BibTex RIS Cite

A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA

Year 2015, Volume: 1 Issue: 6 - SPECIAL ISSUE 3 INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING ISTANBUL 2015 (ICAME15), - , 01.06.2015
https://doi.org/10.18186/jte.00314

Abstract

Polar decomposition of the changing velocity gradient tensor in a deforming fluent continua into pure stretch rates and rates of rotations shows that a location and its neighboring locations can experience different rates of rotations during evolution. Alternatively, we can also consider decomposition of the velocity gradient tensor into symmetric and skew symmetric tensors. The skew symmetric tensor is also a measure of pure rates of rotations whereas the symmetric tensor is a measure of strain rates. The measures of the internal rates of rotations due to deformation in the two approaches describe the same physics but in different forms. Polar decomposition gives the rate of rotation matrix and not the rates of rotation angles whereas the skew symmetric part of the velocity gradient tensor yields rates of rotation angles that are explicitly defined in terms of velocity gradients. These varying rates of rotations at neighboring locations arise due to varying deformation of the continua, hence are internal to the volume of matter and are explicitly defined by deformation. If the internal varying rates of rotations are resisted by the continua, then there must exist internal moments corresponding to these. The internal rates of rotations and the corresponding moments can result in additional rate of energy storage or rate of dissipation. This physics is all internal to the deforming continua and exists in all deforming isotropic, homogeneous fluent continua but is completely neglected in the presently used thermodynamic framework for fluent continua. In this paper we present derivation of a more complete thermodynamic framework in which the derivation of the conservation and balance laws consider additional physics due to varying rates of rotations. The currently used thermodynamic framework for fluent continua is a subset of the thermodynamic framework presented in this paper. The continuum theory presented here considers internal varying rates of rotations and the associated conjugate moments in the derivation of conservation and balance laws, thus the theory presented in this paper can be called “a polar continuum theory” but is different than micropolar continuum theories published currently in which material points have six external degrees of freedom i.e. the rotation rates are additional external degrees of freedom. In the remainder of the paper we refer to this new thermodynamic framework as ‘a polar continuum theory’. The continuum theory presented here only accounts for internal rotation rates and associated moments that exist as a consequence of deformation but are neglected in the present theories hence this theory results in a more complete thermodynamic framework. The polar continuum theory and the resulting thermodynamic framework presented in this paper is suitable for compressible as well as incompressible thermoviscous fluent continua such as Newtonian, Power law, Carreau-Yasuda fluids etc. and thermoviscoelastic fluent continua such as Maxwell, Oldroyd-B, Giesekus etc. The thermodynamic framework presented here is applicable to all isotropic, homogeneous fluent continua. Obviously the constitutive theories will vary depending upon the choice of physics. These are considered in subsequent papers

References

  • Bayada, G., Łukaszewicz, G.: On micropolar fluids in the theory of lu- brication. rigorous derivation of an analogue of the Reynolds equation. International journal of engineering science 34(13), 1477–1490 (1996)
  • Eringen, A.C.: Simple microfluids. International Journal of Engineer- ing Science 2(2), 205–217 (1964)
  • Eringen, A.C.: Mechanics of micromorphic materials. In: H. Gortler (ed.) Proc. 11th Intern. Congress. Appl. Mech., pp. 131–138. Springer- Verlag, New York (1964a)
  • Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1– 18 (1966)
  • Eringen, A.C.: Mechanics of micromorphic continua. In: E. Kroner (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer-Verlag, New York (1968)
  • Eringen, A.C.: Theory of micropolar elasticity. In: H. Liebowitz (ed.) Fracture, pp. 621–729. Academic Press, New York (1968)
  • Eringen, A.C.: Micropolar fluids with stretch. International Journal of Engineering Science 7(1), 115–127 (1969)
  • Eringen, A.C.: Balance laws of micromorphic mechanics. Interna- tional Journal of Engineering Science 8(10), 819–828 (1970)
  • Eringen, A.C.: Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications 38(2), 480–496 (1972)
  • Eringen, A.C.: Micropolar theory of liquid crystals. Liquid crystals and ordered fluids 3, 443–473 (1978)
  • Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liq- uids. International Journal of Engineering Science 28(2), 133–143 (1990)
  • Eringen, A.C.: Balance laws of micromorphic continua revisited. In- ternational journal of engineering science 30(6), 805–810 (1992)
  • Eringen, A.C.: Continuum theory of microstretch liquid crystals. Jour- nal of mathematical physics 33, 4078 (1992)
  • Eringen, A.C.: Theory of micropolar elasticity. Springer (1999)
  • Franchi, F., Straughan, B.: Nonlinear stability for thermal convection in a micropolar fluid with temperature dependent viscosity. International journal of engineering science 30(10), 1349–1360 (1992)
  • Kirwan, A.: Boundary conditions for micropolar fluids. International journal of engineering science 24(7), 1237–1242 (1986)
  • Koiter, W.: Couple stresses in the theory of elasticity, i and ii. In: Nederl. Akad. Wetensch. Proc. Ser. B, vol. 67, pp. 17–44 (1964)
  • Oevel, W., Schr¨oter, J.: Balance equations for micromorphic materials. Journal of Statistical Physics 25(4), 645–662 (1981)
  • Eringen, A.C.: A unified theory of thermomechanical materials. Inter- national Journal of Engineering Science 4(2), 179–202 (1966)
  • Eringen, A.C.: Linear theory of micropolar viscoelasticity. Interna- tional Journal of Engineering Science 5(2), 191–204 (1967)
  • Eringen, A.C.: Theory of micromorphic materials with memory. Inter- national Journal of Engineering Science 10(7), 623–641 (1972)
  • Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science 45(2), 288–307 (2007)
  • Reddy, J., Pang, S.: Nonlocal continuum theories of beams for the anal- ysis of carbon nanotubes. Journal of Applied Physics 103(2), 023,511 (2008)
  • Reddy, J.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science 48(11), 1507–1518 (2010)
  • Lu, P., Zhang, P., Lee, H., Wang, C., Reddy, J.: Non-local elastic plate theories. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 463(2088), 3225–3240 (2007)
  • Yang, J., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of biomechanics 15(2), 91–98 (1982)
  • Lubarda, V., Markenscoff, X.: Conservation integrals in couple stress elasticity. Journal of the Mechanics and Physics of Solids 48(3), 553– 564 (2000)
  • Ma, H., Gao, X.L., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids 56(12), 3379–3391 (2008)
  • Ma, H., Gao, X.L., Reddy, J.: A nonclassical Reddy-Levinson beam model based on a modified couple stress theory. International Journal for Multiscale Computational Engineering 8(2) (2010)
  • Reddy, J.: Microstructure-dependent couple stress theories of function- ally graded beams. Journal of the Mechanics and Physics of Solids 59(11), 2382–2399 (2011)
  • Reddy, J., Arbind, A.: Bending relationships between the modified couple stress-based functionally graded Timoshenko beams and ho- mogeneous Bernoulli–Euler beams. Annals of Solid and Structural Mechanics 3(1-2), 15–26 (2012)
  • Srinivasa, A., Reddy, J.: A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its spe- cialization to von K´arm´an plates and beams. Journal of the Mechanics and Physics of Solids 61(3), 873–885 (2013)
  • Mora, R., Waas, A.: Evaluation of the micropolar elasticity constants for honeycombs. Acta mechanica 192(1-4), 1–16 (2007)
  • Onck, P.R.: Cosserat modeling of cellular solids. Comptes Rendus Mecanique 330(11), 717–722 (2002)
  • Segerstad, P.H., Toll, S., Larsson, R.: A micropolar theory for the finite elasticity of open-cell cellular solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 465(2103), 843– 865 (2009)
  • Altenbach, H., Eremeyev, V.A.: On the linear theory of micropo- lar plates. ics/Zeitschrift f¨ur Angewandte Mathematik und Mechanik 89(4), 242– 256 (2009)
  • Altenbach, H., Eremeyev, V.: Strain rate tensors and constitutive equa- tions of inelastic micropolar materials. International Journal of Plas- ticity 63, 3–17 (2014)
  • Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rend´on, L.A.: Acceler- ation waves and ellipticity in thermoelastic micropolar media. Archive of Applied Mechanics 80(3), 217–227 (2010)
  • Altenbach, H., Maugin, G.A., Erofeev, V.: Mechanics of generalized continua, vol. 7. Springer (2011)
  • Altenbach, H., Naumenko, K., Zhilin, P.: A micro-polar theory for bi- nary media with application to phase-transitional flow of fiber suspen- sions. Continuum Mechanics and Thermodynamics 15(6), 539–570 (2003)
  • Ebert, F.: A similarity solution for the boundary layer flow of a polar fluid. The Chemical Engineering Journal 5(1), 85–92 (1973)
  • Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Kinematics of microp- olar continuum. In: Foundations of Micropolar Mechanics, pp. 11–13. Springer (2013)
  • Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of anisotropic Cosserat continuum. Generalized Continua As Models for Materials p. 10 (2012)
  • Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. International Journal of Solids and Structures 49(14), 1993–2005 (2012)
  • Grekova, E.F.: Ferromagnets and Kelvin’s medium: Basic equations and wave processes. Journal of Computational Acoustics 9(02), 427– 446 (2001)
  • Grekova, E.: Linear reduced Cosserat medium with spherical tensor of inertia, where rotations are not observed in experiment. Mechanics of solids 47(5), 538–543 (2012)
  • Grekova, E., Kulesh, M., Herman, G.: Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model. Bulletin of the Seismological Society of America 99(2B), 1423–1428 (2009)
  • Grioli, G.: Linear micropolar media with constrained rotations. In: Micropolar Elasticity, pp. 45–71. Springer (1974)
  • Grekova, E.F., Maugin, G.A.: Modelling of complex elastic crystals by means of multi-spin micromorphic media. International journal of engineering science 43(5), 494–519 (2005)
  • Grioli, G.: Microstructures as a refinement of cauchy theory. problems of physical concreteness. Continuum Mechanics and Thermodynamics 15(5), 441–450 (2003)
  • Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibli- ography. Archive of Applied Mechanics 80(1), 73–92 (2010)
  • Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislo- cations and disclinations in first strain gradient elasticity. International journal of engineering science 43(13), 1157–1184 (2005)
  • Lazar, M., Maugin, G.A.: Defects in gradient micropolar elasticity I: screw dislocation. Journal of the Mechanics and Physics of Solids 52(10), 2263–2284 (2004)
  • Maugin, G.A.: A phenomenological theory of ferroliquids. Interna- tional Journal of Engineering Science 16(12), 1029–1044 (1978)
  • Maugin, G.A.: Wave motion in magnetizable deformable solids. Inter- national Journal of Engineering Science 19(3), 321–388 (1981)
  • Maugin, G.: On the structure of the theory of polar elasticity. Philo- sophical Transactions of the Royal Society of London. Series A: Math- ematical, Physical and Engineering Sciences 356(1741), 1367–1395 (1998)
  • Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures 46(3), 774–787 (2009)
  • Cosserat, E., Cosserat, F.: Th´eorie des corps d´eformables. Paris (1909)
  • Zakharov, A., Aero, E.: Statistical mechanical theory of polar fluids for all densities. Physica A: Statistical Mechanics and its Applications 160(2), 157–165 (1989)
  • Green, A.: Micro-materials and multipolar continuum mechanics. In- ternational Journal of Engineering Science 3(5), 533–537 (1965)
  • Green, A.E., Rivlin, R.S.: The relation between director and multipolar theories in continuum mechanics. Zeitschrift f¨ur angewandte Mathe- matik und Physik ZAMP 18(2), 208–218 (1967)
  • Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Archive for Rational Mechanics and Analysis 17(2), 113–147 (1964)
  • Martins, L., Oliveira, R., Podio-Guidugli, P.: On the vanishing of the additive measures of strain and rotation for finite deformations. Journal of elasticity 17(2), 189–193 (1987)
  • Martins, L.C., Podio-Guidugli, P.: On the local measures of mean ro- tation in continuum mechanics. Journal of elasticity 27(3), 267–279 (1992)
  • Nowacki, W.: Theory of micropolar elasticity. Springer (1970)
  • Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gra- dient theory for elasticity. International Journal of Solids and Struc- tures 39(10), 2731–2743 (2002)
  • Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis (2014)
  • Shield, R.T.: The rotation associated with large strains. SIAM Journal on Applied Mathematics 25(3), 483–491 (1973)
  • Surana, K.S., Reddy, J.N., Nunez, D.: Polar continuum theory in La- grangian description for solid continua. Acta Mechanica (Under re- view, 2014)
  • Eringen, A.C.: Mechanics of continua. Huntington, NY, Robert E. Krieger Publishing Co., 1980. 606 p. 1 (1980)
  • Reddy, J.N.: An introduction to continuum mechanics. Cambridge University Press, Cambridge (2013)
  • Surana, K.S., Ma, Y., Romkes, A., Reddy, J.N.: The rate constitu- tive equations and their validity for progressively increasing deforma- tion. Mechanics of Advanced Materials and Structures 17(7), 509–533 (2010) • • material current x1 x2 x 3 o C o V V (a)

-

Year 2015, Volume: 1 Issue: 6 - SPECIAL ISSUE 3 INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING ISTANBUL 2015 (ICAME15), - , 01.06.2015
https://doi.org/10.18186/jte.00314

Abstract

-

References

  • Bayada, G., Łukaszewicz, G.: On micropolar fluids in the theory of lu- brication. rigorous derivation of an analogue of the Reynolds equation. International journal of engineering science 34(13), 1477–1490 (1996)
  • Eringen, A.C.: Simple microfluids. International Journal of Engineer- ing Science 2(2), 205–217 (1964)
  • Eringen, A.C.: Mechanics of micromorphic materials. In: H. Gortler (ed.) Proc. 11th Intern. Congress. Appl. Mech., pp. 131–138. Springer- Verlag, New York (1964a)
  • Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16(1), 1– 18 (1966)
  • Eringen, A.C.: Mechanics of micromorphic continua. In: E. Kroner (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer-Verlag, New York (1968)
  • Eringen, A.C.: Theory of micropolar elasticity. In: H. Liebowitz (ed.) Fracture, pp. 621–729. Academic Press, New York (1968)
  • Eringen, A.C.: Micropolar fluids with stretch. International Journal of Engineering Science 7(1), 115–127 (1969)
  • Eringen, A.C.: Balance laws of micromorphic mechanics. Interna- tional Journal of Engineering Science 8(10), 819–828 (1970)
  • Eringen, A.C.: Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications 38(2), 480–496 (1972)
  • Eringen, A.C.: Micropolar theory of liquid crystals. Liquid crystals and ordered fluids 3, 443–473 (1978)
  • Eringen, A.C.: Theory of thermo-microstretch fluids and bubbly liq- uids. International Journal of Engineering Science 28(2), 133–143 (1990)
  • Eringen, A.C.: Balance laws of micromorphic continua revisited. In- ternational journal of engineering science 30(6), 805–810 (1992)
  • Eringen, A.C.: Continuum theory of microstretch liquid crystals. Jour- nal of mathematical physics 33, 4078 (1992)
  • Eringen, A.C.: Theory of micropolar elasticity. Springer (1999)
  • Franchi, F., Straughan, B.: Nonlinear stability for thermal convection in a micropolar fluid with temperature dependent viscosity. International journal of engineering science 30(10), 1349–1360 (1992)
  • Kirwan, A.: Boundary conditions for micropolar fluids. International journal of engineering science 24(7), 1237–1242 (1986)
  • Koiter, W.: Couple stresses in the theory of elasticity, i and ii. In: Nederl. Akad. Wetensch. Proc. Ser. B, vol. 67, pp. 17–44 (1964)
  • Oevel, W., Schr¨oter, J.: Balance equations for micromorphic materials. Journal of Statistical Physics 25(4), 645–662 (1981)
  • Eringen, A.C.: A unified theory of thermomechanical materials. Inter- national Journal of Engineering Science 4(2), 179–202 (1966)
  • Eringen, A.C.: Linear theory of micropolar viscoelasticity. Interna- tional Journal of Engineering Science 5(2), 191–204 (1967)
  • Eringen, A.C.: Theory of micromorphic materials with memory. Inter- national Journal of Engineering Science 10(7), 623–641 (1972)
  • Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. International Journal of Engineering Science 45(2), 288–307 (2007)
  • Reddy, J., Pang, S.: Nonlocal continuum theories of beams for the anal- ysis of carbon nanotubes. Journal of Applied Physics 103(2), 023,511 (2008)
  • Reddy, J.: Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. International Journal of Engineering Science 48(11), 1507–1518 (2010)
  • Lu, P., Zhang, P., Lee, H., Wang, C., Reddy, J.: Non-local elastic plate theories. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 463(2088), 3225–3240 (2007)
  • Yang, J., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. Journal of biomechanics 15(2), 91–98 (1982)
  • Lubarda, V., Markenscoff, X.: Conservation integrals in couple stress elasticity. Journal of the Mechanics and Physics of Solids 48(3), 553– 564 (2000)
  • Ma, H., Gao, X.L., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids 56(12), 3379–3391 (2008)
  • Ma, H., Gao, X.L., Reddy, J.: A nonclassical Reddy-Levinson beam model based on a modified couple stress theory. International Journal for Multiscale Computational Engineering 8(2) (2010)
  • Reddy, J.: Microstructure-dependent couple stress theories of function- ally graded beams. Journal of the Mechanics and Physics of Solids 59(11), 2382–2399 (2011)
  • Reddy, J., Arbind, A.: Bending relationships between the modified couple stress-based functionally graded Timoshenko beams and ho- mogeneous Bernoulli–Euler beams. Annals of Solid and Structural Mechanics 3(1-2), 15–26 (2012)
  • Srinivasa, A., Reddy, J.: A model for a constrained, finitely deforming, elastic solid with rotation gradient dependent strain energy, and its spe- cialization to von K´arm´an plates and beams. Journal of the Mechanics and Physics of Solids 61(3), 873–885 (2013)
  • Mora, R., Waas, A.: Evaluation of the micropolar elasticity constants for honeycombs. Acta mechanica 192(1-4), 1–16 (2007)
  • Onck, P.R.: Cosserat modeling of cellular solids. Comptes Rendus Mecanique 330(11), 717–722 (2002)
  • Segerstad, P.H., Toll, S., Larsson, R.: A micropolar theory for the finite elasticity of open-cell cellular solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 465(2103), 843– 865 (2009)
  • Altenbach, H., Eremeyev, V.A.: On the linear theory of micropo- lar plates. ics/Zeitschrift f¨ur Angewandte Mathematik und Mechanik 89(4), 242– 256 (2009)
  • Altenbach, H., Eremeyev, V.: Strain rate tensors and constitutive equa- tions of inelastic micropolar materials. International Journal of Plas- ticity 63, 3–17 (2014)
  • Altenbach, H., Eremeyev, V.A., Lebedev, L.P., Rend´on, L.A.: Acceler- ation waves and ellipticity in thermoelastic micropolar media. Archive of Applied Mechanics 80(3), 217–227 (2010)
  • Altenbach, H., Maugin, G.A., Erofeev, V.: Mechanics of generalized continua, vol. 7. Springer (2011)
  • Altenbach, H., Naumenko, K., Zhilin, P.: A micro-polar theory for bi- nary media with application to phase-transitional flow of fiber suspen- sions. Continuum Mechanics and Thermodynamics 15(6), 539–570 (2003)
  • Ebert, F.: A similarity solution for the boundary layer flow of a polar fluid. The Chemical Engineering Journal 5(1), 85–92 (1973)
  • Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Kinematics of microp- olar continuum. In: Foundations of Micropolar Mechanics, pp. 11–13. Springer (2013)
  • Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of anisotropic Cosserat continuum. Generalized Continua As Models for Materials p. 10 (2012)
  • Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group of the non-linear polar-elastic continuum. International Journal of Solids and Structures 49(14), 1993–2005 (2012)
  • Grekova, E.F.: Ferromagnets and Kelvin’s medium: Basic equations and wave processes. Journal of Computational Acoustics 9(02), 427– 446 (2001)
  • Grekova, E.: Linear reduced Cosserat medium with spherical tensor of inertia, where rotations are not observed in experiment. Mechanics of solids 47(5), 538–543 (2012)
  • Grekova, E., Kulesh, M., Herman, G.: Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model. Bulletin of the Seismological Society of America 99(2B), 1423–1428 (2009)
  • Grioli, G.: Linear micropolar media with constrained rotations. In: Micropolar Elasticity, pp. 45–71. Springer (1974)
  • Grekova, E.F., Maugin, G.A.: Modelling of complex elastic crystals by means of multi-spin micromorphic media. International journal of engineering science 43(5), 494–519 (2005)
  • Grioli, G.: Microstructures as a refinement of cauchy theory. problems of physical concreteness. Continuum Mechanics and Thermodynamics 15(5), 441–450 (2003)
  • Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibli- ography. Archive of Applied Mechanics 80(1), 73–92 (2010)
  • Lazar, M., Maugin, G.A.: Nonsingular stress and strain fields of dislo- cations and disclinations in first strain gradient elasticity. International journal of engineering science 43(13), 1157–1184 (2005)
  • Lazar, M., Maugin, G.A.: Defects in gradient micropolar elasticity I: screw dislocation. Journal of the Mechanics and Physics of Solids 52(10), 2263–2284 (2004)
  • Maugin, G.A.: A phenomenological theory of ferroliquids. Interna- tional Journal of Engineering Science 16(12), 1029–1044 (1978)
  • Maugin, G.A.: Wave motion in magnetizable deformable solids. Inter- national Journal of Engineering Science 19(3), 321–388 (1981)
  • Maugin, G.: On the structure of the theory of polar elasticity. Philo- sophical Transactions of the Royal Society of London. Series A: Math- ematical, Physical and Engineering Sciences 356(1741), 1367–1395 (1998)
  • Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. International Journal of Solids and Structures 46(3), 774–787 (2009)
  • Cosserat, E., Cosserat, F.: Th´eorie des corps d´eformables. Paris (1909)
  • Zakharov, A., Aero, E.: Statistical mechanical theory of polar fluids for all densities. Physica A: Statistical Mechanics and its Applications 160(2), 157–165 (1989)
  • Green, A.: Micro-materials and multipolar continuum mechanics. In- ternational Journal of Engineering Science 3(5), 533–537 (1965)
  • Green, A.E., Rivlin, R.S.: The relation between director and multipolar theories in continuum mechanics. Zeitschrift f¨ur angewandte Mathe- matik und Physik ZAMP 18(2), 208–218 (1967)
  • Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Archive for Rational Mechanics and Analysis 17(2), 113–147 (1964)
  • Martins, L., Oliveira, R., Podio-Guidugli, P.: On the vanishing of the additive measures of strain and rotation for finite deformations. Journal of elasticity 17(2), 189–193 (1987)
  • Martins, L.C., Podio-Guidugli, P.: On the local measures of mean ro- tation in continuum mechanics. Journal of elasticity 27(3), 267–279 (1992)
  • Nowacki, W.: Theory of micropolar elasticity. Springer (1970)
  • Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gra- dient theory for elasticity. International Journal of Solids and Struc- tures 39(10), 2731–2743 (2002)
  • Surana, K.S.: Advanced Mechanics of Continua. CRC/Taylor and Francis (2014)
  • Shield, R.T.: The rotation associated with large strains. SIAM Journal on Applied Mathematics 25(3), 483–491 (1973)
  • Surana, K.S., Reddy, J.N., Nunez, D.: Polar continuum theory in La- grangian description for solid continua. Acta Mechanica (Under re- view, 2014)
  • Eringen, A.C.: Mechanics of continua. Huntington, NY, Robert E. Krieger Publishing Co., 1980. 606 p. 1 (1980)
  • Reddy, J.N.: An introduction to continuum mechanics. Cambridge University Press, Cambridge (2013)
  • Surana, K.S., Ma, Y., Romkes, A., Reddy, J.N.: The rate constitu- tive equations and their validity for progressively increasing deforma- tion. Mechanics of Advanced Materials and Structures 17(7), 509–533 (2010) • • material current x1 x2 x 3 o C o V V (a)
There are 72 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Karan Surana This is me

Publication Date June 1, 2015
Submission Date October 23, 2015
Published in Issue Year 2015 Volume: 1 Issue: 6 - SPECIAL ISSUE 3 INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING ISTANBUL 2015 (ICAME15)

Cite

APA Surana, K. (2015). A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA. Journal of Thermal Engineering, 1(6). https://doi.org/10.18186/jte.00314
AMA Surana K. A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA. Journal of Thermal Engineering. June 2015;1(6). doi:10.18186/jte.00314
Chicago Surana, Karan. “A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA”. Journal of Thermal Engineering 1, no. 6 (June 2015). https://doi.org/10.18186/jte.00314.
EndNote Surana K (June 1, 2015) A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA. Journal of Thermal Engineering 1 6
IEEE K. Surana, “A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA”, Journal of Thermal Engineering, vol. 1, no. 6, 2015, doi: 10.18186/jte.00314.
ISNAD Surana, Karan. “A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA”. Journal of Thermal Engineering 1/6 (June 2015). https://doi.org/10.18186/jte.00314.
JAMA Surana K. A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA. Journal of Thermal Engineering. 2015;1. doi:10.18186/jte.00314.
MLA Surana, Karan. “A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA”. Journal of Thermal Engineering, vol. 1, no. 6, 2015, doi:10.18186/jte.00314.
Vancouver Surana K. A MORE COMPLETE THERMODYNAMIC FRAMEWORK FOR FLUENT CONTINUA. Journal of Thermal Engineering. 2015;1(6).

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering