Short Report
BibTex RIS Cite
Year 2023, Volume: 9 Issue: 4, 1078 - 1099, 04.08.2023
https://doi.org/10.18186/thermal.1334238

Abstract

References

  • REFERENCES
  • [1] Foley A, Olabi AG. Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change. Renew Sustain Energy Rev 2017,68:1112–1114. [CrossRef]
  • [2] Jouhara H, Olabi AG. Editorial: industrial waste heat recovery. Energy 2018;160:1–2. [CrossRef]
  • [3] International Energy Agency (IEA). Clean Energy Ministerial and Electric Vehicles Initiative (EVI) Technology Report. Global EV Outlook 2020: Entering the decade of electric drive? Paris: IEA Publications; 2020.
  • [4] Olabi AG, Akansu SO, Kahraman N. Fuel cell and energy storage systems: A special issue section on the 9th international conference on sustainable energy and environmental protection (SEEP 2016). Int J Hydrogen Energy 2017;42:25544–25549. [CrossRef]
  • [5] Innovation and Networks Executive Agency. Horizon 2020 calls for Green Vehicles. Available at: https://ec.europa.eu/inea/en/horizon–2020/green–vehicles Accessed on 2022 November 22.
  • [6] Innovation and Networks Executive Agency. Horizon 2020 calls for Next–Generation Batteries. Available at: https://ec.europa.eu/inea/en/horizon–2020/next–generation–batteries Accessed on 2022 November 22.
  • [7] Yang J, Hu C, Wang H, Yang K, Liu JB, Yan H. Review on the research of failure modes and mechanism for lead–acid batteries. Int J Energy Research 2017;41:336–352. [CrossRef]
  • [8] Dinis CM, Popa GN, Iagar A. Study on sources of charging lead acid batteries. IOP Conf Ser Mater Sci Eng 2015;85:1–9. [CrossRef]
  • [9] Mishra S, Nagar A, Bhagat P, Dubey A, Ratnani P. Design and development of fast charging for lead acid battery. 2019 Global Conference for Advancement in Technology (GCAT); 2019 Oct 18–20; Bangalore, India: IEEE; 2019. pp. 1–4. [CrossRef]
  • [10] Lynch W.A, Salameh Z.M. Taper charge method for a nickel–cadmium electric vehicle traction battery. 2007 IEEE Power Engineering Society General Meeting; 2007 Jun 24–28; Tampa, USA: IEEE; 2007. pp. 1–5. [CrossRef]
  • [11] Lynch WA, Salameh ZM. Realistic electric vehicle battery evaluation. IEEE Trans Energy Convers 1997;12:407–412. [CrossRef]
  • [12] Dirani H.C, Semaan E, Moubayed N. Impact of the current and the temperature variation on the Ni–Cd battery functioning. IEEE The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE 2013); 2013 May 9–11; Konya, Turkey: IEEE; 2013. pp. 339–343. [CrossRef]
  • [13] Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Conv Man 2018;182:262–281. [CrossRef] [14] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. App Therm Eng 2019;149:192–212. [CrossRef]
  • [15] Jouhara H, Khordehgah N, Serey N, Almahmoud S, Lester SP, Machen D, et al. Applications and thermal management of rechargeable batteries for industrial applications. Energy 2019;170:849–861. [CrossRef]
  • [16] Boutaous M, Zinet M, Mathieu E, Buathier S, Xin S. Identification of the equivalent electrical model parameters and thermal properties of a LMO/Graphite battery cell for full electric vehicle. IEEE Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER); 2015 Mar 31– Apr 2; Monte Carlo, Monacco: IEEE; 2015. pp. 8–13. [CrossRef]
  • [17] Stroe D, Schaltz E. SOH Estimation of LMO/NMC–based electric vehicle lithium–ion batteries using the incremental capacity analysis technique. IEEE Energy Conversion Congress and Exposition (ECCE); 2018 Sept 23–27; Portland, USA: IEEE: 2018. pp. 2720–2725. [CrossRef] [18] Amaya S, Reinaudi L, Chauque S, Oliva FY, Cámara OR, Leiva EPM, et al. Ab initio calculations of lithium titanates related to anodes of lithium–ion batteries. J Phys Chem Solids 2020;141:109405. [CrossRef] [19] Zhang W, Seo D, Chen T, Wu L, Topsakal M, Zhu Y, et al. Kinetic pathways of ionic transport in fast–charging lithium titanate. Science 2020;367:1030–1034. [CrossRef]
  • [20] Zhang X, Peng H, Wang H, Ouyang M. Hybrid lithium iron phosphate battery and lithium titanate battery systems for electric buses. IEEE Trans Veh Technol 2018;67:956–965. [CrossRef]
  • [21] Dolotko O, Hlova IZ, Mudryk Y, Gupta S, Balema VP. Mechanochemical recovery of Co and Li from LCO cathode of lithium–ion battery. J Alloys Compd 2020;824:153876. [CrossRef]
  • [22] Chanthevee P, Laoonual Y, Hirai S, Sriam P, Chanurai N, Lailuck V, et al. A simplified approach for heat generation due to entropy change in cylindrical lco battery. IEEE International Transportation Electrification Conference&Expo (ITEC–AP2018); 2018 Jun 6–9; Bangkok, Thailand: IEEE; 2018. pp. 1–5. [CrossRef]
  • [23] Liu Q, Liu S, Liu H, Qi H, Ma C, Zhao L. Evaluation of LFP battery SOC estimation using auxiliary particle filter. Energies 2019;12:1–13. [CrossRef]
  • [24] Nizam M, Rosadi R.A, Maghfiroh H, Kusumaputri K.D.U. Design of battery management system (BMS) for lithium iron phosphate (LFP) battery. IEEE 6th International Conference on Electric Vehicular Technology (ICEVT); 2019 Nov 18–21; Bali, Indonesia: IEEE; 2019. pp. 170–174. [CrossRef]
  • [25] Sanchez L, Otero J, Anseán D, Couso I. Neurocomputing Health assessment of LFP automotive batteries using a fractional–order neural network. Neurocomputing 2020;391:345–354. [CrossRef]
  • [26] Lin F, Markus I, Nordlund D, Weng T, Asta MD, Xin HL, Doeff MM. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium–ion batteries. Nat Communications 2014;5:3529. [CrossRef]
  • [27] Sun H, Zhao K. Electronic structure and comparative properties of LiNixMnyCozO2 cathode materials. J Phys Chem 2017;121:6002–6010. [CrossRef]
  • [28] Liu S, Xiong L, He C. Long cycle life lithium–ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J Power Sources 2014;261:285–291. [CrossRef]
  • [29] Jo M, Noh M, Oh P, Kim Y, Cho J. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium‐ion batteries. Adv Energy Mater 2014;4:1301583. [CrossRef]
  • [30] Tran HY, Taubert C, Wohlfahrt–Mehrens M. Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes – A review. Prog Solid State Ch 2014,42:118–127. [CrossRef]
  • [31] Maheri A, Azimov U, Unsal I, Stylianidis N. Incorparating end–user requirements in design of hybrid renewable energy systems. J Therm Eng 2016;2:780–785. [CrossRef]
  • [32] Maheri A. Effect of dispatch strategy on the performance of hybrid wind–PV–battery–diesel–fuel cell systems. J Therm Eng 2016;2:4:820–825. [CrossRef]
  • [33] Hajibeigy MT, Walvekar R, Aravind CV. Mathematical modelling, simulation analysis of a photovoltaic thermal system. J Therm Eng 2021;7:1:291–306. [CrossRef]
  • [34] Sheng L, Su L, Zhang H, Fang Y, Xu H, Ye W. An improved calorimetric method for characterization of the specific heat and heat generation rate in a prismatic lithium ion battery cell. Energy Conv Man 2019;180:724–732. [CrossRef]
  • [35] Xie Y, Shi S, Tang J, Wu H, Yu J Experimental and analytical study on heat generation characteristics of a lithium–ion power battery. Int J Heat Mass Transf 2018;122:884–894. [CrossRef]
  • [36] Lin C, Xu S, Liu J. Measurement of heat generation in a 40 Ah LiFePo4 prismatic battery using accelerating rate calorimetry. Hydrogen Energy 2018;43:8375–8384. [CrossRef]
  • [37] Bazinski SJ, Wang X. Predicting heat generation in a lithium–ion pouch cell through thermography and the lumped capacitance model. J Power Sources 2016;305:97–105. [CrossRef]
  • [38] Chen K, Unsworth G, Li X. Measurements of heat generation in prismatic Li–ion batteries. J Power Sources 2014;261:28–37. [CrossRef]
  • [39] Rizk R, Louahlia H, Gualous H, Schaetzel P. Experimental analysis and transient thermal modelling of a high capacity prismatic lithium–ion battery. Int Commun Heat Mass 2018,94:115–125. [CrossRef]
  • [40] Damay N, Forgez C, Bichat M, Friedrich G, Ospina A. Thermal modelling and experimental validation of a large prismatic li–ion battery. IECON–39th Annual Conference of the IEEE Industrial Electronics Society; 2013 Nov 10–13; Vienna, Austria: IEEE; 2013. pp. 4694–4699. [CrossRef]
  • [41] Damay N, Forgez C, Bichat M, Friedrich G. Thermal modelling of large prismatic LiFePO4/graphite battery coupled thermal and heat generation models for characterization and simulation. J Power Sources 2015;283:37–45. [CrossRef]
  • [42] Abdul–quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilehto K, Skogström L, et al. Heat generation in high power prismatic Li–ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res 2015;34:1424–1437. [CrossRef]
  • [43] Karimi G, Li X. Thermal management of lithium–ion batteries for electric vehicles. Int J Energy Res 2013;37:13–24. [CrossRef]
  • [44] Yi F, Jiaqiang E, Zhang B, Zuo H, Wei K, Chen J, et al. Effects analysis on heat dissipation characteristics of lithium–ion battery thermal management system under the synergism of phase change material and liquid cooling method. Renew Energy 2022;181:472–489. [CrossRef]
  • [45] Ghalkhani M, Bahiraei F, Nazri G, Saif M. Electrochemical – thermal model of pouch–type lithium–ion batteries. Electrochimica Acta 2017;247:569–587. [CrossRef]
  • [46] Keyser M, Pesaran A, Li Q, Santhanagopalan S, Smith K, Wood E, et al. Enabling fast charging – Battery thermal considerations. J Power Sources 2017;367:228–236. [CrossRef]
  • [47] Feng X, Zheng S, Ren D, He X, Wang L, Cui H, et al. Investigating the thermal runaway mechanisms of lithium–ion batteries based on thermal analysis database. Appl Energy 2019;246:53–64. [CrossRef]
  • [48] Lei Z, Maotao Z, Xiaoming X, Junkui G. Thermal runaway characteristics on NCM lithium–ion batteries triggered by local heating under different heat dissipation conditions. App Therm Eng 2019;159:113847. [CrossRef]
  • [49] Liao Z, Zhang S, Li K, Zhang G, Habetler TG. A survey of methods for monitoring and detecting thermal runaway of lithium–ion batteries. J Power Sources 2019;436:226879. [CrossRef]
  • [50] Xu J, Hendricks C. A multiphysics simulation of the thermal runaway in large–format Li–ion batteries. IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2019 May 28–31; Las Vegas, USA: IEEE: 2019. pp. 1689–1699. [CrossRef]
  • [51] Pesaran AA. Battery thermal management in EV and HEVs: issues and solutions, Advanced Automotive Battery Conference 2001;43:34–49.
  • [52] Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources 2002;110:377–382. [CrossRef]
  • [53] Alaoui C. Passive–active BTMS for EV lithium–ion batteries. IEEE Trans Veh Technol 2018;67:3709–3719. [CrossRef]
  • [54] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium–ion batteries. J ElectroChem Soc 2011;158:1–25. [CrossRef]
  • [55] Pesaran GKA, Santhanagopalan S. Addressing the Impact of Temperature Extremes on Large Format Li–ion Batteries for Vehicle Applications. 30th Int Batter. Semininar 2013. NREL/PR–5400–58145. [CrossRef]
  • [56] Vayrynen A, Salminen J. Lithium ion battery production. J Chem Thermodyn 2012;46:80–85. [CrossRef]
  • [57] Xu XM, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources 2013;240:33–41. [CrossRef]
  • [58] Peng X, Ma C, Garg A, Bao N, Liao X. Thermal performance investigation of an air–cooled lithium–ion battery pack considering the inconsistency of battery cells. App Therm Eng 2019;153:596–603. [CrossRef]
  • [59] Chen K, Wang S, Song M, Chen L. Structure optimization of parallel air–cooled battery thermal management system. Int J Heat Mass Transf 2017;111:943–952. [CrossRef]
  • [60] Chen K, Wang S, Song M, Chen L. Configuration optimization of battery pack in parallel air–cooled battery thermal management system using an optimization strategy. App Therm Eng 2017;123:177–186. [CrossRef]
  • [61] Chen K, Chen Y, Li Z, Yuan F, Wang S. Design of the cell spacing of battery pack in parallel air–cooled battery thermal management system. Int J Heat Mass Transf 2018;127:393–401. [CrossRef]
  • [62] Wang H, Xu W, Ma L. Actively controlled thermal management of prismatic Li–ion cells under elevated temperatuRes Int J Heat Mass Transf 2016;102:315–322. [CrossRef]
  • [63] Xu X, Li W, Xu B, Qin J Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions. Appl Energy 2019;250:404–412. [CrossRef]
  • [64] Jin LW, Lee PS, Kong XX, Fan Y, Chou SK. Ultra–thin minichannel LCP for EV battery thermal management. Appl Energy 2014;113:1786–1794. [CrossRef] [65] Panchal S, Dincer I, Agelin–chaab M, Fraser R, Fowler M. Experimental temperature distributionss in a prismatic lithium–ion battery at varying conditions. Int Commun Heat Mass 2016;71:35–43. [CrossRef]
  • [66] Panchal S, Khasow R, Dincer I, Agelin–chaab M, Fraser R, Fowler M. Thermal design and simulation of mini–channel cold plate for water cooled large sized prismatic lithium–ion battery. App Therm Eng 2017;122:80–90. [CrossRef]
  • [67] Xu JW, Zhou T, Xu X. Experimental investigation on a novel liquid cooling device for a prismatic Li–ion battery module operating at high ambient temperature. Sci China Technol Sci 2020;63:2147–2153. [CrossRef]
  • [68] Huang Y, Mei P, Lu Y, Huang R, Yu X, Chen Z, et al. A novel approach for Lithium–ion battery thermal management with streamline shape mini channel cooling plates. App Therm Eng 2019;157:113623. [CrossRef]
  • [69] Darcovich K, Macneil DD, Recoskie S, Cadic Q, Ilinca F. Comparison of cooling plate configurations for automotive battery pack thermal management. App Therm Eng 2019;155:185–195. [CrossRef] [70] Chen S, Peng X, Bao N, Garg A. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium–ion battery module. App Therm Eng 2019;156:324–339. [CrossRef]
  • [71] Chen J, Kang S, Jiaqiang E, Huang Z, Wei K, Zhang B, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review. J Power Sources 2019;442:227228. [CrossRef]
  • [72] Wu W, Wu W, Wang S. Thermal management optimization of a prismatic battery with shape–stabilized phase change material. Int J Heat Mass Transf 2018;121:967–977. [CrossRef]
  • [73] Wu W, Yang X, Zhang G, Chen K, Wang S. Experimental investigation on the thermal performance of heat pipe–assisted phase change material based battery thermal management system. Energy Conv Man 2017;138:486–492. [CrossRef]
  • [74] Zhang Z, Wei K. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium–ion batteries. App Therm Eng 2020;166:114660. [CrossRef]
  • [75] Chen K, Hou J, Song M, Wang S, Wu W, Zhang Y. Design of battery thermal management system based on phase change material and heat pipe. Int J Heat Mass Trans. 2021;188:116665. [CrossRef]
  • [76] Yue QL, He CX, Jiang HR, Wu MC, Zhao TS. A hybrid battery thermal management system for electric vehicles under dynamic working conditions. Int J Heat Mass Trans 2021;164:120528. [CrossRef]
  • [77] An Z, Jia L, Ding Y, Dang C, Li X. A review on Lithium–ion power battery thermal management technologies and thermal safety. J Therm Sci 2017;26:391–412. [CrossRef]
  • [78] Goutam S, Nikolian A, Jaguemont J, Smekens J, Omar N, Dan P, et al. Three–dimensional electro–thermal model of Li–ion pouch cell: Analysis and comparison of cell design factors and model assumptions. App Therm Eng 2017;126:796–808. [CrossRef]
  • [79] Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P. A systematic approach for electrochemical–thermal modelling of a large format lithium–ion battery for electric vehicle application. J Power Sources 2018;382:77–94. [CrossRef]
  • [80] Grandjean T, Barai A, Hosseinzadeh E, Guo Y, Mcgordon A, Marco J. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J Power Sources 2017;359:215–225. [CrossRef]
  • [81] Jaguemont J, Omar N, Abdel–monem M, Bossche PVD, Mierlo JV. Fast–charging investigation on high–power and high–energy density pouch cells with 3D–thermal model development. App Therm Eng 2018;128:1282–1296. [CrossRef]
  • [82] Mastali M, Foreman E, Modjtahedi A, Samadani E, Amirfazli A, Farhad S, et al. Electrochemical–thermal modelling and experimental validation of commercial graphite / LiFePO4 pouch lithium–ion batteries. Int J Therm Sci 2018;129:218–230. [CrossRef]
  • [83] Neupane S, Alipanah M, Barnes D, Li X. Heat generation characteristics of LiFePO4 pouch cells with passive thermal management. Energies 2018;11:1243. [CrossRef]
  • [84] Panchal S, Dincer I, Agelin–chaab M, Fraser R, Fowler M. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. Int J Heat Mass Transf 2016;101:1093–1102. [CrossRef]
  • [85] Schuster E, Ziebert C, Melcher A, Rohde M, Seifert HJ. Thermal behaviour and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell. J Power Sources 2015;286:580–589. [CrossRef] [86] Xie Y, He X, Hu X, Li W, Zhang Y, Liu B, et al. An improved resistance–based thermal model for a pouch lithium–ion battery considering heat generation of posts. App Therm Eng 2020;164:114455. [CrossRef]
  • [87] Arora S, Shen W, Kapoor A. Neural network based computational model for estimation of heat generation in LiFePO 4 pouch cells of different nominal capacities. Comp Chem Eng 2017;101:81–94. [CrossRef]
  • [88] Samba A, Omar N, Gualous H, Capron O, Bossche PVD, Mierlo JV. Impact of tab location on large format lithium–ion pouch cell based on fully coupled tree–dimensional electrochemical–thermal modeling. Electrochim Acta 2014;147:319–329. [CrossRef]
  • [89] Lee D, Lee J, Kim J, Cho S, Kim CW. Thermal behaviors analysis of 55 Ah large–format lithium–ion pouch cells with different cell aspect ratios, tab locations, and C–rates lithium ion Battery. App Therm Eng 2020;175:115422. [CrossRef]
  • [90] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources 2013,239:30–36. [CrossRef]
  • [91] Sun H, Dixon R. Development of cooling strategy for an air cooled lithium–ion battery pack. J Power Sources 2014;272:404–414. [CrossRef]
  • [92] Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. Improved thermal performance of a large laminated lithium–ion power battery by reciprocating air flow. App Therm Eng 2019;152:445–454. [CrossRef]
  • [93] Li X, He F, Zhang G, Huang Q, Zhou D. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. App Therm Eng 2019;146:866–880. [CrossRef]
  • [94] Li W, Xiao M, Peng X, Garg A, Gao L. A surrogate thermal modelling and parametric optimization of battery pack with air cooling for EVs. App Therm Eng 2019;147:90–100. [CrossRef]
  • [95] Akinlabi AAH, Solyali D. Configuration, design and optimization of air–cooled battery thermal management system for electric vehicles: A review. Renew Sustain Energy Rev 2020;125:109815. [CrossRef]
  • [96] Panchal S, Mathewson S, Fraser R, Culham R, Fowler M. Thermal management of lithium–ion pouch cell with indirect liquid cooling using dual cold plates approach. SAE Int J Alt Power 2015;4:293–307. [CrossRef]
  • [97] Gungor S, Cetkin E, Lorente S. Canopy–to–canopy liquid cooling for the thermal management of lithium–ion batteries, a constructal approach. Int J Heat Mass Trans. 2022;182:121918. [CrossRef]
  • [98] Patil SM, Seo J, Panchal S, Jee S, Lee M. Investigation on thermal performance of water–cooled Li–ion pouch cell and pack at high discharge rate with U–turn type microchannel cold plate. Int J Heat Mass Trans 2020;155:119728. [CrossRef]
  • [99] Li Y, Zhou Z, Wu WT. Three–dimensional thermal modeling of Li–ion battery cell and 50 V Li–ion battery pack cooled by mini–channel cold plate. App Therm Eng 2019;147:829–840. [CrossRef]
  • [100] Chung Y, Kim MS. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles. Energy Conv Man 2019;196:105–116. [CrossRef]
  • [101] Gocmen S, Gungor S, Cetkin E. Thermal management of electric vehicle battery cells with homogeneous coolant and temperature distribution. J Appl Phys 2020;127:234902. [CrossRef]
  • [102] Mo X, Hu X, Tang J, Tian H. A comprehensive investigation on thermal management of large ‐ capacity pouch cell using micro heat pipe array. Int J Energy Res 2019;43:7444–7458. [CrossRef]
  • [103] Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J Power Sources 2015;273:1089–1097. [CrossRef]
  • [104] Oh S, Lee J, Lee H, Shin D, Thalluri T, Shin K. Design of battery thermal management unit with PCM for electrical vehicle: Part I: Modelling and analysis of pouch type battery cell. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering; 2019 Oct 2–6; Yunlin, Taiwan: IEEE; 2019. pp. 82–85. [CrossRef]
  • [105] Kim H, Kim E, Seo M, Kim T, Angani A, Shin K. Design of battery thermal management unit with PCM for electrical vehicle: part II: Experimental investigation on pouch type battery cell. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering; 2019 Oct 2–6; Yunlin, Taiwan: IEEE; 2019. pp. 255–258. [CrossRef]
  • [106] Xie Y, Tang J, Shi S, Xing Y, Wu H, Hu Z, et al. Experimental and numerical investigation on integrated thermal management for lithium–ion battery pack with composite phase change materials. Energy Conv Man 2017;154:562–575. [CrossRef]
  • [107] Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev 2011;15:4554–4571. [CrossRef]
  • [108] Xun J, Liu R, Jiao K. Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs. J Power Sources 2013;233:47–61. [CrossRef]
  • [109] Chen D, Jiang J, Kim GH, Yang C, Pesaran A. Comparison of different cooling methods for lithium ion battery cells. App Therm Eng 2016;94:846–854. [CrossRef]
  • [110] Khateeb SA, Farid MM, Selman JR, Al–Hallaj S. Design and simulation of a lithium–ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 2004;128:292–307. [CrossRef]
  • [111] Zhao J, Rao Z, Huo Y, Liu X, Li Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. App Therm Eng 2015;85:33–43. [CrossRef]
  • [112] Wang H, He F, Ma L. Experimental and modeling study of controller–based thermal management of battery modules under dynamic loads. Int J Heat Mass Transf 2016;103:154–164. [CrossRef]
  • [113] Saw HL, Ye Y, Tay AAO, Chong WT, Kuan SH, Yew MC. Computational fluid dynamic and thermal analysis of Lithium–ion battery pack with air cooling. Appl Energy 2016;177:783–792. [CrossRef]
  • [114] Lu Z, Yu X, Wei L, Qiu Y, Zhang L, Meng X, et al. Parametric study of forced air cooling strategy for lithium–ion battery pack with staggered arrangement. App Therm Eng 2018;136:28–40. [CrossRef]
  • [115] Jiagiang E, Yue M, Chen J, Zhu H, Deng Y, Zhu Y, et al. Effects of the different air cooling strategies on cooling performance of a lithium–ion battery module with baffle. App Therm Eng 2018;144:231–241. [CrossRef]
  • [116] Wang T, Tseng KJ, Zhao J, Wei Z. Thermal investigation of lithium–ion battery module with different cell arrangement structures and forced air–cooling strategies. Appl Energy 2014;134:229–238. [CrossRef]
  • [117] Yang N, Zhang X, Li G, Hua D. Assessment of the forced air–cooling performance for cylindrical lithium–ion battery packs: A comparative analysis between aligned and staggered cell arrangements. App Therm Eng 2015;80:55–65. [CrossRef]
  • [118] He F, Wang H, Ma L. Experimental demonstration of active thermal control of a battery module consisting of multiple Li–ion cells. Int J Heat Mass Transf 2015;91:630–639. [CrossRef]
  • [119] Mahamud R, Park C. Reciprocating air flow for Li–ion battery thermal management to improve temperature uniformity. J Power Sources 2011;196:5685–5696. [CrossRef]
  • [120] Jaguemont JV, Mierlo J. A comprehensive review of future thermal management systems for battery–electrified vehicles. J Energy Storage 2020;31:101551. [CrossRef]
  • [121] Zhu L, Boehm RF, Wang Y, Halford C, Sun Y. Water immersion cooling of PV cells in a high concentration system. Sol Energy Mater Sol Cells 2011;95:538–545. [CrossRef]
  • [122] Yang S, Ling C, Fan Y, Yang Y, Tan X, Dong H. A review of lithium–ion battery thermal management system strategies and the evaluate criteria. Int J ElectroChem Sci 2019;14:6077–6107. [CrossRef]
  • [123] Sefidan AM, Sojoudi A, Saha SC. Nanofluid–based cooling of cylindrical lithium–ion battery packs employing forced air flow. Int J Therm Sci 2017;117:44–58. [CrossRef]
  • [124] Van Gils RW, Danilov D, Notten PHL, Speetjens MFM, Nijmeijer H. Battery thermal management by boiling heat–transfer. Energy Conv Manag 2014;79:9–17. [CrossRef]
  • [125] Endo T, Nukada A, Matsuoka S. TSUBAME–KFC: A modern liquid submersion cooling prototype towards exascale becoming the greenest supercomputer in the world. 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS); 2014 Dec 16–19; Hsinchu, Tawian: IEEE; 2014. pp. 360–367. [CrossRef]
  • [126] Hermann WA. Liquid cooling manifold with multi–function thermal interface. US8263250B2, 2010.
  • [127] Faas A, Clough E. Battery module with integrated thermal management system. US8906541B2, 2012.
  • [128] Zhao C, Cao W, Dong T, Jiang F. Thermal behavior study of discharging/charging cylindrical lithium–ion battery module cooled by channeled liquid flow. Int J Heat Mass Transf 2018;120:751–762. [CrossRef]
  • [129] Basu S, Hariharan KS, Kolake SM, Song T, Sohn DK, Yeo T. Coupled electrochemical thermal modelling of a novel Li–ion battery pack thermal management system. Appl Energy 2016;181:1–13. [CrossRef]
  • [130] Zhao J, Rao Z, Li Y. Thermal performance of mini–channel liquid cooled cylinder based battery thermal management for cylindrical lithium–ion power battery. Energy Conv Manag 2015;103:157–165. [CrossRef]
  • [131] Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium–ion battery module with variable contact surface. App Therm Eng 2017;123:1514–1522. [CrossRef]
  • [132] Jaguemont J, Omar N, Van den Bossche P, Mierlo J. Phase–change materials PCM for automotive applications: A review. App Therm Eng 2018;132:308–320. [CrossRef]
  • [133] Al–Zareer M, Dincer I, Rosen MA. A review of novel thermal management systems for batteries. Int J Energy Res 2018;42:3182–3205. [CrossRef]
  • [134] Mallow A, Abdelaziz O, Graham S. Thermal charging performance of enhanced phase change material composites for thermal battery design. Int J Therm Sci 2018;127:19–28. [CrossRef]
  • [135] Huang Q, Li X, Zhang G, Zhang J, He F, Li Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. App Therm Eng 2018;141:1092–1100. [CrossRef]
  • [136] Weng J, Yang X, Zhang G, Ouyang D, Chen M, Wang J. Optimization of the detailed factors in a phase–change–material module for battery thermal management. Int J Heat Mass Transf 2019;138:126–134. [CrossRef]
  • [137] Celik A, Coban H, Göcmen S, Ezan M.A, Gören A, Erek A. Passive thermal management of the lithium–ion battery unit for a solar racing car. Int J Energy Res 2019;43:3681–3691. [CrossRef]
  • [138] Joshy N, Hajiyan M, Siddique ARM, Tasnim S, Simha H, Mahmud S. Experimental investigation of the effect of vibration on phase change material PCM based battery thermal management system. J Power Sources 2020;450:227717. [CrossRef]
  • [139] Lazrak A, Fourmigué JF, Robin JF. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations. App Therm Eng 2018;128:20–32. [CrossRef]
  • [140] Wang Z, Zhang H, Xia X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure. Int J Heat Mass Transf 2017;109:958–970. [CrossRef]
  • [141] Al Hallaj S, Selman JR. A novel thermal management system for electric vehicle batteries using phase–change material. J ElectroChem Soc 2000;147:3231. [CrossRef]
  • [142] Sabbah R, Kizilel R, Selman JR, Al–Hallaj S. Active air–cooled vs. passive phase change material thermal management of high power lithium–ion packs: Limitation of temperature rise and uniformity of temperature distribution. J Power Sources 2008,182:630–638. [CrossRef]
  • [143] Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell–to–cell air cooling. App Therm Eng 2019;161:114199. [CrossRef]
  • [144] Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano–enhanced phase change materials. Energy 2021;219:119654. [CrossRef]
  • [145] Zhang J, Li X, Zhang G, Wang Y, Guo J, Wang Y, et al. Characterization and experimental investigation of aluminum nitride–based composite phase change materials for battery thermal management. Energy Conv Manag 2020;204:112319. [CrossRef]
  • [146] Hussain A, Abidi IH, Tso CY, Chan KC, Luo Z, Chao CYH. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci 2018;124:23–35. [CrossRef]
  • [147] Samimi F, Babapoor A, Azizi M, Karimi G. Thermal management analysis of a Li–ion battery cell using phase change material loaded with carbon fibers. Energy 2016;96:355–371. [CrossRef]
  • [148] Weng J, Ouyang D, Yang X, Chen M, Zhang G, Wang J. Optimization of the internal fin in a phase–change–material module for battery thermal management. App Therm Eng 2020;167:114698. [CrossRef]
  • [149] Zhao J, Lv P, Rao Z. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Exp Therm Fluid Sci 2017;82:182–188. [CrossRef]
  • [150] Jiang G, Huang J, Liu M, Cao M. Experiment and simulation of thermal management for a tube–shell Li–ion battery pack with composite phase change material. App Therm Eng 2017;120:1–9. [CrossRef]
  • [151] Luo J, Zou D, Wang Y, Wang S, Huang L. Battery thermal management systems BTMs based on phase change material PCM: A comprehensive review. Chem Eng J 2022;430:132741. [CrossRef]
  • [152] Nature Energy. Post lithium–ion batteries. Available at: https://www.nature.com/collections/bsctnmnrtc Accessed on November 23, 2022.
  • [153] Li Y, Lu J. Metal–air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2017;2:1370–1377. [CrossRef]
  • [154] Walter M, Kovalenko MV, Kravchyk KV. Challenges and benefits of post–lithium–ion batteries. New J Chem 2020;44:1677–1683. [CrossRef]
  • [155] Ponrouch A, Palacín MR. Post–Li batteries: promises and challenges. Phil Trans R Soc A 2019;377:20180297. [CrossRef]
  • [156] Mckerracher RD, Leon CPD, Wills RGA, Shah AA, Walsh FC. A review of the iron–air secondary battery for energy storage. Chem Plus Chem 2015;80:323–335. [CrossRef]
  • [157] Wang M, Lei X, Hu L, Zhang P, Hu H, Fang J. High–performance Waste Biomass–derived Microporous Carbon Electrocatalyst with a Towel–like Surface for Alkaline Metal/air batteries. Electroch Acta 2017;250:384–392. [CrossRef]
  • [158] Zhang X, Wang X, Xie Z, Zhou Z. Recent progress in rechargeable alkali metal air batteries. Green Energy Environ 2016;1:4–17.
  • [159] Xu Y, Zhao Y, Ren J, Zhang Y, Peng H. Flexible batteries an all–solid–state fiber–shaped aluminum – air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem 2016;128:8111–8114. [CrossRef]
  • [160] Chang Z, Wang X, Yang Y, Gao J, Li M, Liu L, et al. Rechargeable Li/Br battery: A promising platform for post lithium ion batteries. J Mater Chem A 2014;2:19444–19450. [CrossRef]
  • [161] Choi JW, Aurbach D. Promise and reality of post–lithium–ion batteries with high energy densities. Nat Rev Mats 2016;1:16013. [CrossRef]
  • [162] Bogdanovskaya VA, Korchagin OV, Tarasevich MR, Andreev VN, Nizhnikovskii EA, Radina MV, et al. Mesoporous nanostructured materials for the positive electrode of a Lithium–oxygen battery. Prot Met Phys Chem 2018;54:373–388. [CrossRef]
  • [163] Li W, Zeng L, Wu Y, Yu Y. Nanostructured electrode materials for lithium–ion and sodium–ion batteries via electrospinning. Sci China Mats 2016;59:287. [CrossRef]
  • [164] Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, et al. Environmental science post–lithium–ion batteries. Energy Environ Sci 2016;9:3570–3611. [CrossRef]
  • [165] Manzhos S. Organic electrode materials for lithium and post–lithium batteries: an ab initio perspective on design. Curr Opin Green Sustain Chem 2018;17:8–14. [CrossRef]
  • [166] Ma Y, Ma J, Cui G. Small things make big deal: Powerful binders of lithium batteries and post–lithium batteries. Energy Storage Mater 2018;20:146–175. [CrossRef]
  • [167] Ahmad Y, Colin M, Gervillie–Mouravieff C, Dubois M, Guerin K. Carbon in lithium–ion and post–lithium–ion batteries: Recent features. Synth Met 2021;280:116864. [CrossRef]
  • [168] Wu X, He G, Ding Y. Dealloyed nanoporous materials for rechargeable post–lithium batteries. Chem Sus Chem 2020;13:3376–3390. [CrossRef]
  • [169] Shi F, Chen C, Xu ZL. Recent advances on electrospun nanofiber materials for post–lithium–ion batteries. Advanced Fiber Mat 2021;3:275–301. [CrossRef]

A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles

Year 2023, Volume: 9 Issue: 4, 1078 - 1099, 04.08.2023
https://doi.org/10.18186/thermal.1334238

Abstract

Electrification on transportation and electricity generation via renewable sources play a vital role to diminish the effects of energy usage on the environment. Transition from the conven-tional fuels to renewables for transportation and electricity generation demands the storage of electricity in great capacities with desired power densities and relatively high C-rate values. Yet, thermal and electrical characteristics vary greatly depending on the chemistry and struc-ture of battery cells. At this point, lithium-ion (Li-ion) batteries are more suitable in most applications due to their superiorities such as long lifetime, high recyclability, and capacities. However, exothermic electrochemical reactions yield temperature to increase suddenly which affects the degradation in cells, ageing, and electrochemical reaction kinetics. Therefore, strict temperature control increases battery lifetime and eliminates undesired situations such as lay-er degradation and thermal runaway. In the literature, there are many distinct battery thermal management strategies to effectively control battery cell temperatures. These strategies vary based on the geometrical form, size, capacity, and chemistry of the battery cells. Here, we focus on proposed battery thermal management strategies and current applications in the electric vehicle (EV) industry. In this review, various battery thermal management strategies are doc-umented and compared in detail with respect to geometry, thermal uniformity, coolant type and heat transfer methodology for Li-ion and post-lithium batteries.

References

  • REFERENCES
  • [1] Foley A, Olabi AG. Renewable energy technology developments, trends and policy implications that can underpin the drive for global climate change. Renew Sustain Energy Rev 2017,68:1112–1114. [CrossRef]
  • [2] Jouhara H, Olabi AG. Editorial: industrial waste heat recovery. Energy 2018;160:1–2. [CrossRef]
  • [3] International Energy Agency (IEA). Clean Energy Ministerial and Electric Vehicles Initiative (EVI) Technology Report. Global EV Outlook 2020: Entering the decade of electric drive? Paris: IEA Publications; 2020.
  • [4] Olabi AG, Akansu SO, Kahraman N. Fuel cell and energy storage systems: A special issue section on the 9th international conference on sustainable energy and environmental protection (SEEP 2016). Int J Hydrogen Energy 2017;42:25544–25549. [CrossRef]
  • [5] Innovation and Networks Executive Agency. Horizon 2020 calls for Green Vehicles. Available at: https://ec.europa.eu/inea/en/horizon–2020/green–vehicles Accessed on 2022 November 22.
  • [6] Innovation and Networks Executive Agency. Horizon 2020 calls for Next–Generation Batteries. Available at: https://ec.europa.eu/inea/en/horizon–2020/next–generation–batteries Accessed on 2022 November 22.
  • [7] Yang J, Hu C, Wang H, Yang K, Liu JB, Yan H. Review on the research of failure modes and mechanism for lead–acid batteries. Int J Energy Research 2017;41:336–352. [CrossRef]
  • [8] Dinis CM, Popa GN, Iagar A. Study on sources of charging lead acid batteries. IOP Conf Ser Mater Sci Eng 2015;85:1–9. [CrossRef]
  • [9] Mishra S, Nagar A, Bhagat P, Dubey A, Ratnani P. Design and development of fast charging for lead acid battery. 2019 Global Conference for Advancement in Technology (GCAT); 2019 Oct 18–20; Bangalore, India: IEEE; 2019. pp. 1–4. [CrossRef]
  • [10] Lynch W.A, Salameh Z.M. Taper charge method for a nickel–cadmium electric vehicle traction battery. 2007 IEEE Power Engineering Society General Meeting; 2007 Jun 24–28; Tampa, USA: IEEE; 2007. pp. 1–5. [CrossRef]
  • [11] Lynch WA, Salameh ZM. Realistic electric vehicle battery evaluation. IEEE Trans Energy Convers 1997;12:407–412. [CrossRef]
  • [12] Dirani H.C, Semaan E, Moubayed N. Impact of the current and the temperature variation on the Ni–Cd battery functioning. IEEE The International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE 2013); 2013 May 9–11; Konya, Turkey: IEEE; 2013. pp. 339–343. [CrossRef]
  • [13] Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Conv Man 2018;182:262–281. [CrossRef] [14] Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. App Therm Eng 2019;149:192–212. [CrossRef]
  • [15] Jouhara H, Khordehgah N, Serey N, Almahmoud S, Lester SP, Machen D, et al. Applications and thermal management of rechargeable batteries for industrial applications. Energy 2019;170:849–861. [CrossRef]
  • [16] Boutaous M, Zinet M, Mathieu E, Buathier S, Xin S. Identification of the equivalent electrical model parameters and thermal properties of a LMO/Graphite battery cell for full electric vehicle. IEEE Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER); 2015 Mar 31– Apr 2; Monte Carlo, Monacco: IEEE; 2015. pp. 8–13. [CrossRef]
  • [17] Stroe D, Schaltz E. SOH Estimation of LMO/NMC–based electric vehicle lithium–ion batteries using the incremental capacity analysis technique. IEEE Energy Conversion Congress and Exposition (ECCE); 2018 Sept 23–27; Portland, USA: IEEE: 2018. pp. 2720–2725. [CrossRef] [18] Amaya S, Reinaudi L, Chauque S, Oliva FY, Cámara OR, Leiva EPM, et al. Ab initio calculations of lithium titanates related to anodes of lithium–ion batteries. J Phys Chem Solids 2020;141:109405. [CrossRef] [19] Zhang W, Seo D, Chen T, Wu L, Topsakal M, Zhu Y, et al. Kinetic pathways of ionic transport in fast–charging lithium titanate. Science 2020;367:1030–1034. [CrossRef]
  • [20] Zhang X, Peng H, Wang H, Ouyang M. Hybrid lithium iron phosphate battery and lithium titanate battery systems for electric buses. IEEE Trans Veh Technol 2018;67:956–965. [CrossRef]
  • [21] Dolotko O, Hlova IZ, Mudryk Y, Gupta S, Balema VP. Mechanochemical recovery of Co and Li from LCO cathode of lithium–ion battery. J Alloys Compd 2020;824:153876. [CrossRef]
  • [22] Chanthevee P, Laoonual Y, Hirai S, Sriam P, Chanurai N, Lailuck V, et al. A simplified approach for heat generation due to entropy change in cylindrical lco battery. IEEE International Transportation Electrification Conference&Expo (ITEC–AP2018); 2018 Jun 6–9; Bangkok, Thailand: IEEE; 2018. pp. 1–5. [CrossRef]
  • [23] Liu Q, Liu S, Liu H, Qi H, Ma C, Zhao L. Evaluation of LFP battery SOC estimation using auxiliary particle filter. Energies 2019;12:1–13. [CrossRef]
  • [24] Nizam M, Rosadi R.A, Maghfiroh H, Kusumaputri K.D.U. Design of battery management system (BMS) for lithium iron phosphate (LFP) battery. IEEE 6th International Conference on Electric Vehicular Technology (ICEVT); 2019 Nov 18–21; Bali, Indonesia: IEEE; 2019. pp. 170–174. [CrossRef]
  • [25] Sanchez L, Otero J, Anseán D, Couso I. Neurocomputing Health assessment of LFP automotive batteries using a fractional–order neural network. Neurocomputing 2020;391:345–354. [CrossRef]
  • [26] Lin F, Markus I, Nordlund D, Weng T, Asta MD, Xin HL, Doeff MM. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium–ion batteries. Nat Communications 2014;5:3529. [CrossRef]
  • [27] Sun H, Zhao K. Electronic structure and comparative properties of LiNixMnyCozO2 cathode materials. J Phys Chem 2017;121:6002–6010. [CrossRef]
  • [28] Liu S, Xiong L, He C. Long cycle life lithium–ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. J Power Sources 2014;261:285–291. [CrossRef]
  • [29] Jo M, Noh M, Oh P, Kim Y, Cho J. A new high power LiNi0.81Co0.1Al0.09O2 cathode material for lithium‐ion batteries. Adv Energy Mater 2014;4:1301583. [CrossRef]
  • [30] Tran HY, Taubert C, Wohlfahrt–Mehrens M. Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes – A review. Prog Solid State Ch 2014,42:118–127. [CrossRef]
  • [31] Maheri A, Azimov U, Unsal I, Stylianidis N. Incorparating end–user requirements in design of hybrid renewable energy systems. J Therm Eng 2016;2:780–785. [CrossRef]
  • [32] Maheri A. Effect of dispatch strategy on the performance of hybrid wind–PV–battery–diesel–fuel cell systems. J Therm Eng 2016;2:4:820–825. [CrossRef]
  • [33] Hajibeigy MT, Walvekar R, Aravind CV. Mathematical modelling, simulation analysis of a photovoltaic thermal system. J Therm Eng 2021;7:1:291–306. [CrossRef]
  • [34] Sheng L, Su L, Zhang H, Fang Y, Xu H, Ye W. An improved calorimetric method for characterization of the specific heat and heat generation rate in a prismatic lithium ion battery cell. Energy Conv Man 2019;180:724–732. [CrossRef]
  • [35] Xie Y, Shi S, Tang J, Wu H, Yu J Experimental and analytical study on heat generation characteristics of a lithium–ion power battery. Int J Heat Mass Transf 2018;122:884–894. [CrossRef]
  • [36] Lin C, Xu S, Liu J. Measurement of heat generation in a 40 Ah LiFePo4 prismatic battery using accelerating rate calorimetry. Hydrogen Energy 2018;43:8375–8384. [CrossRef]
  • [37] Bazinski SJ, Wang X. Predicting heat generation in a lithium–ion pouch cell through thermography and the lumped capacitance model. J Power Sources 2016;305:97–105. [CrossRef]
  • [38] Chen K, Unsworth G, Li X. Measurements of heat generation in prismatic Li–ion batteries. J Power Sources 2014;261:28–37. [CrossRef]
  • [39] Rizk R, Louahlia H, Gualous H, Schaetzel P. Experimental analysis and transient thermal modelling of a high capacity prismatic lithium–ion battery. Int Commun Heat Mass 2018,94:115–125. [CrossRef]
  • [40] Damay N, Forgez C, Bichat M, Friedrich G, Ospina A. Thermal modelling and experimental validation of a large prismatic li–ion battery. IECON–39th Annual Conference of the IEEE Industrial Electronics Society; 2013 Nov 10–13; Vienna, Austria: IEEE; 2013. pp. 4694–4699. [CrossRef]
  • [41] Damay N, Forgez C, Bichat M, Friedrich G. Thermal modelling of large prismatic LiFePO4/graphite battery coupled thermal and heat generation models for characterization and simulation. J Power Sources 2015;283:37–45. [CrossRef]
  • [42] Abdul–quadir Y, Laurila T, Karppinen J, Jalkanen K, Vuorilehto K, Skogström L, et al. Heat generation in high power prismatic Li–ion battery cell with LiMnNiCoO2 cathode material. Int J Energy Res 2015;34:1424–1437. [CrossRef]
  • [43] Karimi G, Li X. Thermal management of lithium–ion batteries for electric vehicles. Int J Energy Res 2013;37:13–24. [CrossRef]
  • [44] Yi F, Jiaqiang E, Zhang B, Zuo H, Wei K, Chen J, et al. Effects analysis on heat dissipation characteristics of lithium–ion battery thermal management system under the synergism of phase change material and liquid cooling method. Renew Energy 2022;181:472–489. [CrossRef]
  • [45] Ghalkhani M, Bahiraei F, Nazri G, Saif M. Electrochemical – thermal model of pouch–type lithium–ion batteries. Electrochimica Acta 2017;247:569–587. [CrossRef]
  • [46] Keyser M, Pesaran A, Li Q, Santhanagopalan S, Smith K, Wood E, et al. Enabling fast charging – Battery thermal considerations. J Power Sources 2017;367:228–236. [CrossRef]
  • [47] Feng X, Zheng S, Ren D, He X, Wang L, Cui H, et al. Investigating the thermal runaway mechanisms of lithium–ion batteries based on thermal analysis database. Appl Energy 2019;246:53–64. [CrossRef]
  • [48] Lei Z, Maotao Z, Xiaoming X, Junkui G. Thermal runaway characteristics on NCM lithium–ion batteries triggered by local heating under different heat dissipation conditions. App Therm Eng 2019;159:113847. [CrossRef]
  • [49] Liao Z, Zhang S, Li K, Zhang G, Habetler TG. A survey of methods for monitoring and detecting thermal runaway of lithium–ion batteries. J Power Sources 2019;436:226879. [CrossRef]
  • [50] Xu J, Hendricks C. A multiphysics simulation of the thermal runaway in large–format Li–ion batteries. IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); 2019 May 28–31; Las Vegas, USA: IEEE: 2019. pp. 1689–1699. [CrossRef]
  • [51] Pesaran AA. Battery thermal management in EV and HEVs: issues and solutions, Advanced Automotive Battery Conference 2001;43:34–49.
  • [52] Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources 2002;110:377–382. [CrossRef]
  • [53] Alaoui C. Passive–active BTMS for EV lithium–ion batteries. IEEE Trans Veh Technol 2018;67:3709–3719. [CrossRef]
  • [54] Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium–ion batteries. J ElectroChem Soc 2011;158:1–25. [CrossRef]
  • [55] Pesaran GKA, Santhanagopalan S. Addressing the Impact of Temperature Extremes on Large Format Li–ion Batteries for Vehicle Applications. 30th Int Batter. Semininar 2013. NREL/PR–5400–58145. [CrossRef]
  • [56] Vayrynen A, Salminen J. Lithium ion battery production. J Chem Thermodyn 2012;46:80–85. [CrossRef]
  • [57] Xu XM, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources 2013;240:33–41. [CrossRef]
  • [58] Peng X, Ma C, Garg A, Bao N, Liao X. Thermal performance investigation of an air–cooled lithium–ion battery pack considering the inconsistency of battery cells. App Therm Eng 2019;153:596–603. [CrossRef]
  • [59] Chen K, Wang S, Song M, Chen L. Structure optimization of parallel air–cooled battery thermal management system. Int J Heat Mass Transf 2017;111:943–952. [CrossRef]
  • [60] Chen K, Wang S, Song M, Chen L. Configuration optimization of battery pack in parallel air–cooled battery thermal management system using an optimization strategy. App Therm Eng 2017;123:177–186. [CrossRef]
  • [61] Chen K, Chen Y, Li Z, Yuan F, Wang S. Design of the cell spacing of battery pack in parallel air–cooled battery thermal management system. Int J Heat Mass Transf 2018;127:393–401. [CrossRef]
  • [62] Wang H, Xu W, Ma L. Actively controlled thermal management of prismatic Li–ion cells under elevated temperatuRes Int J Heat Mass Transf 2016;102:315–322. [CrossRef]
  • [63] Xu X, Li W, Xu B, Qin J Numerical study on a water cooling system for prismatic LiFePO4 batteries at abused operating conditions. Appl Energy 2019;250:404–412. [CrossRef]
  • [64] Jin LW, Lee PS, Kong XX, Fan Y, Chou SK. Ultra–thin minichannel LCP for EV battery thermal management. Appl Energy 2014;113:1786–1794. [CrossRef] [65] Panchal S, Dincer I, Agelin–chaab M, Fraser R, Fowler M. Experimental temperature distributionss in a prismatic lithium–ion battery at varying conditions. Int Commun Heat Mass 2016;71:35–43. [CrossRef]
  • [66] Panchal S, Khasow R, Dincer I, Agelin–chaab M, Fraser R, Fowler M. Thermal design and simulation of mini–channel cold plate for water cooled large sized prismatic lithium–ion battery. App Therm Eng 2017;122:80–90. [CrossRef]
  • [67] Xu JW, Zhou T, Xu X. Experimental investigation on a novel liquid cooling device for a prismatic Li–ion battery module operating at high ambient temperature. Sci China Technol Sci 2020;63:2147–2153. [CrossRef]
  • [68] Huang Y, Mei P, Lu Y, Huang R, Yu X, Chen Z, et al. A novel approach for Lithium–ion battery thermal management with streamline shape mini channel cooling plates. App Therm Eng 2019;157:113623. [CrossRef]
  • [69] Darcovich K, Macneil DD, Recoskie S, Cadic Q, Ilinca F. Comparison of cooling plate configurations for automotive battery pack thermal management. App Therm Eng 2019;155:185–195. [CrossRef] [70] Chen S, Peng X, Bao N, Garg A. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium–ion battery module. App Therm Eng 2019;156:324–339. [CrossRef]
  • [71] Chen J, Kang S, Jiaqiang E, Huang Z, Wei K, Zhang B, et al. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review. J Power Sources 2019;442:227228. [CrossRef]
  • [72] Wu W, Wu W, Wang S. Thermal management optimization of a prismatic battery with shape–stabilized phase change material. Int J Heat Mass Transf 2018;121:967–977. [CrossRef]
  • [73] Wu W, Yang X, Zhang G, Chen K, Wang S. Experimental investigation on the thermal performance of heat pipe–assisted phase change material based battery thermal management system. Energy Conv Man 2017;138:486–492. [CrossRef]
  • [74] Zhang Z, Wei K. Experimental and numerical study of a passive thermal management system using flat heat pipes for lithium–ion batteries. App Therm Eng 2020;166:114660. [CrossRef]
  • [75] Chen K, Hou J, Song M, Wang S, Wu W, Zhang Y. Design of battery thermal management system based on phase change material and heat pipe. Int J Heat Mass Trans. 2021;188:116665. [CrossRef]
  • [76] Yue QL, He CX, Jiang HR, Wu MC, Zhao TS. A hybrid battery thermal management system for electric vehicles under dynamic working conditions. Int J Heat Mass Trans 2021;164:120528. [CrossRef]
  • [77] An Z, Jia L, Ding Y, Dang C, Li X. A review on Lithium–ion power battery thermal management technologies and thermal safety. J Therm Sci 2017;26:391–412. [CrossRef]
  • [78] Goutam S, Nikolian A, Jaguemont J, Smekens J, Omar N, Dan P, et al. Three–dimensional electro–thermal model of Li–ion pouch cell: Analysis and comparison of cell design factors and model assumptions. App Therm Eng 2017;126:796–808. [CrossRef]
  • [79] Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P. A systematic approach for electrochemical–thermal modelling of a large format lithium–ion battery for electric vehicle application. J Power Sources 2018;382:77–94. [CrossRef]
  • [80] Grandjean T, Barai A, Hosseinzadeh E, Guo Y, Mcgordon A, Marco J. Large format lithium ion pouch cell full thermal characterisation for improved electric vehicle thermal management. J Power Sources 2017;359:215–225. [CrossRef]
  • [81] Jaguemont J, Omar N, Abdel–monem M, Bossche PVD, Mierlo JV. Fast–charging investigation on high–power and high–energy density pouch cells with 3D–thermal model development. App Therm Eng 2018;128:1282–1296. [CrossRef]
  • [82] Mastali M, Foreman E, Modjtahedi A, Samadani E, Amirfazli A, Farhad S, et al. Electrochemical–thermal modelling and experimental validation of commercial graphite / LiFePO4 pouch lithium–ion batteries. Int J Therm Sci 2018;129:218–230. [CrossRef]
  • [83] Neupane S, Alipanah M, Barnes D, Li X. Heat generation characteristics of LiFePO4 pouch cells with passive thermal management. Energies 2018;11:1243. [CrossRef]
  • [84] Panchal S, Dincer I, Agelin–chaab M, Fraser R, Fowler M. Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery. Int J Heat Mass Transf 2016;101:1093–1102. [CrossRef]
  • [85] Schuster E, Ziebert C, Melcher A, Rohde M, Seifert HJ. Thermal behaviour and electrochemical heat generation in a commercial 40 Ah lithium ion pouch cell. J Power Sources 2015;286:580–589. [CrossRef] [86] Xie Y, He X, Hu X, Li W, Zhang Y, Liu B, et al. An improved resistance–based thermal model for a pouch lithium–ion battery considering heat generation of posts. App Therm Eng 2020;164:114455. [CrossRef]
  • [87] Arora S, Shen W, Kapoor A. Neural network based computational model for estimation of heat generation in LiFePO 4 pouch cells of different nominal capacities. Comp Chem Eng 2017;101:81–94. [CrossRef]
  • [88] Samba A, Omar N, Gualous H, Capron O, Bossche PVD, Mierlo JV. Impact of tab location on large format lithium–ion pouch cell based on fully coupled tree–dimensional electrochemical–thermal modeling. Electrochim Acta 2014;147:319–329. [CrossRef]
  • [89] Lee D, Lee J, Kim J, Cho S, Kim CW. Thermal behaviors analysis of 55 Ah large–format lithium–ion pouch cells with different cell aspect ratios, tab locations, and C–rates lithium ion Battery. App Therm Eng 2020;175:115422. [CrossRef]
  • [90] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources 2013,239:30–36. [CrossRef]
  • [91] Sun H, Dixon R. Development of cooling strategy for an air cooled lithium–ion battery pack. J Power Sources 2014;272:404–414. [CrossRef]
  • [92] Wang S, Li K, Tian Y, Wang J, Wu Y, Ji S. Improved thermal performance of a large laminated lithium–ion power battery by reciprocating air flow. App Therm Eng 2019;152:445–454. [CrossRef]
  • [93] Li X, He F, Zhang G, Huang Q, Zhou D. Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system. App Therm Eng 2019;146:866–880. [CrossRef]
  • [94] Li W, Xiao M, Peng X, Garg A, Gao L. A surrogate thermal modelling and parametric optimization of battery pack with air cooling for EVs. App Therm Eng 2019;147:90–100. [CrossRef]
  • [95] Akinlabi AAH, Solyali D. Configuration, design and optimization of air–cooled battery thermal management system for electric vehicles: A review. Renew Sustain Energy Rev 2020;125:109815. [CrossRef]
  • [96] Panchal S, Mathewson S, Fraser R, Culham R, Fowler M. Thermal management of lithium–ion pouch cell with indirect liquid cooling using dual cold plates approach. SAE Int J Alt Power 2015;4:293–307. [CrossRef]
  • [97] Gungor S, Cetkin E, Lorente S. Canopy–to–canopy liquid cooling for the thermal management of lithium–ion batteries, a constructal approach. Int J Heat Mass Trans. 2022;182:121918. [CrossRef]
  • [98] Patil SM, Seo J, Panchal S, Jee S, Lee M. Investigation on thermal performance of water–cooled Li–ion pouch cell and pack at high discharge rate with U–turn type microchannel cold plate. Int J Heat Mass Trans 2020;155:119728. [CrossRef]
  • [99] Li Y, Zhou Z, Wu WT. Three–dimensional thermal modeling of Li–ion battery cell and 50 V Li–ion battery pack cooled by mini–channel cold plate. App Therm Eng 2019;147:829–840. [CrossRef]
  • [100] Chung Y, Kim MS. Thermal analysis and pack level design of battery thermal management system with liquid cooling for electric vehicles. Energy Conv Man 2019;196:105–116. [CrossRef]
  • [101] Gocmen S, Gungor S, Cetkin E. Thermal management of electric vehicle battery cells with homogeneous coolant and temperature distribution. J Appl Phys 2020;127:234902. [CrossRef]
  • [102] Mo X, Hu X, Tang J, Tian H. A comprehensive investigation on thermal management of large ‐ capacity pouch cell using micro heat pipe array. Int J Energy Res 2019;43:7444–7458. [CrossRef]
  • [103] Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J Power Sources 2015;273:1089–1097. [CrossRef]
  • [104] Oh S, Lee J, Lee H, Shin D, Thalluri T, Shin K. Design of battery thermal management unit with PCM for electrical vehicle: Part I: Modelling and analysis of pouch type battery cell. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering; 2019 Oct 2–6; Yunlin, Taiwan: IEEE; 2019. pp. 82–85. [CrossRef]
  • [105] Kim H, Kim E, Seo M, Kim T, Angani A, Shin K. Design of battery thermal management unit with PCM for electrical vehicle: part II: Experimental investigation on pouch type battery cell. 2019 IEEE Eurasia Conference on IOT, Communication and Engineering; 2019 Oct 2–6; Yunlin, Taiwan: IEEE; 2019. pp. 255–258. [CrossRef]
  • [106] Xie Y, Tang J, Shi S, Xing Y, Wu H, Hu Z, et al. Experimental and numerical investigation on integrated thermal management for lithium–ion battery pack with composite phase change materials. Energy Conv Man 2017;154:562–575. [CrossRef]
  • [107] Rao Z, Wang S. A review of power battery thermal energy management. Renew Sustain Energy Rev 2011;15:4554–4571. [CrossRef]
  • [108] Xun J, Liu R, Jiao K. Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs. J Power Sources 2013;233:47–61. [CrossRef]
  • [109] Chen D, Jiang J, Kim GH, Yang C, Pesaran A. Comparison of different cooling methods for lithium ion battery cells. App Therm Eng 2016;94:846–854. [CrossRef]
  • [110] Khateeb SA, Farid MM, Selman JR, Al–Hallaj S. Design and simulation of a lithium–ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 2004;128:292–307. [CrossRef]
  • [111] Zhao J, Rao Z, Huo Y, Liu X, Li Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. App Therm Eng 2015;85:33–43. [CrossRef]
  • [112] Wang H, He F, Ma L. Experimental and modeling study of controller–based thermal management of battery modules under dynamic loads. Int J Heat Mass Transf 2016;103:154–164. [CrossRef]
  • [113] Saw HL, Ye Y, Tay AAO, Chong WT, Kuan SH, Yew MC. Computational fluid dynamic and thermal analysis of Lithium–ion battery pack with air cooling. Appl Energy 2016;177:783–792. [CrossRef]
  • [114] Lu Z, Yu X, Wei L, Qiu Y, Zhang L, Meng X, et al. Parametric study of forced air cooling strategy for lithium–ion battery pack with staggered arrangement. App Therm Eng 2018;136:28–40. [CrossRef]
  • [115] Jiagiang E, Yue M, Chen J, Zhu H, Deng Y, Zhu Y, et al. Effects of the different air cooling strategies on cooling performance of a lithium–ion battery module with baffle. App Therm Eng 2018;144:231–241. [CrossRef]
  • [116] Wang T, Tseng KJ, Zhao J, Wei Z. Thermal investigation of lithium–ion battery module with different cell arrangement structures and forced air–cooling strategies. Appl Energy 2014;134:229–238. [CrossRef]
  • [117] Yang N, Zhang X, Li G, Hua D. Assessment of the forced air–cooling performance for cylindrical lithium–ion battery packs: A comparative analysis between aligned and staggered cell arrangements. App Therm Eng 2015;80:55–65. [CrossRef]
  • [118] He F, Wang H, Ma L. Experimental demonstration of active thermal control of a battery module consisting of multiple Li–ion cells. Int J Heat Mass Transf 2015;91:630–639. [CrossRef]
  • [119] Mahamud R, Park C. Reciprocating air flow for Li–ion battery thermal management to improve temperature uniformity. J Power Sources 2011;196:5685–5696. [CrossRef]
  • [120] Jaguemont JV, Mierlo J. A comprehensive review of future thermal management systems for battery–electrified vehicles. J Energy Storage 2020;31:101551. [CrossRef]
  • [121] Zhu L, Boehm RF, Wang Y, Halford C, Sun Y. Water immersion cooling of PV cells in a high concentration system. Sol Energy Mater Sol Cells 2011;95:538–545. [CrossRef]
  • [122] Yang S, Ling C, Fan Y, Yang Y, Tan X, Dong H. A review of lithium–ion battery thermal management system strategies and the evaluate criteria. Int J ElectroChem Sci 2019;14:6077–6107. [CrossRef]
  • [123] Sefidan AM, Sojoudi A, Saha SC. Nanofluid–based cooling of cylindrical lithium–ion battery packs employing forced air flow. Int J Therm Sci 2017;117:44–58. [CrossRef]
  • [124] Van Gils RW, Danilov D, Notten PHL, Speetjens MFM, Nijmeijer H. Battery thermal management by boiling heat–transfer. Energy Conv Manag 2014;79:9–17. [CrossRef]
  • [125] Endo T, Nukada A, Matsuoka S. TSUBAME–KFC: A modern liquid submersion cooling prototype towards exascale becoming the greenest supercomputer in the world. 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS); 2014 Dec 16–19; Hsinchu, Tawian: IEEE; 2014. pp. 360–367. [CrossRef]
  • [126] Hermann WA. Liquid cooling manifold with multi–function thermal interface. US8263250B2, 2010.
  • [127] Faas A, Clough E. Battery module with integrated thermal management system. US8906541B2, 2012.
  • [128] Zhao C, Cao W, Dong T, Jiang F. Thermal behavior study of discharging/charging cylindrical lithium–ion battery module cooled by channeled liquid flow. Int J Heat Mass Transf 2018;120:751–762. [CrossRef]
  • [129] Basu S, Hariharan KS, Kolake SM, Song T, Sohn DK, Yeo T. Coupled electrochemical thermal modelling of a novel Li–ion battery pack thermal management system. Appl Energy 2016;181:1–13. [CrossRef]
  • [130] Zhao J, Rao Z, Li Y. Thermal performance of mini–channel liquid cooled cylinder based battery thermal management for cylindrical lithium–ion power battery. Energy Conv Manag 2015;103:157–165. [CrossRef]
  • [131] Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium–ion battery module with variable contact surface. App Therm Eng 2017;123:1514–1522. [CrossRef]
  • [132] Jaguemont J, Omar N, Van den Bossche P, Mierlo J. Phase–change materials PCM for automotive applications: A review. App Therm Eng 2018;132:308–320. [CrossRef]
  • [133] Al–Zareer M, Dincer I, Rosen MA. A review of novel thermal management systems for batteries. Int J Energy Res 2018;42:3182–3205. [CrossRef]
  • [134] Mallow A, Abdelaziz O, Graham S. Thermal charging performance of enhanced phase change material composites for thermal battery design. Int J Therm Sci 2018;127:19–28. [CrossRef]
  • [135] Huang Q, Li X, Zhang G, Zhang J, He F, Li Y. Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system. App Therm Eng 2018;141:1092–1100. [CrossRef]
  • [136] Weng J, Yang X, Zhang G, Ouyang D, Chen M, Wang J. Optimization of the detailed factors in a phase–change–material module for battery thermal management. Int J Heat Mass Transf 2019;138:126–134. [CrossRef]
  • [137] Celik A, Coban H, Göcmen S, Ezan M.A, Gören A, Erek A. Passive thermal management of the lithium–ion battery unit for a solar racing car. Int J Energy Res 2019;43:3681–3691. [CrossRef]
  • [138] Joshy N, Hajiyan M, Siddique ARM, Tasnim S, Simha H, Mahmud S. Experimental investigation of the effect of vibration on phase change material PCM based battery thermal management system. J Power Sources 2020;450:227717. [CrossRef]
  • [139] Lazrak A, Fourmigué JF, Robin JF. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations. App Therm Eng 2018;128:20–32. [CrossRef]
  • [140] Wang Z, Zhang H, Xia X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure. Int J Heat Mass Transf 2017;109:958–970. [CrossRef]
  • [141] Al Hallaj S, Selman JR. A novel thermal management system for electric vehicle batteries using phase–change material. J ElectroChem Soc 2000;147:3231. [CrossRef]
  • [142] Sabbah R, Kizilel R, Selman JR, Al–Hallaj S. Active air–cooled vs. passive phase change material thermal management of high power lithium–ion packs: Limitation of temperature rise and uniformity of temperature distribution. J Power Sources 2008,182:630–638. [CrossRef]
  • [143] Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell–to–cell air cooling. App Therm Eng 2019;161:114199. [CrossRef]
  • [144] Jilte R, Afzal A, Panchal S. A novel battery thermal management system using nano–enhanced phase change materials. Energy 2021;219:119654. [CrossRef]
  • [145] Zhang J, Li X, Zhang G, Wang Y, Guo J, Wang Y, et al. Characterization and experimental investigation of aluminum nitride–based composite phase change materials for battery thermal management. Energy Conv Manag 2020;204:112319. [CrossRef]
  • [146] Hussain A, Abidi IH, Tso CY, Chan KC, Luo Z, Chao CYH. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci 2018;124:23–35. [CrossRef]
  • [147] Samimi F, Babapoor A, Azizi M, Karimi G. Thermal management analysis of a Li–ion battery cell using phase change material loaded with carbon fibers. Energy 2016;96:355–371. [CrossRef]
  • [148] Weng J, Ouyang D, Yang X, Chen M, Zhang G, Wang J. Optimization of the internal fin in a phase–change–material module for battery thermal management. App Therm Eng 2020;167:114698. [CrossRef]
  • [149] Zhao J, Lv P, Rao Z. Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Exp Therm Fluid Sci 2017;82:182–188. [CrossRef]
  • [150] Jiang G, Huang J, Liu M, Cao M. Experiment and simulation of thermal management for a tube–shell Li–ion battery pack with composite phase change material. App Therm Eng 2017;120:1–9. [CrossRef]
  • [151] Luo J, Zou D, Wang Y, Wang S, Huang L. Battery thermal management systems BTMs based on phase change material PCM: A comprehensive review. Chem Eng J 2022;430:132741. [CrossRef]
  • [152] Nature Energy. Post lithium–ion batteries. Available at: https://www.nature.com/collections/bsctnmnrtc Accessed on November 23, 2022.
  • [153] Li Y, Lu J. Metal–air batteries: Will they be the future electrochemical energy storage device of choice? ACS Energy Lett 2017;2:1370–1377. [CrossRef]
  • [154] Walter M, Kovalenko MV, Kravchyk KV. Challenges and benefits of post–lithium–ion batteries. New J Chem 2020;44:1677–1683. [CrossRef]
  • [155] Ponrouch A, Palacín MR. Post–Li batteries: promises and challenges. Phil Trans R Soc A 2019;377:20180297. [CrossRef]
  • [156] Mckerracher RD, Leon CPD, Wills RGA, Shah AA, Walsh FC. A review of the iron–air secondary battery for energy storage. Chem Plus Chem 2015;80:323–335. [CrossRef]
  • [157] Wang M, Lei X, Hu L, Zhang P, Hu H, Fang J. High–performance Waste Biomass–derived Microporous Carbon Electrocatalyst with a Towel–like Surface for Alkaline Metal/air batteries. Electroch Acta 2017;250:384–392. [CrossRef]
  • [158] Zhang X, Wang X, Xie Z, Zhou Z. Recent progress in rechargeable alkali metal air batteries. Green Energy Environ 2016;1:4–17.
  • [159] Xu Y, Zhao Y, Ren J, Zhang Y, Peng H. Flexible batteries an all–solid–state fiber–shaped aluminum – air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem 2016;128:8111–8114. [CrossRef]
  • [160] Chang Z, Wang X, Yang Y, Gao J, Li M, Liu L, et al. Rechargeable Li/Br battery: A promising platform for post lithium ion batteries. J Mater Chem A 2014;2:19444–19450. [CrossRef]
  • [161] Choi JW, Aurbach D. Promise and reality of post–lithium–ion batteries with high energy densities. Nat Rev Mats 2016;1:16013. [CrossRef]
  • [162] Bogdanovskaya VA, Korchagin OV, Tarasevich MR, Andreev VN, Nizhnikovskii EA, Radina MV, et al. Mesoporous nanostructured materials for the positive electrode of a Lithium–oxygen battery. Prot Met Phys Chem 2018;54:373–388. [CrossRef]
  • [163] Li W, Zeng L, Wu Y, Yu Y. Nanostructured electrode materials for lithium–ion and sodium–ion batteries via electrospinning. Sci China Mats 2016;59:287. [CrossRef]
  • [164] Wang F, Wu X, Li C, Zhu Y, Fu L, Wu Y, et al. Environmental science post–lithium–ion batteries. Energy Environ Sci 2016;9:3570–3611. [CrossRef]
  • [165] Manzhos S. Organic electrode materials for lithium and post–lithium batteries: an ab initio perspective on design. Curr Opin Green Sustain Chem 2018;17:8–14. [CrossRef]
  • [166] Ma Y, Ma J, Cui G. Small things make big deal: Powerful binders of lithium batteries and post–lithium batteries. Energy Storage Mater 2018;20:146–175. [CrossRef]
  • [167] Ahmad Y, Colin M, Gervillie–Mouravieff C, Dubois M, Guerin K. Carbon in lithium–ion and post–lithium–ion batteries: Recent features. Synth Met 2021;280:116864. [CrossRef]
  • [168] Wu X, He G, Ding Y. Dealloyed nanoporous materials for rechargeable post–lithium batteries. Chem Sus Chem 2020;13:3376–3390. [CrossRef]
  • [169] Shi F, Chen C, Xu ZL. Recent advances on electrospun nanofiber materials for post–lithium–ion batteries. Advanced Fiber Mat 2021;3:275–301. [CrossRef]
There are 164 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Sahin Gungor 0000-0003-1833-1484

Sinan Gocmen This is me 0000-0003-0527-8151

Erdal Cetkın This is me 0000-0003-3686-0208

Publication Date August 4, 2023
Submission Date May 28, 2017
Published in Issue Year 2023 Volume: 9 Issue: 4

Cite

APA Gungor, S., Gocmen, S., & Cetkın, E. (2023). A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles. Journal of Thermal Engineering, 9(4), 1078-1099. https://doi.org/10.18186/thermal.1334238
AMA Gungor S, Gocmen S, Cetkın E. A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles. Journal of Thermal Engineering. August 2023;9(4):1078-1099. doi:10.18186/thermal.1334238
Chicago Gungor, Sahin, Sinan Gocmen, and Erdal Cetkın. “A Review on Battery Thermal Management Strategies in Lithium-Ion and Post-Lithium Batteries for Electric Vehicles”. Journal of Thermal Engineering 9, no. 4 (August 2023): 1078-99. https://doi.org/10.18186/thermal.1334238.
EndNote Gungor S, Gocmen S, Cetkın E (August 1, 2023) A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles. Journal of Thermal Engineering 9 4 1078–1099.
IEEE S. Gungor, S. Gocmen, and E. Cetkın, “A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles”, Journal of Thermal Engineering, vol. 9, no. 4, pp. 1078–1099, 2023, doi: 10.18186/thermal.1334238.
ISNAD Gungor, Sahin et al. “A Review on Battery Thermal Management Strategies in Lithium-Ion and Post-Lithium Batteries for Electric Vehicles”. Journal of Thermal Engineering 9/4 (August 2023), 1078-1099. https://doi.org/10.18186/thermal.1334238.
JAMA Gungor S, Gocmen S, Cetkın E. A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles. Journal of Thermal Engineering. 2023;9:1078–1099.
MLA Gungor, Sahin et al. “A Review on Battery Thermal Management Strategies in Lithium-Ion and Post-Lithium Batteries for Electric Vehicles”. Journal of Thermal Engineering, vol. 9, no. 4, 2023, pp. 1078-99, doi:10.18186/thermal.1334238.
Vancouver Gungor S, Gocmen S, Cetkın E. A review on battery thermal management strategies in lithium-ion and post-lithium batteries for electric vehicles. Journal of Thermal Engineering. 2023;9(4):1078-99.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering