Review
BibTex RIS Cite

Heat transfer performance of Li-ion battery pack using composite phase change material: A review

Year 2025, Volume: 11 Issue: 3, 896 - 921, 16.05.2025

Abstract

Electric Vehicles (EVs) rely on Li-ion batteries (Li-ion), which perform best in an operating temperature range of 15ÅãC to 40ÅãC. However, in regions where ambient temperatures are higher, EVs can catch fire even with thermal management systems. To address this issue, researchers are exploring the use of phase change materials (PCM) in battery thermal management systems (BTMS). PCM-based BTMS can maintain operating temperatures within the standard range for a long time without additional power, thus improving battery lifespan. Various types of PCM, such as Composite phase change material (CPCM) and Flexible phase change material (FCPM), have been proposed for BTMS to address existing issues like overheating, internal heat generation, and optimization. Battery Thermal Management Systems (BTMS) in Electric Vehicles (EVs) have issues like overheating during running and charging, internal heat generation, optimization, and battery life. The maximum temperature difference (ΔTmax) is achieved between 2ÅãC to 20ÅãC for different discharge rates. This reduces the battery surface temperature by 24% to 70% and improves battery lifespan.

References

  • [1] Hema R, Venkatarangan M. Adoption of EV: landscape of EV and opportunities for India. Meas Sens 2022;24:100596. [CrossRef]
  • [2] Khateeb SA, Farid MM, Selman JR, Al-Hallaj S. Design and simulation of a Li-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 2004;128:292–307. [CrossRef]
  • [3] Hu M, Wang J, Fu C, Qin D, Xie S. Study on cycle-life prediction model of Li-ion battery for electric vehicles. Int J Electrochem Sci 2016;11:577–589. [CrossRef]
  • [4] Mohammadian SK, He YL, Zhang Y. Internal cooling of a Li-ion battery using electrolyte as coolant through microchannels embedded inside the electrodes. J Power Sources 2015;293:458–466. [CrossRef]
  • [5] Zhang J, Ge H, Li Z, Ding Z. Internal heating of Li-ion batteries using alternating current based on the heat generation model in frequency domain. J Power Sources 2015;273:1030–1037. [CrossRef]
  • [6] Megahed S, Scrosati B. Li-ion rechargeable batteries. J Power Sources 1994;51:79–104. [CrossRef]
  • [7] Broussely M. Battery requirements for HEVs, PHEVs, and EVs: an overview. In: Electric and hybrid vehicles: power sources, models, sustainability, infrastructure and the market. Elsevier; 2010:305-347. [CrossRef]
  • [8] Mills A, Al-Hallaj S. Simulation of passive thermal management system for Li-ion battery packs. J Power Sources 2005;141:307–315. [CrossRef]
  • [9] Ye M, Xu Y, Huangfu Y. The structure optimization of Li-ion battery pack based on fluid-solid conjugate thermodynamic analysis. Energy Proc 2018;152:643–648. [CrossRef]
  • [10] Jiang G, Huang J, Liu M, Cao M. Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material. Appl Therm Eng 2017;120:1–9. [CrossRef]
  • [11] Tang A, Li J, Lou L, Shan C, Yuan X. Optimization design and numerical study on water cooling structure for power lithium battery pack. Appl Therm Eng 2019;159:113760. [CrossRef]
  • [12] Feng L, Zhou S, Li Y, Wang Y, Zhao Q, Luo C, et al. Experimental investigation of thermal and strain management for Li-ion battery pack in heat pipe cooling. J Energy Stor 2018;16:84–92. [CrossRef]
  • [13] Saechan P, Dhuchakallaya I. Numerical study on the air-cooled thermal management of Li-ion battery pack for electrical vehicles. Energy Rep 2022;8:1264–1270. [CrossRef]
  • [14] Henriksen G, Vissers D. Lithium-aluminum/iron sulfide batteries. J Power Sources 1994;51:115–128. [CrossRef]
  • [15] Li J, Cheng Y, Ai L, Jia M, Du S, Yin B, et al. 3D simulation on the internal distributed properties of Li-ion battery with planar tabbed configuration. J Power Sources 2015;293:993–1005. [CrossRef]
  • [16] Khateeb SA, Amiruddin S, Farid M, Selman JR, Al-Hajjaj S. Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation. J Power Sources 2005;142:345–353. [CrossRef]
  • [17] Mehrabi-Kermani M, Houshfar E, Ashjaee M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection. Int J Therm Sci 2019;141:47–61. [CrossRef]
  • [18] Xia Q, Yang D, Wang Z, Ren Y, Sun B, Feng Q, et al. Multiphysical modeling for life analysis of Li-ion battery pack in electric vehicles. Renew Sustain Energy Rev 2020;131:109993. [CrossRef]
  • [19] Chen T, Jin Y, Lv H, Yang A, Liu M, Chen B, et al. Applications of lithium-ion batteries in grid-scale energy storage systems. Transact Tianjin Uni 2020;26:208–217. [CrossRef]
  • [20] Smith K, Wang CY. Power and thermal characterization of a Li-ion battery pack for hybrid-electric vehicles. J Power Sources 2006;160:662–673. [CrossRef]
  • [21] Zhao R, Zhang S, Liu J, Gu J. A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system. J Power Sources 2015;299:557–577. [CrossRef]
  • [22] Ramadass P, Haran B, White R, Popov BN. Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Cycling performance. J Power Sources 2002;112:606–613. [CrossRef]
  • [23] Liu W, Jia Z, Luo Y, Xie W, Deng T. Experimental investigation on thermal management of cylindrical Li-ion battery pack based on vapor chamber combined with fin structure. Appl Therm Eng 2019;162:114272. [CrossRef]
  • [24] Zhao R, Gu J, Liu J. An investigation on the significance of reversible heat to the thermal behavior of lithium ion battery through simulations. J Power Sources 2014;266:422–432. [CrossRef]
  • [25] Tran TH, Harmand S, Sahut B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle Li-ion battery. J Power Sources 2014;265:262–272. [CrossRef]
  • [26] Liu Y, Zhang X. Effect of calcination temperature on the morphology and electrochemical properties of Co3O4 for Li-ion battery. Electrochim Acta 2009;54:4180–4185. [CrossRef]
  • [27] Xiang H, Wang H, Chen CH, Ge XW, Guo S, Sun JH, et al. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries. J Power Sources 2009;191:575–581. [CrossRef]
  • [28] Kendrick E, Świątek A, Barker J. Synthesis and characterisation of iron tungstate anode materials. J Power Sources 2009;189:611–615. [CrossRef]
  • [29] Fu L, Liu H, Li C, Wu YP, Rahm E, Holze R. Electrode materials for lithium secondary batteries prepared by sol–gel methods. Prog Mater Sci 2005;50:881–928. [CrossRef]
  • [30] Pesaran A, Keyser M, Kim GH, Santhanagopalan S, Smith K, et al. Tools for designing thermal management of batteries in electric drive vehicles [presentation]. National Renewable Energy Lab. (NREL); 2013. [CrossRef]
  • [31] Jiang Z, Qu Z. Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study. Appl Energy 2019;242:378–392. [CrossRef]
  • [32] Greco A, Jiang X, Cao D. An investigation of Li-ion battery thermal management using paraffin/porous-graphite-matrix composite. J Power Sources 2015;278:50–68. [CrossRef]
  • [33] Qin P, Liao M, Zhang D, Liu Y, Sun J, Wang Q. Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material. Energy Convers Manag 2019;195:1371–1381. [CrossRef]
  • [34] Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy. 2015;148:403–409. [CrossRef]
  • [35] Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical Li-ion battery module with variable contact surface. Appl Therm Eng 2017;123:1514–1522. [CrossRef]
  • [36] Petit M, Calas E, Bernard J. A simplified electrochemical model for modelling Li-ion batteries comprising blend and bidispersed electrodes for high power applications. J Power Sources 2020;479:228766. [CrossRef]
  • [37] Lipu MSH, Hannan MA, Hussain A, Ayob A, Saad MHM, Karim TF, et al. Data-driven state of charge estimation of Li-ion batteries: Algorithms, implementation factors, limitations and future trends. J Clean Prod 2020;277:124110. [CrossRef]
  • [38] Tete PR, Gupta MM, Joshi SS. Developments in battery thermal management systems for electric vehicles: A technical review. J Energy Storage 2021;35:102255. [CrossRef]
  • [39] Zavalis TG, Behm M, Lindbergh G. Investigation of short-circuit scenarios in a Li-ion battery cell. J Electrochem Soc 2012;159:A848. [CrossRef]
  • [40] Xu J, Lan C, Qiao Y, Ma Y. Prevent thermal runaway of Li-ion batteries with minichannel cooling. Appl Therm Eng. 2017;110:883–890. [CrossRef]
  • [41] Lai Y, Du S, Ai L, Ai L, Cheng Y, Tang Y, et al. Insight into heat generation of lithium ion batteries based on the electrochemical-thermal model at high discharge rates. Int J Hydrogen Energy 2015;40:13039-13049. [CrossRef]
  • [42] Heubner C, et al. Local heat generation in a single stack lithium ion battery cell. Electrochim Acta 2015;186:404–412. [CrossRef]
  • [43] Bandhauer TM, Garimella S, Fuller TF. Temperature-dependent electrochemical heat generation in a commercial Li-ion battery. J Power Sources 2014;247:618–628. [CrossRef]
  • [44] Väyrynen A, Salminen J. Lithium ion battery production. J Chem Thermodyn 2012;46:80–85. [CrossRef]
  • [45] Kumar P, Chaudhary D, Varshney P, Varshney U, Yahya SM, Rafat Y. Critical review on battery thermal management and role of nanomaterial in heat transfer enhancement for electrical vehicle application. J Energy Storage 2020;32:102003. [CrossRef]
  • [46] Pramuanjaroenkij A, Kakaç S. The fuel cell electric vehicles: the highlight review. Int J Hydrogen Energy 2022;48:9401–9425. [CrossRef]
  • [47] Danzer M, Liebau V, Maglia F. Aging of Li-ion batteries for electric vehicles. Adv Battery Technol Electric Vehic 2015:359–387. [CrossRef]
  • [48] Kim H, Oh SM, Scrosati B, Sun YK. High-performance electrode materials for Li-ion batteries for electric vehicles, Adv Battery Technol Electric Vehic 2015:191–241. [CrossRef]
  • [49] Tourani A, White P, Ivey P. Analysis of electric and thermal behaviour of Li-ion cells in realistic driving cycles. J Power Sources 2014;268:301–314. [CrossRef]
  • [50] Selman J. A novel thermal management system for EV batteries using phase change material (PCM). J Electrochem Soc 2000;147:3231–3236. [CrossRef]
  • [51] Thakur AK, Prabakaran R, Elkadeem MR, Sharshir SW, Arıcı M, Wang C, et al. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J Energy Storage 2020;32:101771. [CrossRef]
  • [52] Duan X, Naterer G. Heat transfer in phase change materials for thermal management of electric vehicle battery modules. Int J Heat Mass Transf 2010;53:5176–5182. [CrossRef]
  • [53] Taghilou M, Mohammadi MS. Thermal management of Li-ion battery in the presence of phase change material with nanoparticles considering thermal contact resistance. J Energy Storage 2022;56:106029. [CrossRef]
  • [54] Hamisi CM, Gerutu B, Greyson KA, Chombo PV. Thermal behavior of Li-ion battery under variation of convective heat transfer coefficients, surrounding temperatures, and charging currents. J Loss Prev Process Ind 2022;80:104922. [CrossRef]
  • [55] Ajour MN, Milyani AH, Abu-Hamdeh NH, AlQemlas T, Khaled MK, Karimipour A. Thermal management of a battery pack using a layer of phase change material around the batteries: Changes in the airflow through the battery. J Energy Storage 2022;52:104759. [CrossRef]
  • [56] Hales A, Prosser R, Diaz LB, White G, Patel Y, Offer G. The cell cooling coefficient as a design tool to optimise thermal management of Li-ion cells in battery packs. Etransportation 2020;6:100089. [CrossRef]
  • [57] Yang Y, Hu X, Qing D, Chen F. Arrhenius equation-based cell-health assessment: Application to thermal energy management design of a HEV NiMH battery pack. Energies 2013;6:2709–2725. [CrossRef]
  • [58] Esmaeili J, Jannesari H. Developing heat source term including heat generation at rest condition for Li-ion battery pack by up scaling information from cell scale. Energy Convers Manag 2017;139:194–205. [CrossRef]
  • [59] Okaeme CC, Yang C, Saxon A, Lustbader JA, Villeneuve D, Mac C, et al. Thermal design analysis for SuperTruck II lithium-titanate battery pack. J Energy Storage 2022;56:105753. [CrossRef]
  • [60] Qin Y, Du J, Lu L, Gao M, Haase F, Li J, et al. A rapid Li-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life. Appl Energy 2020;280:115957. [CrossRef]
  • [61] Cabeza LF, Frazzica A, Chafer M, Verez D, Palomba V. Research trends and perspectives of thermal management of electric batteries: Bibliometric analysis. J Energy Storage 2020;32:101976. [CrossRef]
  • [62] Yuan X, Tang A, Shan C, Liu Z, Li J. Experimental investigation on thermal performance of a battery liquid cooling structure coupled with heat pipe. J Energy Storage 2020;32:101984. [CrossRef]
  • [63] Paulraj V, Vediappan K, Bharathi KK. Phase-surface enabled electrochemical properties and room temperature work function of LiNi1/3Mn1/3Co1/3O2 cathode thin films. Chem Phys Lett 2020;761:138074. [CrossRef]
  • [64] Wang J, Lu S, Wang Y Li C, Wang K. Effect analysis on thermal behavior enhancement of lithium–ion battery pack with different cooling structures. J Energy Storage 2020;32:101800. [CrossRef]
  • [65] Wu B, Yufit V, Marinescu M, Offer GJ, Martinez-Botas RF, Brandon NP. Coupled thermal–electrochemical modelling of uneven heat generation in Li-ion battery packs. J Power Sources 2013;243:544–554. [CrossRef]
  • [66] Fathabadi H. High thermal performance Li-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy 2014;70:529–538. [CrossRef]
  • [67] Yu K, Yang X, Cheng Y, Li C. Thermal analysis and two-directional air flow thermal management for Li-ion battery pack. J Power Sources 2014;270:193–200. [CrossRef]
  • [68] Amiribavandpour P, Shen W, Mu D, Kapoor A. An improved theoretical electrochemical-thermal modelling of Li-ion battery packs in electric vehicles. J Power Sources 2015;284:328–338. [CrossRef]
  • [69] Xu X, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources 2013;240:33–41. [CrossRef]
  • [70] Fathabadi H. A novel design including cooling media for Li-ion batteries pack used in hybrid and electric vehicles. J Power Sources 2014;245:495–500. [CrossRef]
  • [71] Wazeer A, Das A, Abeykoon C, Sinha A, Karmakar A. Phase change materials for battery thermal management of electric and hybrid vehicles: A review. J Energy Nexus 2022;7:100131. [CrossRef]
  • [72] Behi H, Karimi D, Behi M, Jaguemont J, Ghanbarpour M, Behnia M. Thermal management analysis using heat pipe in the high current discharging of Li-ion battery in electric vehicles. J Energy Storage 2020;32:101893. [CrossRef]
  • [73] Cordoba-Arenas A, Onori S, Rizzoni G. A control-oriented Li-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management. J Power Sources 2015;279:791–808. [CrossRef]
  • [74] Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J Power Sources 2015;273:1089–1097. [CrossRef]
  • [75] Sun H, Wang X, Tossan B, Dixon R. Three-dimensional thermal modeling of a Li-ion battery pack. J Power Sources 2012;206:349–356. [CrossRef]
  • [76] Wen J, Zhao D, Zhang C. An overview of electricity powered vehicles: Li-ion battery energy storage density and energy conversion efficiency. Renew Energy 2020;162:1629–1648. [CrossRef]
  • [77] Tao F, Zhang W, Guo D, Cao W, Sun L, Jiang F. Thermofluidic modeling and temperature monitoring of Li-ion battery energy storage system. Appl Therm Eng 2020;181:116026. [CrossRef]
  • [78] Yuan C, Hahn Y, Lu W, Oancea V, Xu J. Quantification of electrochemical-mechanical coupling in Li-ion batteries. Cell Rep Phys Sci 2022;3:101158. [CrossRef]
  • [79] Lu M, Zhang X, Ji J, Xu X, Zhang Y. Research progress on power battery cooling technology for electric vehicles. J Energy Storage 2020;27:101155. [CrossRef]
  • [80] Mali V, Saxena R, Kumar K, Kalam A, Tripathi B. Review on battery thermal management systems for energy-efficient electric vehicles. Renew Sustain Energy Rev 2021;151:111611. [CrossRef]
  • [81] Zhang J, Shao D, Jiang L, Zhang G, Wu H, Day R, et al. Advanced thermal management system driven by phase change materials for power Li-ion batteries: a review. Renew Sustain Energy Rev 2022;159:112207. [CrossRef]
  • [82] Rojas OE, Khan MA. A review on electrical and mechanical performance parameters in Li-ion battery packs. J Clean Prod 2022;134381. [CrossRef]
  • [83] Zhao Y, Zou B, Zhang T, Jiang Z, Ding J, Ding Y. A comprehensive review of composite phase change material based thermal management system for Li-ion batteries. Renew Sustain Energy Rev 2022;167:112667. [CrossRef]
  • [84] Sanker SB, Baby R. Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers. J Energy Storage 2022;50:104606. [CrossRef]
  • [85] Ghaeminezhad N, Wang Z, Ouyang Q. A Review on Li-ion battery thermal management system techniques: a control-oriented analysis. Appl Therm Eng 2022;119497. [CrossRef]
  • [86] Roe C, Feng X, White G, Li R, Wang H, Rui X, et al. Immersion cooling for Li-ion batteries–a review. J Power Sources 2022;525:231094. [CrossRef]
  • [87] Hamed MM, El-Tayeb A, Moukhtar I, El Dein AZ, Abdelhameed EH. A review on recent key technologies of Li-ion battery thermal management: external cooling systems. Results Eng 2022;16:100703. [CrossRef]
  • [88] Shen ZG, Chen S, Liu X, Chen B. A review on thermal management performance enhancement of phase change materials for vehicle Li-ion batteries. Renew Sustain Energy Rev 2021;148:111301. [CrossRef]
  • [89] Zhi M, Fan R, Yang X, Zheng L, Yue S, Liu Q, et al. Recent research progress on phase change materials for thermal management of Li-ion batteries. J Energy Storage 2022;45:103694. [CrossRef]
  • [90] Chen J, Kang S, E J, Huang Z, Wei K, Zhang B, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review. J Power Sources 2019;442:227228. [CrossRef]
  • [91] Wang R, Liang Z, Souri M, Esfahani MN, Jabbari M, et al. Numerical analysis of Li-ion battery thermal management system using phase change material assisted by liquid cooling method. Int J Heat Mass Transf 2022;183:122095. [CrossRef]
  • [92] Jiang X, Chen Y, Meng X, Weiguo, Liu C, Huang Q, et al. The impact of electrode with carbon materials on safety performance of Li-ion batteries: a review. Carbon 2022;191. [CrossRef]
  • [93] Choudhari V, Dhoble A, Sathe T. A review on effect of heat generation and various thermal management systems for lithium ion battery used for electric vehicle. J Energy Storage 2020;32:101729. [CrossRef]
  • [94] Jiang K, Liao G, E J, Zhang F, Chen J, Leng E. Thermal management technology of power Li-ion batteries based on the phase transition of materials: a review. J Energy Storage 2020;32:101816. [CrossRef]
  • [95] Shaikh U, Kamble D, Kore S. A Review on cooling methods of lithium-ion battery pack for electric vehicles applications. J Adv Res Fluid Mech Therm Sci 2024;115:113–140. [CrossRef]
  • [96] Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, et al. A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 2017;70:1072–1089. [CrossRef]
  • [97] Galazutdinova Y, Al-Hallaj, Mario Grágeda, Svetlana Ushak. Development of the inorganic composite phase change materials for passive thermal management of Li-ion batteries: material characterization. Int J Energy Res 2019;1–12. [CrossRef]
  • [98] Ling Z, Li S, Cai C, Lin S, Fang X, Zhang Z. Battery thermal management based on multiscale encapsulated inorganic phase change material of high stability. Appl Therm Eng 2021;193:117002. [CrossRef]
  • [99] Kumar Kurugundla S, Muniamuthu S, Raja P, Mohan KR. Measurement of temperature flow analysis by condition monitoring system for WTG gear box to evaluate the thermal performance associated with plant load factor. J Thermal Eng 2023;9:970–978. [CrossRef]
  • [100] Kumar KS, Muniamuthu A. S, Mohan, Amirthalingam P, Muthuraja MA. Effect of charging and discharging process of PCM with Paraffin and Al2O3 additive subjected to three point temperature locations. J Ecol Eng 2022;23:34–42. [CrossRef]
  • [101] Kumar KS, Nagalingeswara B, Arulmani RJ, Amirthalingam P. Design and Structural Analysis of Liquified Cryogenic Tank Under Seismic and Operating Loading. Int J Mech Eng Technol 2016;7:345–366.
There are 101 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Review
Authors

Vinayak T. Mandlik This is me 0009-0008-1217-9729

Sandipkumar Sonawane This is me 0000-0002-4590-0251

Milind Patil This is me 0000-0002-5535-3079

Submission Date January 22, 2024
Acceptance Date June 27, 2024
Publication Date May 16, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

APA Mandlik, V. T., Sonawane, S., & Patil, M. (2025). Heat transfer performance of Li-ion battery pack using composite phase change material: A review. Journal of Thermal Engineering, 11(3), 896-921.
AMA Mandlik VT, Sonawane S, Patil M. Heat transfer performance of Li-ion battery pack using composite phase change material: A review. Journal of Thermal Engineering. May 2025;11(3):896-921.
Chicago Mandlik, Vinayak T., Sandipkumar Sonawane, and Milind Patil. “Heat Transfer Performance of Li-Ion Battery Pack Using Composite Phase Change Material: A Review”. Journal of Thermal Engineering 11, no. 3 (May 2025): 896-921.
EndNote Mandlik VT, Sonawane S, Patil M (May 1, 2025) Heat transfer performance of Li-ion battery pack using composite phase change material: A review. Journal of Thermal Engineering 11 3 896–921.
IEEE V. T. Mandlik, S. Sonawane, and M. Patil, “Heat transfer performance of Li-ion battery pack using composite phase change material: A review”, Journal of Thermal Engineering, vol. 11, no. 3, pp. 896–921, 2025.
ISNAD Mandlik, Vinayak T. et al. “Heat Transfer Performance of Li-Ion Battery Pack Using Composite Phase Change Material: A Review”. Journal of Thermal Engineering 11/3 (May2025), 896-921.
JAMA Mandlik VT, Sonawane S, Patil M. Heat transfer performance of Li-ion battery pack using composite phase change material: A review. Journal of Thermal Engineering. 2025;11:896–921.
MLA Mandlik, Vinayak T. et al. “Heat Transfer Performance of Li-Ion Battery Pack Using Composite Phase Change Material: A Review”. Journal of Thermal Engineering, vol. 11, no. 3, 2025, pp. 896-21.
Vancouver Mandlik VT, Sonawane S, Patil M. Heat transfer performance of Li-ion battery pack using composite phase change material: A review. Journal of Thermal Engineering. 2025;11(3):896-921.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering