009; 284(27): 17897–901.
  • 19. Hutvagnerg G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002; 297(5589): 2056-60.
  • 20. Khvora A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003; 115(2): 209-16.
  • 21. Saydam F, Degirmenci İ, Güneş HV. Mikro RNA’lar ve kanser. Dicle Medical Journal 2011; 38(1): 113-20.
  • 22. Sun W, Li YSJ, Huang HD, Shyy JYJ, Chien S. MicroRNA: A master Regulator of Cellular Process fro Bioengineering Systems. Annu Rev Biomed Eng, 2010; 12: 1-27.
  • 23. Pillai RS. MicroRNA function: multiple mechanism for atiny RNA. 2005; 11812: 1753-61.
  • 24. Nowotny M, Yang W. Structural and functional modules in RNA interference. Curr Opin Struct Biol, 2009; 19(3): 286-93.
  • 25. William L, David S, Julian TR. Development and testing of the OPLS all atom force field for conformational energetics and properties of organic liquids. J Am Chem Soc, 1996; 118(45): 11225–36.
  • 26. Park W, Li J, Song R, Messing J, Chen X. Carpel factory, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002; 12(17): 1484-95.
  • 27. Adai A. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 2005; 15: 78-91.
  • 28. Li X, Zhang YZ. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Comput Biol Chem, 2005; 29: 360-67.
  • 29. Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell, 2005; 17(5): 1397-411.
  • 30. Billoud B, De Paepe R, Baulcombe D, Boccara M. Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie, 2005; 87(9-10): 905-10.
  • 31. Dezulian T. Conservation and divergence of microRNA families in plants. Genome Biol, 2005; 6: 13-38.
  • 32. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, et al. Sorghum genome sequencing by methylation filtration. PLoS Biol, 2005; 3(1): e13.
  • 33. Lu S, Sun YS, Shi R, Clark C, Li L, Chiang VL. As in Populus trichocarpathat are absent from Arabidopsis. Plant Cell, 2005; 17: 2186-203.
  • 34. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa. Science, 2006; 313: 1596-604.
  • 35. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, et al. Computational identification of microRNAs and their targets in Gossypium hirsutumex pressed sequence tags. Gene, 2007; 395: 49-61.
  • 36. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, et al. Computational identification of novel microRNAs and targets in Brassica napus. Febs Lett, 2007; 581: 1464-74.
  • 37. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci, 2007; 32(4): 189-97.
  • 38. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos one, 2007; 12: 1326-44.
  • 39. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro RNAs from moss. Plant J, 2005; 43: 837-48.
  • 40. Levitt J. Responses of plants to environmental Stresses. New York, London: Academic Press, 1972: 697.
  • 41. Lichtenhaler HK. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol, 1996; 148: 4-14.
  • 42. Cushman JC. Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000; 3: 117-24.
  • 43. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005; 16: 123-32.
  • 44. Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009; 12: 1-7.
  • 45. Felippes De FF, Schneeberger K, Dezulian T, Huson DH, Weigel D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA New York, 2008; 14(12): 2455-9.
  • 46. Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008; 14: 814-21.
  • 47. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitiveelement origins. Mobile Genetic Elements, 2011; 1(1): 8-17.
  • 48. Lindbo JA, Silva Roales L, Proebsting WM, Dougherty WG . Introduction of highly spesific antiviral state in transgenic plants: Implacation for regulation gene expression and virus resistance. Plant Cell, 1993; 5: 1749-59.
  • 49. Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. Embo J, 1997; 16(12): 3675–84.
  • 50. Gan D, Ding F, Zhuang D, Jiang H, Jiang T, Zhu S, et al. Application of RNA interference methodology to investigate and develop SCMV resistance in maize. J Genet, 2014; 93(2): 305-11.
  • 51. Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol, 2011; 153(3–4): 181–7.
  • 52. Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC. Knockdown of midgut genes by dsRNA-transgenic plantmediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One, 2011; 6(5): 20504.
  • 53. Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, et al. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. American Society of Plant Biologists, 2014; 165: 1505–20.
  • 54. Shweta M, JA Khan. In silico prediction of cotton (Gossypium hirsutum) encoded microRNAs targets in the genome of Cotton leaf curl Allahabad virus. Bioinformation, 2014; 10(5): 251-5.
  • 55. Chunhua Y, Dayong L, Xue L, Chengjun J, Lili H, Xianfeng Z, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength inrice (Oryza sativaL.). BMC Plant Biol, 2014; 14: 158.
  • 56. Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, et al. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol, 2012; 159(1): 501-16.
  • 57. Wan P, Wu J, Zhou Y, Xiao J, Feng J, Zhao W, et al. Computational Analysis of Drought Stress-Associated miRNAs and miRNA CoRegulation Network in Physcomitrella patens. Genomics Proteomics Bioinformatics, 2011; 9(1-2): 37-44.

Performance evaluation of the microbiology laboratories in Turkey for culture and antibiotic susceptibility tests and the selection of laboratories to provide data for National Antimicrobial Resistance Surveillance System: Questionnary application

Year 2015, Volume: 72 Issue: 3, 175 - 272, 01.09.2015

Abstract

Objective: Due to the increase in of the antimicrobial resistance problem, in our country, the studies to establish National Antimicrobial Resistance Surveillance System NAMRSS was started. It is important to provide reliable data for the laboratories those will be included in NAMRSS. For this purpose, a questionnaire was applied to evaluate the culture and antimicrobial susceptibility tests performance capacities AST of the laboratories in the country. Method: This study was done between 2009 and 2010 years, and included 90 queries which were focused on the capacities of microbiology laboratories to perform culture and AST. The questionnaires were sent to medical microbiology laboratories of 354 public hospitals, where the presence of a specialist knowledge is achieved by TR Ministry of Health. Results were analysed by using SPSS 18.0 statistical program. Results: Three hundred twenty two laboratories replied the questionnaire among which were 70.5% state hospital, 16.5% training and research hospital and 13% university hospital laboratories. The number of laboratories which have positive reply to all three questions which are the first stage of the selecton criteria; presence of microbiolog specialist 99.1% ,presence of bacteriology laboratory 97.5% and performance of blood culture 83.6% , were 259 80.4% and they were included in further evaluation. The queries and percentage of the replies used for the second stage were: i The number of AST performed to be more than the average monthly number for Escherichia coli mean: 74.7 , Klebsiella spp. mean: 22.9 , Staphylococcus aureus mean: 19.6 , Pseudomonas aeruginosa mean: 19.5 , Enterococcus spp. mean: 16.1 and Streptococcus pneumoniae mean: 3.7 , ii performance of AST when a microorganism that is generally accepted as clinically significant or significant for the patient from whom the microorganism was isolated; 49.2% and 30.2% for blood culture, and 88.7% and 75.5% for CSF, respectively, iii the presence of standard operating procedures for AST 81.6% , iv revising the internal quality control results 82.2% , v usage of any of the standard methods for AST 95.8% , vi using standard guidelines for the interpretation of results 94.2% , and vii the evaluation of the consistency of the results 96.9% . Among 259 laboratories 173 of them replied all the queries for score determination, and these laboratories were grouped as 4-7; 8-11 and 12-15 according to their scores. Among 173 laboratories, 43 of them were found to be involved in the group 12- 15 score. While most of the teaching and research hospitals and university hospitals received score 12-15 points 64.9% and 53.3% respectively , most of the state hospitals received 4-7 50% and 8-11 47.2% score points. Conclusion: For the determination of participant laboratories; having a high score, equally distribution in 12 regions determined by Turkey Statistical Classification of Territorial Units include university, training and reserach and state hospitals were taken into consideration. Accordingly 78 laboratories which can provide reliable data for NAMRSS were chosen as participant

References

  • 1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia result in supression of homologous revesible co-supression of homologous genes in trans. The Plant Cell, 1990; 2: 279-89.
  • 2. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA. Chalgone synthase cosupression phenotypes in petunia flovers: comparison of sense vs. antisense constructs and single-copy vs.complex T-DNA sequences. Plant Mol Biol, 1996; 32(5): 957-73.
  • 3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998; 391 (6669): 806-11.
  • 4. DaneholtB. Advanced Information: RNA interference. The Nobel Prize in Physiology or Medicine. Archived from the original. Retrieved, 2007.
  • 5. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000; 101: 25-33.
  • 6. Allshire R. RNAi and heterochromatin–a hushedup affair. Science, 2002; 297: 1818-9.
  • 7. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanism and regulations. Genes Dev, 2006; 20: 759-71.
  • 8. Zhao T. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007; 21(94): 1190-203.
  • 9. Sunkar R. Zhu JK. Micro RNAs and Shortinterfering RNAs in Plants. J Integr Plant Biol, 2007; 49: 817-26.
  • 10. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009; 136: 642-55.
  • 11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116: 281-97.
  • 12. Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells, 2005; 19: 1-15.
  • 13. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004; 16: 2001-19.
  • 14. Kim VN. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009; 10: 126-39.
  • 15. Watanabe T, Totoki Y, Sasaki H, Minami N, Imai H. Analysis of small RNA profiles during development. Methods Enzymol, 2007; 427: 155-69.
  • 16. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003: 31; 299(5607): 716-9.
  • 17. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2007: 19; 2(12): e1326.
  • 18. Ashley J, Ian J. The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Biol Chem, 2009; 284(27): 17897–901.
  • 19. Hutvagnerg G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002; 297(5589): 2056-60.
  • 20. Khvora A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003; 115(2): 209-16.
  • 21. Saydam F, Degirmenci İ, Güneş HV. Mikro RNA’lar ve kanser. Dicle Medical Journal 2011; 38(1): 113-20.
  • 22. Sun W, Li YSJ, Huang HD, Shyy JYJ, Chien S. MicroRNA: A master Regulator of Cellular Process fro Bioengineering Systems. Annu Rev Biomed Eng, 2010; 12: 1-27.
  • 23. Pillai RS. MicroRNA function: multiple mechanism for atiny RNA. 2005; 11812: 1753-61.
  • 24. Nowotny M, Yang W. Structural and functional modules in RNA interference. Curr Opin Struct Biol, 2009; 19(3): 286-93.
  • 25. William L, David S, Julian TR. Development and testing of the OPLS all atom force field for conformational energetics and properties of organic liquids. J Am Chem Soc, 1996; 118(45): 11225–36.
  • 26. Park W, Li J, Song R, Messing J, Chen X. Carpel factory, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002; 12(17): 1484-95.
  • 27. Adai A. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 2005; 15: 78-91.
  • 28. Li X, Zhang YZ. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Comput Biol Chem, 2005; 29: 360-67.
  • 29. Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell, 2005; 17(5): 1397-411.
  • 30. Billoud B, De Paepe R, Baulcombe D, Boccara M. Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie, 2005; 87(9-10): 905-10.
  • 31. Dezulian T. Conservation and divergence of microRNA families in plants. Genome Biol, 2005; 6: 13-38.
  • 32. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, et al. Sorghum genome sequencing by methylation filtration. PLoS Biol, 2005; 3(1): e13.
  • 33. Lu S, Sun YS, Shi R, Clark C, Li L, Chiang VL. As in Populus trichocarpathat are absent from Arabidopsis. Plant Cell, 2005; 17: 2186-203.
  • 34. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa. Science, 2006; 313: 1596-604.
  • 35. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, et al. Computational identification of microRNAs and their targets in Gossypium hirsutumex pressed sequence tags. Gene, 2007; 395: 49-61.
  • 36. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, et al. Computational identification of novel microRNAs and targets in Brassica napus. Febs Lett, 2007; 581: 1464-74.
  • 37. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci, 2007; 32(4): 189-97.
  • 38. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos one, 2007; 12: 1326-44.
  • 39. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro RNAs from moss. Plant J, 2005; 43: 837-48.
  • 40. Levitt J. Responses of plants to environmental Stresses. New York, London: Academic Press, 1972: 697.
  • 41. Lichtenhaler HK. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol, 1996; 148: 4-14.
  • 42. Cushman JC. Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000; 3: 117-24.
  • 43. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005; 16: 123-32.
  • 44. Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009; 12: 1-7.
  • 45. Felippes De FF, Schneeberger K, Dezulian T, Huson DH, Weigel D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA New York, 2008; 14(12): 2455-9.
  • 46. Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008; 14: 814-21.
  • 47. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitiveelement origins. Mobile Genetic Elements, 2011; 1(1): 8-17.
  • 48. Lindbo JA, Silva Roales L, Proebsting WM, Dougherty WG . Introduction of highly spesific antiviral state in transgenic plants: Implacation for regulation gene expression and virus resistance. Plant Cell, 1993; 5: 1749-59.
  • 49. Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. Embo J, 1997; 16(12): 3675–84.
  • 50. Gan D, Ding F, Zhuang D, Jiang H, Jiang T, Zhu S, et al. Application of RNA interference methodology to investigate and develop SCMV resistance in maize. J Genet, 2014; 93(2): 305-11.
  • 51. Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol, 2011; 153(3–4): 181–7.
  • 52. Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC. Knockdown of midgut genes by dsRNA-transgenic plantmediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One, 2011; 6(5): 20504.
  • 53. Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, et al. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. American Society of Plant Biologists, 2014; 165: 1505–20.
  • 54. Shweta M, JA Khan. In silico prediction of cotton (Gossypium hirsutum) encoded microRNAs targets in the genome of Cotton leaf curl Allahabad virus. Bioinformation, 2014; 10(5): 251-5.
  • 55. Chunhua Y, Dayong L, Xue L, Chengjun J, Lili H, Xianfeng Z, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength inrice (Oryza sativaL.). BMC Plant Biol, 2014; 14: 158.
  • 56. Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, et al. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol, 2012; 159(1): 501-16.
  • 57. Wan P, Wu J, Zhou Y, Xiao J, Feng J, Zhao W, et al. Computational Analysis of Drought Stress-Associated miRNAs and miRNA CoRegulation Network in Physcomitrella patens. Genomics Proteomics Bioinformatics, 2011; 9(1-2): 37-44.
There are 57 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Murat Duman This is me

Nilay Çöplü This is me

Dilber Aktaş This is me

Hüsniye Şimşek This is me

Gül Bahar Erdem This is me

İpek Mumcuoğlu This is me

Publication Date September 1, 2015
Published in Issue Year 2015 Volume: 72 Issue: 3

Cite

APA Duman, M., Çöplü, N., Aktaş, D., Şimşek, H., et al. (2015). Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 72(3), 175-272.
AMA Duman M, Çöplü N, Aktaş D, Şimşek H, Erdem GB, Mumcuoğlu İ. Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması. Turk Hij Den Biyol Derg. September 2015;72(3):175-272.
Chicago Duman, Murat, Nilay Çöplü, Dilber Aktaş, Hüsniye Şimşek, Gül Bahar Erdem, and İpek Mumcuoğlu. “Türkiye’de Mikrobiyoloji laboratuvarlarının kültür Ve Antibiyotik duyarlılık Testi Performans değerlendirmesi Ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine Veri sağlayacak laboratuvarların seçimi: Anket Uygulaması”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 72, no. 3 (September 2015): 175-272.
EndNote Duman M, Çöplü N, Aktaş D, Şimşek H, Erdem GB, Mumcuoğlu İ (September 1, 2015) Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması. Türk Hijyen ve Deneysel Biyoloji Dergisi 72 3 175–272.
IEEE M. Duman, N. Çöplü, D. Aktaş, H. Şimşek, G. B. Erdem, and İ. Mumcuoğlu, “Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması”, Turk Hij Den Biyol Derg, vol. 72, no. 3, pp. 175–272, 2015.
ISNAD Duman, Murat et al. “Türkiye’de Mikrobiyoloji laboratuvarlarının kültür Ve Antibiyotik duyarlılık Testi Performans değerlendirmesi Ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine Veri sağlayacak laboratuvarların seçimi: Anket Uygulaması”. Türk Hijyen ve Deneysel Biyoloji Dergisi 72/3 (September 2015), 175-272.
JAMA Duman M, Çöplü N, Aktaş D, Şimşek H, Erdem GB, Mumcuoğlu İ. Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması. Turk Hij Den Biyol Derg. 2015;72:175–272.
MLA Duman, Murat et al. “Türkiye’de Mikrobiyoloji laboratuvarlarının kültür Ve Antibiyotik duyarlılık Testi Performans değerlendirmesi Ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine Veri sağlayacak laboratuvarların seçimi: Anket Uygulaması”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, vol. 72, no. 3, 2015, pp. 175-2.
Vancouver Duman M, Çöplü N, Aktaş D, Şimşek H, Erdem GB, Mumcuoğlu İ. Türkiye’de mikrobiyoloji laboratuvarlarının kültür ve antibiyotik duyarlılık testi performans değerlendirmesi ve Ulusal Antimikrobiyal Direnç Sürveyans Sistemine veri sağlayacak laboratuvarların seçimi: Anket uygulaması. Turk Hij Den Biyol Derg. 2015;72(3):175-22.