Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 5, 1120 - 1136, 10.09.2024

Abstract

References

  • [1] De Carli M, Fiorenzato S, Zarrella A. Performance of heat pumps with direct expansion in vertical ground heat exchangers in heating mode. Energy Conver Manage 2015;95:120130. [CrossRef]
  • [2] Hatami M, Ganji DD, Gorji-Bandpy M. Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Conver Manage 2015;97:2641. [CrossRef]
  • [3] Rashidi MM, Mohimanian Pour SA, Abbasbandy S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun Nonlinear Sci Numer Simul 2011;16:18741889. [CrossRef]
  • [4] Okonkwo EC, Wole-Osho I, Almanassa IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim 2020;145:28172872. [CrossRef]
  • [5] Khan S, Hedge SC, Pratheek S, Shettigar S, Satyanarayan. Effect of sonication time, concentration, shape and size of nano particle on thermal conductivity of Al2O3 /water nano fluid. Int J Engineer Res Technol 2015;3:IJERTCONV3IS17028.
  • [6] Kokate YD, Sonawane SB. Investigation of particle size effect on thermal conductivity enhancement of distilled water-Al2 O3 nano fluids. Fluid Mech Res Int J 2019;3:5559. [CrossRef]
  • [7] Ali N, Teixeira JA, Addali A. A review on nanofluids: Fabrication, stability, and thermophysical properties. J Nanomater 2018;2018:6978130. [CrossRef]
  • [8] Murali Krishna V, Sandeep Kumar M. Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment. Mater Today Proc 2019;17:295302. [CrossRef]
  • [9] Kaggwa A, Carson JK. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: A review of recent literature. Int Nano Lett 2019;9:277288. [CrossRef]
  • [10] Jassim EI, Ahmed F. Experimental assessment of Al2O3 and Cu nanofluids on the performance and heat leak of double pipe heat exchanger. Heat Mass Transf 2020;56:18451858. [CrossRef]
  • [11] Terese M. Application of nanofluids in enhancing the thermal conductivity of heat exchangers- A review. Int J Sci Res Publ 2021;11:364369. [CrossRef]
  • [12] Zheng M, Han D, Asif F, Si Z. Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat Mass Transf 2019;56:11271140. [CrossRef]
  • [13] Mansoury D, Doshmanziari FI, Kiani A, Chamkha AJ, Sharifpur M. Heat transfer and flow characteristics of Al2O3 /water nanofluid in various heat exchangers: Experiments on counter flow. Heat Transfer Engineer 2019;41:220234. [CrossRef]
  • [14] Barzegar MH, Fallahiyekta M. Increasing the thermal efficiency of double tube heat exchangers by using nano hybrid. Emerg Sci J 2018;2:1119. [CrossRef]
  • [15] Singh A, Gangacharyulu D, Sharma S. Study of heat transfer of aluminium oxide in water and ethylene glycol based nanofluid in single pass multi tube cross flow heat exchanger. Int J Engineer Res Technol 2016;5:IJERTV5IS080214.
  • [16] Jama M, Singh T, Gamaleldin SM, Koç M, Samara A, Isaifan RJ, et al. Critical review on nanofluids: Preparation, characterization, and applications. J Nanomater 2016;2016:6717624. [CrossRef]
  • [17] Azeez K, Hameed AF, Hussein AM. Nanofluid heat transfer augmentation in a double pipe heat exchanger. AIP Conf Proc 2020;2213:020059. [CrossRef]
  • [18] Singh S, Sharma S, Gangacharyulu D. Comparative study of various thermo-physical properties of metallic & oxides nanofluids. Int J Engineer Sci Res Technol 2015;4:797–803.
  • [19] Aghayari R, Madah H, Keyvani B, Moghadassi A, Ashori F. The effect of nanoparticles on thermal efficiency of double tube heat exchangers in turbulent flow. Int Sch Res Notices 2014;2014:274560. [CrossRef]
  • [20] Jamal-Abadi M, Zamzamian AH. Thermal conductivity of Cu and Al-water nanofluids. Int J Engineer 2013;26:821828. [CrossRef]
  • [21] Askar AH, Kadham SA, Mshehid SH. The surfactants effect on the heat transfer enhancement and stability of nanofluid at constant wall temperature. Heliyon 2020;6:e04419. [CrossRef]
  • [22] Asadi A. A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid. Energy Conver Manage 2018;175:110. [CrossRef]
  • [23] Alawi OA, Abdelrazek AH, Aldlemy MS, Ahmed W, Hussein OA, Ghafel ST, et al. Heat transfer and hydrodynamic properties using different metal-oxide nanostructures in horizontal concentric annular tube: An optimization study. Nanomaterials (Basel) 2021;11:1979. [CrossRef]
  • [24] Dew KK, Shrivastava P. CFD analysis of double tube heat exchanger using different nanofluid. Int J Res Trends Innov 2018;3:146155.
  • [25] Albadr J, Tayal S, Alasadi M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Engineer 2013;1:3844. [CrossRef]
  • [26] Sulgani MT, Karimipour A. Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J Mol Liq 2019;283:66066. [CrossRef]
  • [27] Akhtari M, Haghshenasfard M, Talaie MR. Numerical and experimental investigation of heat transfer of α-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. Numer Heat Transf Part A 2013;63:941958. [CrossRef]
  • [28] Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. J Clean Prod 2019;206:10891100. [CrossRef]
  • [29] Matsunaga K, Tanaka T, Yamamoto T, Ikuhara Y. First-principles calculations of intrinsic defects in Al2O3. Phys Rev B 2003;68:085110. [CrossRef]
  • [30] Kirm M, Feldbach E, Kotlov A, Liblik P, Lushchik A, Oja M, et al.VUV spectroscopy and electronic excitations in nano-size alumina. Radiat Meas 2010;45:618620. [CrossRef]
  • [31] Kuzovkov VN, Kotomin EA, Popov AI. Kinetics of the electronic center annealing in Al2O3 crystals. J Nucl Mater 2018;502:295300. [CrossRef]
  • [32] Dresvyannikov AF, Petrova EV, Tsyganova MA. Physical and chemical properties of nano-sized aluminum hydroxide and oxide particles obtained by the electrochemical method. Russ J Phys Chem A 2010;84:642647. [CrossRef]
  • [33] Bouselsal M, Mebarek-Oudina F, Biswas N, Ismail AAI. heat transfer enhancement using Al2O3-MWCNT hybrid-nanofluid inside a tube/shell heat exchanger with different tube shapes. Micromachines (Basel) 2023;14:1072. [CrossRef]
  • [34] Ajeeb W, Thieleke da Silva RRS, Murshed SMS. Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger. Appl Therm Engineer 2023;218:119321. [CrossRef]
  • [35] Mohamed HA, Alhazmy M, Mansour F, Negeed ER. Enhancing heat transfer inside a double pipe heat exchanger using Al2O3 nanofluid, experimental investigation under turbulent flow conditions. J Nanofluids 2023;12:356371. [CrossRef]
  • [36] Sahu SR, Barik H, Patro P. Heat transfer study of water and air-based nanofluids with Al2O3 nanoparticles in a circular pipe using a multiphase approach. Part Sci Technol 2023;42:393407. [CrossRef]
  • [37] Salameh T, Alkasrawi M, Olabi AG, Makky AA, Abdelkareem MA. Experimental and numerical analysis of heat transfer enhancement inside concentric counter flow tube heat exchanger using different nanofluids. Int J Thermofluids 2023;20:100432. [CrossRef]
  • [38] Bansal RK. A textbook of fluid mechanics and hydraulic machines. New Delhi: Laxmi Publications; 2005.
  • [39] Yau YH, Rajput U, Rajpar AH, Lastovets N. Effects of air supply terminal devices on the performance of variable Refrigerant flow integrated stratum ventilation system: An experimental study. Energies 2022;15:1265. [CrossRef]
  • [40] Kadu RJ, Jambhorkar SS, Juware RM, Dhote ND. Effect on fluid flow using laminar flow cabinet. Int Res J Engineer Technol 2015;2:637640.
  • [41] Iqbal MS, Raj CS, Michael JJ, Irfan AM. A comparative investigation of Al2O3 /H2O and ZrO2/H2O nanofluid for heat transfer applications. Dig J Nanomater Biostruct 2017;12:255263.

Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid

Year 2024, Volume: 10 Issue: 5, 1120 - 1136, 10.09.2024

Abstract

Heat exchangers play a vital important role in industries and processing equipment’s. Among them, the double pipe heat exchanger facilitates the exchange of heat between two fluids through surface tubes. This study aimed to investigate various thermal performance parameters of baseline water and Aluminum oxide nanofluid at various volume concentrations and flow rates. The results were compared between baseline water and Aluminum oxide nanofluid using a test rig at the temperature range of 60 °C for industrial applications. The nanofluid sample was prepared by adding very small-sized (20nm) Al2O3 nanoparticles in the baseline water within the range of 0.10% to 0.175% using a standard two step method for the sterilization process. The nanoparticle and baseline water were under set by a hot plate mechanical stirrer for approximately 2 hours to ensure the proper dispersion before the tests, rendering the nanofluid stable for 12 hours. The Laminar-Transition flow double pipe heat exchanger (test rig) operated at flow rates ranging from 1.6×10-5-3.3×10-5 m3/sec (1-2 LPM) within the range of Reynolds number from 1700 to 3400 at volume concentration of 0.10% to 0.175% Moreover, an addition of 0.175% of Al2O3 nanoparticle in the baseline improved the average heat transfer coefficient from 140% to 155%, thermal conductivity of 21.6% and, 5.94% efficiency in counter flow direction and also showed higher friction factor i.e. 2.81% than baseline water. The results suggest that Al2O3-nanofluid at 0.175% could function very well as working fluid for industrial requirements compared to the conventional baseline water.

References

  • [1] De Carli M, Fiorenzato S, Zarrella A. Performance of heat pumps with direct expansion in vertical ground heat exchangers in heating mode. Energy Conver Manage 2015;95:120130. [CrossRef]
  • [2] Hatami M, Ganji DD, Gorji-Bandpy M. Experimental and numerical analysis of the optimized finned-tube heat exchanger for OM314 diesel exhaust exergy recovery. Energy Conver Manage 2015;97:2641. [CrossRef]
  • [3] Rashidi MM, Mohimanian Pour SA, Abbasbandy S. Analytic approximate solutions for heat transfer of a micropolar fluid through a porous medium with radiation. Commun Nonlinear Sci Numer Simul 2011;16:18741889. [CrossRef]
  • [4] Okonkwo EC, Wole-Osho I, Almanassa IW, Abdullatif YM, Al-Ansari T. An updated review of nanofluids in various heat transfer devices. J Therm Anal Calorim 2020;145:28172872. [CrossRef]
  • [5] Khan S, Hedge SC, Pratheek S, Shettigar S, Satyanarayan. Effect of sonication time, concentration, shape and size of nano particle on thermal conductivity of Al2O3 /water nano fluid. Int J Engineer Res Technol 2015;3:IJERTCONV3IS17028.
  • [6] Kokate YD, Sonawane SB. Investigation of particle size effect on thermal conductivity enhancement of distilled water-Al2 O3 nano fluids. Fluid Mech Res Int J 2019;3:5559. [CrossRef]
  • [7] Ali N, Teixeira JA, Addali A. A review on nanofluids: Fabrication, stability, and thermophysical properties. J Nanomater 2018;2018:6978130. [CrossRef]
  • [8] Murali Krishna V, Sandeep Kumar M. Numerical analysis of forced convective heat transfer of nanofluids in microchannel for cooling electronic equipment. Mater Today Proc 2019;17:295302. [CrossRef]
  • [9] Kaggwa A, Carson JK. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: A review of recent literature. Int Nano Lett 2019;9:277288. [CrossRef]
  • [10] Jassim EI, Ahmed F. Experimental assessment of Al2O3 and Cu nanofluids on the performance and heat leak of double pipe heat exchanger. Heat Mass Transf 2020;56:18451858. [CrossRef]
  • [11] Terese M. Application of nanofluids in enhancing the thermal conductivity of heat exchangers- A review. Int J Sci Res Publ 2021;11:364369. [CrossRef]
  • [12] Zheng M, Han D, Asif F, Si Z. Effect of Al2O3/water nanofluid on heat transfer of turbulent flow in the inner pipe of a double-pipe heat exchanger. Heat Mass Transf 2019;56:11271140. [CrossRef]
  • [13] Mansoury D, Doshmanziari FI, Kiani A, Chamkha AJ, Sharifpur M. Heat transfer and flow characteristics of Al2O3 /water nanofluid in various heat exchangers: Experiments on counter flow. Heat Transfer Engineer 2019;41:220234. [CrossRef]
  • [14] Barzegar MH, Fallahiyekta M. Increasing the thermal efficiency of double tube heat exchangers by using nano hybrid. Emerg Sci J 2018;2:1119. [CrossRef]
  • [15] Singh A, Gangacharyulu D, Sharma S. Study of heat transfer of aluminium oxide in water and ethylene glycol based nanofluid in single pass multi tube cross flow heat exchanger. Int J Engineer Res Technol 2016;5:IJERTV5IS080214.
  • [16] Jama M, Singh T, Gamaleldin SM, Koç M, Samara A, Isaifan RJ, et al. Critical review on nanofluids: Preparation, characterization, and applications. J Nanomater 2016;2016:6717624. [CrossRef]
  • [17] Azeez K, Hameed AF, Hussein AM. Nanofluid heat transfer augmentation in a double pipe heat exchanger. AIP Conf Proc 2020;2213:020059. [CrossRef]
  • [18] Singh S, Sharma S, Gangacharyulu D. Comparative study of various thermo-physical properties of metallic & oxides nanofluids. Int J Engineer Sci Res Technol 2015;4:797–803.
  • [19] Aghayari R, Madah H, Keyvani B, Moghadassi A, Ashori F. The effect of nanoparticles on thermal efficiency of double tube heat exchangers in turbulent flow. Int Sch Res Notices 2014;2014:274560. [CrossRef]
  • [20] Jamal-Abadi M, Zamzamian AH. Thermal conductivity of Cu and Al-water nanofluids. Int J Engineer 2013;26:821828. [CrossRef]
  • [21] Askar AH, Kadham SA, Mshehid SH. The surfactants effect on the heat transfer enhancement and stability of nanofluid at constant wall temperature. Heliyon 2020;6:e04419. [CrossRef]
  • [22] Asadi A. A guideline towards easing the decision-making process in selecting an effective nanofluid as a heat transfer fluid. Energy Conver Manage 2018;175:110. [CrossRef]
  • [23] Alawi OA, Abdelrazek AH, Aldlemy MS, Ahmed W, Hussein OA, Ghafel ST, et al. Heat transfer and hydrodynamic properties using different metal-oxide nanostructures in horizontal concentric annular tube: An optimization study. Nanomaterials (Basel) 2021;11:1979. [CrossRef]
  • [24] Dew KK, Shrivastava P. CFD analysis of double tube heat exchanger using different nanofluid. Int J Res Trends Innov 2018;3:146155.
  • [25] Albadr J, Tayal S, Alasadi M. Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Stud Therm Engineer 2013;1:3844. [CrossRef]
  • [26] Sulgani MT, Karimipour A. Improve the thermal conductivity of 10w40-engine oil at various temperature by addition of Al2O3/Fe2O3 nanoparticles. J Mol Liq 2019;283:66066. [CrossRef]
  • [27] Akhtari M, Haghshenasfard M, Talaie MR. Numerical and experimental investigation of heat transfer of α-Al2O3/water nanofluid in double pipe and shell and tube heat exchangers. Numer Heat Transf Part A 2013;63:941958. [CrossRef]
  • [28] Ranjbarzadeh R, Moradikazerouni A, Bakhtiari R, Asadi A, Afrand M. An experimental study on stability and thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. J Clean Prod 2019;206:10891100. [CrossRef]
  • [29] Matsunaga K, Tanaka T, Yamamoto T, Ikuhara Y. First-principles calculations of intrinsic defects in Al2O3. Phys Rev B 2003;68:085110. [CrossRef]
  • [30] Kirm M, Feldbach E, Kotlov A, Liblik P, Lushchik A, Oja M, et al.VUV spectroscopy and electronic excitations in nano-size alumina. Radiat Meas 2010;45:618620. [CrossRef]
  • [31] Kuzovkov VN, Kotomin EA, Popov AI. Kinetics of the electronic center annealing in Al2O3 crystals. J Nucl Mater 2018;502:295300. [CrossRef]
  • [32] Dresvyannikov AF, Petrova EV, Tsyganova MA. Physical and chemical properties of nano-sized aluminum hydroxide and oxide particles obtained by the electrochemical method. Russ J Phys Chem A 2010;84:642647. [CrossRef]
  • [33] Bouselsal M, Mebarek-Oudina F, Biswas N, Ismail AAI. heat transfer enhancement using Al2O3-MWCNT hybrid-nanofluid inside a tube/shell heat exchanger with different tube shapes. Micromachines (Basel) 2023;14:1072. [CrossRef]
  • [34] Ajeeb W, Thieleke da Silva RRS, Murshed SMS. Experimental investigation of heat transfer performance of Al2O3 nanofluids in a compact plate heat exchanger. Appl Therm Engineer 2023;218:119321. [CrossRef]
  • [35] Mohamed HA, Alhazmy M, Mansour F, Negeed ER. Enhancing heat transfer inside a double pipe heat exchanger using Al2O3 nanofluid, experimental investigation under turbulent flow conditions. J Nanofluids 2023;12:356371. [CrossRef]
  • [36] Sahu SR, Barik H, Patro P. Heat transfer study of water and air-based nanofluids with Al2O3 nanoparticles in a circular pipe using a multiphase approach. Part Sci Technol 2023;42:393407. [CrossRef]
  • [37] Salameh T, Alkasrawi M, Olabi AG, Makky AA, Abdelkareem MA. Experimental and numerical analysis of heat transfer enhancement inside concentric counter flow tube heat exchanger using different nanofluids. Int J Thermofluids 2023;20:100432. [CrossRef]
  • [38] Bansal RK. A textbook of fluid mechanics and hydraulic machines. New Delhi: Laxmi Publications; 2005.
  • [39] Yau YH, Rajput U, Rajpar AH, Lastovets N. Effects of air supply terminal devices on the performance of variable Refrigerant flow integrated stratum ventilation system: An experimental study. Energies 2022;15:1265. [CrossRef]
  • [40] Kadu RJ, Jambhorkar SS, Juware RM, Dhote ND. Effect on fluid flow using laminar flow cabinet. Int Res J Engineer Technol 2015;2:637640.
  • [41] Iqbal MS, Raj CS, Michael JJ, Irfan AM. A comparative investigation of Al2O3 /H2O and ZrO2/H2O nanofluid for heat transfer applications. Dig J Nanomater Biostruct 2017;12:255263.
There are 41 citations in total.

Details

Primary Language English
Subjects Thermodynamics and Statistical Physics
Journal Section Articles
Authors

Azhar Hussain Shah1 This is me 0009-0006-0398-8183

Liaquat Ali Memon This is me 0009-0003-3379-9154

Muhammad Ramzan Luhur This is me 0000-0003-1365-1518

Qadir Buksh Jamali This is me 0009-0001-7717-8419

Sajjad Hussain Bhangwar This is me 0000-0002-8704-9178

Umair Ahmed Rajput This is me 0000-0001-7943-1011

Publication Date September 10, 2024
Submission Date October 12, 2023
Acceptance Date June 4, 2024
Published in Issue Year 2024 Volume: 10 Issue: 5

Cite

APA Shah1, A. H., Memon, L. A., Luhur, M. R., Jamali, Q. B., et al. (2024). Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid. Journal of Thermal Engineering, 10(5), 1120-1136.
AMA Shah1 AH, Memon LA, Luhur MR, Jamali QB, Bhangwar SH, Rajput UA. Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid. Journal of Thermal Engineering. September 2024;10(5):1120-1136.
Chicago Shah1, Azhar Hussain, Liaquat Ali Memon, Muhammad Ramzan Luhur, Qadir Buksh Jamali, Sajjad Hussain Bhangwar, and Umair Ahmed Rajput. “Performance and Fluid Flow Analysis of Double Pipe Heat Exchanger Using AL2O3-Nanofluid”. Journal of Thermal Engineering 10, no. 5 (September 2024): 1120-36.
EndNote Shah1 AH, Memon LA, Luhur MR, Jamali QB, Bhangwar SH, Rajput UA (September 1, 2024) Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid. Journal of Thermal Engineering 10 5 1120–1136.
IEEE A. H. Shah1, L. A. Memon, M. R. Luhur, Q. B. Jamali, S. H. Bhangwar, and U. A. Rajput, “Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid”, Journal of Thermal Engineering, vol. 10, no. 5, pp. 1120–1136, 2024.
ISNAD Shah1, Azhar Hussain et al. “Performance and Fluid Flow Analysis of Double Pipe Heat Exchanger Using AL2O3-Nanofluid”. Journal of Thermal Engineering 10/5 (September 2024), 1120-1136.
JAMA Shah1 AH, Memon LA, Luhur MR, Jamali QB, Bhangwar SH, Rajput UA. Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid. Journal of Thermal Engineering. 2024;10:1120–1136.
MLA Shah1, Azhar Hussain et al. “Performance and Fluid Flow Analysis of Double Pipe Heat Exchanger Using AL2O3-Nanofluid”. Journal of Thermal Engineering, vol. 10, no. 5, 2024, pp. 1120-36.
Vancouver Shah1 AH, Memon LA, Luhur MR, Jamali QB, Bhangwar SH, Rajput UA. Performance and fluid flow analysis of double pipe heat exchanger using AL2O3-nanofluid. Journal of Thermal Engineering. 2024;10(5):1120-36.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering