Research Article
BibTex RIS Cite

Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax

Year 2025, Volume: 11 Issue: 1, 79 - 93, 31.01.2025

Abstract

The present work focused on the application of zirconium dioxide (ZrO2), a metal based nano material in a helical tube heat exchanger. A novel nano enhance phase change material (NEPCM) passes through a series of test to explore its energy storage capacity. The aim of the study is to determine the effect of varying amounts of ZrO2 on the thermal performance of energy storage systems through experiments, and based on the results, to identify the optimal concentration. The scanning electron microscopy (SEM) results indicated that the ZrO2 physically bonded with paraffin wax without disturbing the chemical stability and structure of the NEPCM samples. It was noticed that ZrO2 successfully stabilized surface temperature, solidification and melting of paraffin wax. Experiments with ZrO2 doped with paraffin wax also helped to establish the optimum value of charging and discharging time. The most significant enhancement in charging rate was observed with a mere 0.1–0.3% (vol.) increase, but this enhancement rapidly declined with increases beyond 0.3% in volume concentration. NEPCM with 0.3% concentration in volume was identified as ideal sample. When the mass flow rate increased from 1 to 5 LPM, the exergy efficiency dropped from 21.4% to 15.3%. Compared to other PCM and NEPCM samples, ZrO2-doped PCM samples exhibited a more favorable thermal response.

References

  • [1] Kumar B. Fossil energy reduction for heating and cooling of buildings using shallow geothermal integrated energy systems – a comprehensive review. J Therm Eng 2023;9:1386–1417. [CrossRef]
  • [2] Al-Yasiri Q, Szabó M. Paraffin as a phase change material to improve building performance: An overview of applications and thermal conductivity enhancement techniques. Renew Energy Environ Sustain 2021;6:38. [CrossRef]
  • [3] Hayat MA, Chen Y. A brief review on nano phase change material-based polymer encapsulation for thermal energy storage systems. In: Mporas I, Kourtessis P, Al-Habaibeh A, Asthana A, Vukovic V, Senior J, eds. Energy and Sustainable Futures. Cham: Springer, 2021. pp. 19–26.
  • [4] Punniakodi BMS, Senthil R. Recent developments in nano-enhanced phase change materials for solar thermal storage. Sol Energy Mater Sol Cells 2022;238:111629. [CrossRef]
  • [5] Singh SK, Verma SK, Kumar R. Thermal performance and behavior analysis of SiO2, Al2O3 and MgO based nano-enhanced phase-changing materials, latent heat thermal energy storage system. J Energy Storage 2022;48:103977. [CrossRef]
  • [6] Singh SK, Verma SK, Kumar R, Sharma A, Singh R, Tiwari N. Experimental analysis of latent heat thermal energy storage system using encapsulated multiple phase-change materials. Proc Inst Mech Eng Part E J Process Mech Eng 2022:09544089221110983. [CrossRef]
  • [7] Al-Absi ZA, Mohd Isa MH, Ismail M. Phase change materials (PCMs) and their optimum position in building walls. Sustainability 2020;12:1294. [CrossRef]
  • [8] Qin H, Wang Z, Heng W, Liu Z, Li P. Numerical study of melting and heat transfer of PCM in a rectangular cavity with bilateral flow boundary conditions. Case Stud Therm Eng 2021;27:101183. [CrossRef]
  • [9] Muhammed MD, Badr O. Analysis of a hybrid cascaded latent/sensible storage system for parabolic-trough solar thermal plants. J Therm Eng 2021;7:608–622. [CrossRef]
  • [10] Al-Kayiem HH, Lin SC, Lukmon A. Review on nanomaterials for thermal energy storage technologies. Nanosci Nanotechnol Asia 2021;3:60–71. [CrossRef]
  • [11] Alktranee M, Shehab MA, Németh Z, Bencs P, Hernadi K. Effect of zirconium oxide nanofluid on the behaviour of photovoltaic–thermal system: An experimental study. Energy Rep 2023;9:1265–1277. [CrossRef]
  • [12] Yuan H, Shi Y, Xu Z, Lu C, Ni Y, Lan X. Influence of nano-ZrO2 on the mechanical and thermal properties of high temperature cementitious thermal energy storage materials. Constr Build Mater 2013;48:6–10.[CrossRef]
  • [13] Huang Y, Yang S, Aadmi M, Wang Y, Karkri M, Zhang Z. Numerical analysis on phase change progress and thermal performance of different roofs integrated with phase change material (PCM) in Moroccan semi-arid and Mediterranean climates. Build Simul 2022;16:69–85. [CrossRef]
  • [14] Munir MU, Hussain A. Thermal stability analysis of a PCM-based energy storage system. Available at: https://www.mdpi.com/2673-4591/23/1/20/htm. Accessed Nov 12, 2022. [CrossRef]
  • [15] Waqas A, Ud Din Z. Phase change material (PCM) storage for free cooling of buildings—a review. Renew Sustain Energy Rev 2013;18:607–625. [CrossRef]
  • [16] Singh VP, Jain S, Karn A, Dwivedi G, Kumar A, Mishra S, Sharma NK, Bajaj M, Zawbaa HM, Kamel S. Heat transfer and friction factor correlations development for double pass solar air heater artificially roughened with perforated multi-V ribs. Case Stud Therm Eng 2022;39:102461. [CrossRef]
  • [17] Singh R, Sadeghi S, Shabani B. Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications. Energies 2019;12:75. [CrossRef]
  • [18] Purohit BK, Sistla VS. Studies on solution crystallization of Na2SO4·10H2O embedded in porous polyurethane foam for thermal energy storage application. Thermochim Acta 2018;668:9–18. [CrossRef]
  • [19] Herbinger F, Bhouri M, Groulx D. Investigation of heat transfer inside a PCM-air heat exchanger: A numerical parametric study. Heat Mass Transf 2018;54:2433–2442. [CrossRef]
  • [20] Sun X, Zhu Z, Fan S, Li J. Thermal performance of a lightweight building with phase change material under a humid subtropical climate. Energy Built Environ 2022;3:73–85. [CrossRef]
  • [21] Fateh A, Borelli D, Devia F, Weinläder H. Summer thermal performances of PCM-integrated insulation layers for light-weight building walls: Effect of orientation and melting point temperature. Therm Sci Eng Prog 2018;6:361–9. [CrossRef]
  • [22] Kishore RA, Bianchi MVA, Booten C, Vidal J, Jackson R. Parametric and sensitivity analysis of a PCM-integrated wall for optimal thermal load modulation in lightweight buildings. Appl Therm Eng 2021;187:116568. [CrossRef]
  • [23] Zwanzig SD, Lian Y, Brehob EG. Numerical simulation of phase change material composite wallboard in a multi-layered building envelope. Energy Convers Manag 2013;69:27–40. [CrossRef]
  • [24] Parrado C, Cáceres G, Bize F, Bubnovich V, Baeyens J, Degrève J, Zhang HL. Thermo-mechanical analysis of copper-encapsulated NaNO3–KNO3. Chem Eng Res Des 2015;93:224–231. [CrossRef]
  • [25] Wang H, Lu W, Wu Z, Zhang G. Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai. Renew Energy 2020;145:52–64. [CrossRef]
  • [26] Rothan YA. Thermal analysis for solidification of PCM including nanoparticles within a container. Case Stud Therm Eng 2022;33:101920. [CrossRef]
  • [27] Arena S, Casti E, Gasia J, Cabeza LF, Cau G. Numerical simulation of a finned-tube LHTES system: Influence of the mushy zone constant on the phase change behaviour. Energy Procedia 2017;126:517–524. [CrossRef]
  • [28] Youssef W, Ge YT, Tassou SA. CFD modelling development and experimental validation of a phase change material (PCM) heat exchanger with spiral-wired tubes. Energy Convers Manag 2018;157:498–510. [CrossRef]
  • [29] Zhou G, Yang Y, Wang X, Cheng J. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves. Appl Energy 2010;87:2666–2672. [CrossRef]
  • [30] Wołoszyn J, Szopa K, Czerwiński G. Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system. Appl Therm Eng 2021;196:117332. [CrossRef]
  • [31] Arena S, Casti E, Gasia J, Cabeza LF, Cau G. Numerical analysis of a latent heat thermal energy storage system under partial load operating conditions. Renew Energy 2018;128:350–361. [CrossRef]
  • [32] Vérèz D, Borri E, Crespo A, Mselle BD, de Gracia Á, Zsembinszki G, Cabeza LF. Experimental study on two PCM macro-encapsulation designs in a thermal energy storage tank. Appl Sci 2021;11:6171. [CrossRef]
  • [33] Korody J, Dinesha P. Performance comparison of phase change materials for thermal energy storage. Mater Sci Forum 2017;909:231–236. [CrossRef]
  • [34] Williams JD, Peterson GP. A review of thermal property enhancements of low-temperature nano-enhanced phase change materials. Available at: https://www.mdpi.com/2079-4991/11/10/2578. Accessed Nov 12, 2022. [CrossRef]
  • [35] Qian Z, Shen H, Fang X, Fan L, Zhao N, Xu J. Phase change materials of paraffin in H-BN porous scaffolds with enhanced thermal conductivity and form stability. Energy Build 2018;158:1184–1188. [CrossRef]
  • [36] Wang J, Xie H, Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0040603109000616. Accessed Sep 05, 2021.
  • [37] Bose P, Amirtham VA. A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material. Renew Sustain Energy Rev 2016;65:81–100. [CrossRef]
  • [38] Helvaci HU, Khan ZA. Heat transfer and entropy generation analysis of HFE 7000-based nanorefrigerants. Int J Heat Mass Transf 2017;104:318–327. [CrossRef]
  • [39] Wang J, Xie H, Xin Z. Thermal properties of paraffin-based composites containing multi-walled carbon nanotubes. Thermochim Acta 2009;488:39–42. [CrossRef]
  • [40] Qian Z, Shen H, Fang X, Fan L, Zhao N, Xu J. Phase change materials of paraffin in H-BN porous scaffolds with enhanced thermal conductivity and form stability. Energy Build 2018;158:1184–8. [CrossRef]
  • [41] Bose P, Amirtham VA. A review on thermal conductivity enhancement of paraffin wax as latent heat energy storage material. Renew Sustain Energy Rev 2016;65:81–100. [CrossRef]
  • [42] Helvaci HU, Khan ZA. Heat transfer and entropy generation analysis of HFE 7000-based nanorefrigerants. Int J Heat Mass Transf 2017;104:318–327. [CrossRef]
  • [43] Benli H, Durmuş A. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol Energy 2009;83:2109–2119. [CrossRef]
  • [44] Fuxin N, Long N, Yang Y, Shiming D. Cool storage performance of integrated heat pump system with triple-sleeve energy storage exchanger. Energy Procedia 2012;14:1896–1902. [CrossRef]
  • [45] Jurinak JJ, Abdel-Khalik SI. Properties optimization for phase-change energy storage in air-based solar heating systems. Sol Energy 1978;21:377–383. [CrossRef]
  • [46] Sarbu I, Sebarchievici C. A comprehensive review of thermal energy storage. Sustainability 2018;10:191. [CrossRef]
  • [47] Tambunan AH, Manalu LP, Abdullah K. Exergy analysis on simultaneous charging and discharging of solar thermal storage for drying application. Drying Technol 2010;28:1107–1112. [CrossRef]
  • [48] Venkitaraj KP, Suresh S, Praveen B. Experimental charging and discharging performance of alumina-enhanced pentaerythritol using a shell and tube TES system. Sustain Cities Soc 2019;51:101767. [CrossRef]
  • [49] Cho H, Smith A, Luck R, Mago PJ. Transient uncertainty analysis in solar thermal system modeling. J Uncertainty Anal Appl 2017;5:1. [CrossRef]
  • [50] Kabeel AE, Khalil A, Shalaby SM, Zayed ME. Improvement of thermal performance of the finned plate solar air heater by using latent heat thermal storage. Appl Therm Eng 2017;123:546–553. [CrossRef]
  • [51] Swami VM, Autee AT, TR A. Experimental analysis of solar fish dryer using phase change material. J Energy Storage 2018;20:310–315. [CrossRef]
  • [52] Abuşka M, Şevik S, Kayapunar A. A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Appl Therm Eng 2019;148:684–693. [CrossRef]
  • [53] Bouadila S, Kooli S, Lazaar M, Skouri S, Farhat A. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use. Appl Energy 2013;110:267–275. [CrossRef]
  • [54] Ghiami A, Ghiami S. Comparative study based on energy and exergy analyses of a baffled solar air heater with latent storage collector. Appl Therm Eng 2018;133:797–808.[CrossRef]
  • [55] El Khadraoui A, Bouadila S, Kooli S, Farhat A, Guizani A. Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. J Cleaner Prod 2017;148:37–48.[CrossRef]
  • [56] Charvát P, Klimeš L, Ostrý M. Numerical and experimental investigation of a PCM-based thermal storage unit for solar air systems. Energy Build 2014;68:488–497. [CrossRef]
  • [57] Kumar N, Gupta SK, Sharma VK. Application of phase change material for thermal energy storage: An overview of recent advances. Mater Today Proc 2021;44:368–375.
  • [58] Kousksou T, Strub F, Castaing Lasvignottes J, Jamil A, Bédécarrats JP. Second law analysis of latent thermal storage for solar system. Sol Energy Mater Sol Cells 2007;91:1275–1281. [CrossRef]
  • [59] Alkilani MM, Sopian K, Mat S, Alghoul M. Output air temperature prediction in a solar air heater integrated with phase change material. Eur J Sci Res 2009;27:334–341.
There are 59 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Articles
Authors

Shri Krishna Mishra This is me 0000-0002-1567-4433

Mukesh Gupta 0000-0002-1995-2461

Rahul Kumar This is me 0000-0003-2838-2322

Abhishek Sharma This is me 0000-0002-8925-305X

Publication Date January 31, 2025
Submission Date September 21, 2023
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Mishra, S. K., Gupta, M., Kumar, R., Sharma, A. (2025). Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax. Journal of Thermal Engineering, 11(1), 79-93. https://doi.org/10.14744/thermal.0000905
AMA Mishra SK, Gupta M, Kumar R, Sharma A. Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax. Journal of Thermal Engineering. January 2025;11(1):79-93. doi:10.14744/thermal.0000905
Chicago Mishra, Shri Krishna, Mukesh Gupta, Rahul Kumar, and Abhishek Sharma. “Performance Enhancement of Thermal Energy Storage System Using ZrO2 Doped Paraffin Wax”. Journal of Thermal Engineering 11, no. 1 (January 2025): 79-93. https://doi.org/10.14744/thermal.0000905.
EndNote Mishra SK, Gupta M, Kumar R, Sharma A (January 1, 2025) Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax. Journal of Thermal Engineering 11 1 79–93.
IEEE S. K. Mishra, M. Gupta, R. Kumar, and A. Sharma, “Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax”, Journal of Thermal Engineering, vol. 11, no. 1, pp. 79–93, 2025, doi: 10.14744/thermal.0000905.
ISNAD Mishra, Shri Krishna et al. “Performance Enhancement of Thermal Energy Storage System Using ZrO2 Doped Paraffin Wax”. Journal of Thermal Engineering 11/1 (January 2025), 79-93. https://doi.org/10.14744/thermal.0000905.
JAMA Mishra SK, Gupta M, Kumar R, Sharma A. Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax. Journal of Thermal Engineering. 2025;11:79–93.
MLA Mishra, Shri Krishna et al. “Performance Enhancement of Thermal Energy Storage System Using ZrO2 Doped Paraffin Wax”. Journal of Thermal Engineering, vol. 11, no. 1, 2025, pp. 79-93, doi:10.14744/thermal.0000905.
Vancouver Mishra SK, Gupta M, Kumar R, Sharma A. Performance enhancement of thermal energy storage system using ZrO2 doped paraffin wax. Journal of Thermal Engineering. 2025;11(1):79-93.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering