Research Article
BibTex RIS Cite

Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module

Year 2025, Volume: 11 Issue: 1, 94 - 111, 31.01.2025

Abstract

This study investigates the use of a solar heating system and a direct contact membrane distillation module to produce pure water. The study employs co-simulation techniques that combine TRNSYS and MATLAB. The integrated system consists of a flat sheet membrane module for purification, a hot water storage tank with an internally regulated auxiliary heater, and a flat plate collector for thermal energy supply. A novel membrane distillation module was used, allowing the liquid to make direct contact with the membrane. The module was developed in MATLAB, reprogrammed, and then integrated into the TRNSYS framework. The TRNSYS-MATLAB co-simulation assessed the integrated system’s long-term efficiency. This novel solar desalination technique also improves prediction flexibility for various membrane distillation scales and configurations (such as co-current and counter-current). The current study used and validated the use of Polyvinylidene fluoride flat sheet membrane distillation in both co-current and counter-current arrangements at small and large scales, comparing the results to previously published research. Increasing the collector area from 2 m² to 8 m² in Ain Témouchent’s weather conditions reduces the auxiliary heating rate by 14% in December and 44.27% in August. In the summer, solar fraction and solar collector efficiency are 71% and 63%, respectively. The current integrated system can collect approximately 54.28 l of water flux through the membrane per day, resulting in a membrane production rate of 13.57 kg/m².hr. The findings show that the use of modern co-simulation techniques is highly inventive, producing environmentally friendly water in a sustainable and efficient way.

References

  • [1] Yadav A, Labhasetwar PK, Shahi VK. Membrane distillation using low-grade energy for desalination: A review. J Environ Chem Eng 2021;9:105818. [CrossRef]
  • [2] Rasool M, Banat F. Desalination by solar powered membrane distillation systems. Desalination 2013;308:186–197. [CrossRef]
  • [3] Tiwari GN, Yadav JK, Singh DB, Al-Helal IM, Abdel-Ghany AM. Exergoeconomic and enviroeconomic analyses of partially covered photovoltaic flat plate collector active solar distillation system. Desalination 2015;367:186–196. [CrossRef]
  • [4] Hossain F, Miah A, Morshed A, Rabby II, Hu E. Investigation of laminar forced convection heat transfer of nanofluids through flat plate solar collector. J Therm Eng 2021;7:2041–2053. [CrossRef]
  • [5] Khalifa AE. Flux enhanced water gap membrane distillation process-circulation of gap water. Sep Purif Technol 2020;231:115938. [CrossRef]
  • [6] Elhenawy Y, Bassyouni M, Fouad K, Sandid AM, Abu-Zeid MAER, Majozi T. Experimental and numerical simulation of solar membrane distillation and humidification – dehumidification water desalination system. Renew Energy 2023;215:118915. [CrossRef]
  • [7] Panagopoulos A. Beneficiation of saline effluents from seawater desalination plants: Fostering the zero liquid discharge (ZLD) approach - A techno-economic evaluation. J Environ Chem Eng 2021;9:105338. [CrossRef]
  • [8] Li J, Ren LF, Shao J, Tu Y, Ma Z, Lin Y, et al. Fabrication of triple layer composite membrane and its application in membrane distillation (MD): Effect of hydrophobic-hydrophilic membrane structure on MD performance. Sep Purif Technol 2020;234:116087. [CrossRef]
  • [9] Phattaranawik J, Jiraratananon R, Fane AG. Heat transport and membrane distillation coefficients in direct contact membrane distillation. J Memb Sci 2003;212:177–193. [CrossRef]
  • [10] Kebria MRS, Rahimpour A. Membrane distillation: basics, advances, and applications. In: Abdelrasoul A, ed. Advances in Membrane Technologies. IntechOpen; 2020.
  • [11] Xiong Z, Lai Q, Lu J, Qu F, Yu H, Chen X, et al. Silanization enabled superhydrophobic PTFE membrane with antiwetting and antifouling properties for robust membrane distillation. J Memb Sci 2023;674:121546. [CrossRef]
  • [12] Teoh MM, Chung TS. Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes. Sep Purif Technol 2009;66:229–236. [CrossRef]
  • [13] Wang P, Chung TS. Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. J Memb Sci 2015;474:39–56. [CrossRef]
  • [14] Chen Y, Lu KJ, Liang CZ, Chung TS. Mechanically strong Janus tri-bore hollow fiber membranes with asymmetric pores for anti-wetting and anti-fouling membrane distillation. Chem Eng J 2022;429:132455. [CrossRef]
  • [15] Peng N, Widjojo N, Sukitpaneenit P, Teoh MM, Lipscomb GG, Chung TS, et al. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog Polym Sci 2012;37:1401–1424. [CrossRef]
  • [16] Camacho LM, Dumée L, Zhang J, Li J, Duke M. Advances in membrane distillation for water desalination and purification applications. Water 2013;5:94–196. [CrossRef]
  • [17] Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review. Desalination 2012;287:2–18. [CrossRef]
  • [18] Khayet M. Membranes and theoretical modeling of membrane distillation: A review. Adv Colloid Interface Sci 2011;164:56–88. [CrossRef]
  • [19] Behnam P, Faegh M, Fakhari I, Ahmadi P, Faegh E, Rosen MA. Thermoeconomic analysis and multi-objective optimization of a novel trigeneration system consisting of kalina and humidification-dehumidification desalination cycles. J Therm Eng 2022;8:52–66. [CrossRef]
  • [20] Ullah R, Khraisheh M, Esteves RJ, McLeskey JT, AlGhouti M, Gad-el-Hak M, et al. Energy efficiency of direct contact membrane distillation. Desalination 2018;433:56–67. [CrossRef]
  • [21] Kasaeian A, Babaei S, Jahanpanah M, Sarrafha H, Alsagri AS, Ghaffarian S, et al. Solar humidification-dehumidification desalination systems: A critical review. Energy Convers Manag 2019;201:112129. [CrossRef]
  • [22] Eddine BT, Salah MM. Solid waste as renewable source of energy: Current and future possibility in Algeria. Waste Manag Valorization Altern Technol 2017;3:115–141. [CrossRef]
  • [23] Shim WG, He K, Gray S, Moon IS. Solar energy assisted direct contact membrane distillation (DCMD) process for seawater desalination. Sep Purif Technol 2015;143:94–104. [CrossRef]
  • [24] Ma Q, Xu Z, Wang R. Distributed solar desalination by membrane distillation: Current status and future perspectives. Water Res 2021;198:117154. [CrossRef]
  • [25] Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. Desalination by a “compact SMADES” autonomous solarpowered membrane distillation unit. Desalination 2007;217:29–37. [CrossRef]
  • [26] Fath HES, Elsherbiny SM, Hassan AA, Rommel M, Wieghaus M, Koschikowski J, et al. PV and thermally driven small-scale, stand-alone solar desalination systems with very low maintenance needs. Desalination 2008;225:58–69. [CrossRef]
  • [27] Banat F, Jwaied N, Rommel M, Koschikowski J, Wieghaus M. Performance evaluation of the “large SMADES” autonomous desalination solar-driven membrane distillation plant in Aqaba, Jordan. Desalination 2007;217:17–28. [CrossRef]
  • [28] Raluy RG, Schwantes R, Subiela VJ, Peñate B, Melián G, Betancort JR. Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination 2012;290:1–13. [CrossRef]
  • [29] Selimli S, Recebli Z, Ulker S. Solar vacuum tube integrated seawater distillation – An experimental study. Facta Univ Ser Mech Eng 2016;14:113–20. [CrossRef]
  • [30] Guillén-Burrieza E, Zaragoza G, Miralles-Cuevas S, Blanco J. Experimental evaluation of two pilot-scale membrane distillation modules used for solar desalination. J Memb Sci 2012;409–410:264–275. [CrossRef]
  • [31] Schwantes R, Cipollina A, Gross F, Koschikowski J, Pfeifle D, Rolletschek M, et al. Membrane distillation: Solar and waste heat driven demonstration plants for desalination. Desalination 2013;323:93–106. [CrossRef]
  • [32] Dong G, Kim JF, Hoon J, Drioli E, Moo Y. Open-source predictive simulators for scale-up of direct contact membrane distillation modules for seawater desalination. Desalination 2017;402:72–87. [CrossRef]
  • [33] Levenspiel O. Comparison of the tanks-in-series and the dispersion models for non-ideal flow of fluid. Chem Eng Sci 1962;17:576–577. [CrossRef]
  • [34] Yang Q, Lin Q, Sammarchi S, Li J, Li S, Wang D. Water vapor effects on CO2 separation of amine-containing facilitated transport membranes (AFTMs) module: Mathematical modeling using tanks-in-series approach. Greenh Gases Sci Technol 2021;11:52–68. [CrossRef]
  • [35] Coker DT, Freeman BD, Fleming GK. Modeling multicomponent gas separation using hollow-fiber membrane contactors. AIChE J 1998;44:1289–302. [CrossRef]
  • [36] Alipour N, Jafari B, Hosseinzadeh K. Optimization of wavy trapezoidal porous cavity containing mixture hybrid nanofluid (water/ethylene glycol Go–Al2O3) by response surface method. Sci Rep 2023;13:1635. [CrossRef]
  • [37] Remlaoui A, Nehari D, Laissaoui M, Marni A. Performance evaluation of a solar thermal and photovoltaic hybrid system powering a direct contact membrane distillation: TRNSYS simulation. Desalin Water Treat 2020;194:37–51. [CrossRef]
  • [38] Marni Sandid A, Bassyouni M, Nehari D, Elhenawy Y. Experimental and simulation study of multichannel air gap membrane distillation process with two types of solar collectors. Energy Convers Manag 2021;243:114431. [CrossRef]
  • [39] Hogan PA, Sudjito, Fane AG, Morrison GL. Desalination by solar heated membrane distillation. Desalination 1991;81:81–90. [CrossRef]
  • [40] Duong HC, Xia L, Ma Z, Cooper P, Ela W, Nghiem LD. Assessing the performance of solar thermal driven membrane distillation for seawater desalination by computer simulation. J Memb Sci 2017;542:133–142. [CrossRef]
  • [41] Engel G, Chakkaravarthy AS, Schweiger G. Co-simulation between Trnsys and Simulink based on type155. In: Cerone A, Roveri M, eds. Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in Computer Science, vol 10729. Cham: Springer. pp. 315–329. [CrossRef]
  • [42] Deshmukh KB, Karmare SV. A review on convective heat augmentation techniques in solar thermal collector using nanofluid. J Therm Eng 2021;7:1257–1266. [CrossRef]
  • [43] Acevedo L, Uche J, Almo A Del, Círez F, Usón S, Martínez A, et al. Dynamic simulation of a trigeneration scheme for domestic purposes based on hybrid techniques. Energies 2016;9:1013. [CrossRef]
  • [44] Srimanickam B, Kumar S. Drying investigation of coriander seeds in a photovoltaic thermal collector with solar dryer. J Therm Eng 2023;9:659–668. [CrossRef]
  • [45] Newton BJ. Modeling of solar storage tanks [Master's Thesis]. University of Wisconsin-Madison; 1995.
  • [46] Klein SA. TRNSYS 17: A transient system simulation program. Sol Energy Lab Univ Wisconsin 2010;1:1–5.
  • [47] Hobbi A, Siddiqui K. Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS. Sol Energy 2009;83:700–714. [CrossRef]
  • [48] Lawson KW, Lloyd DR. Membrane distillation. J Memb Sci 1997;124:1–25. [CrossRef]
  • [49] Chen TC, Ho CD, Yeh HM. Theoretical modeling and experimental analysis of direct contact membrane distillation. J Memb Sci 2009;330:279–287. [CrossRef]
  • [50] Perry RH, Green DW. Mass transfer. In: Perry RH, Green DW, eds. Perry’s Chemical Engineers' Handbook. 7th ed. New York: Mcgraw-Hill Professional; 1997. pp. 5–59.
  • [51] Phattaranawik J, Jiraratananon R. Direct contact membrane distillation: Effect of mass transfer on heat transfer. Desalination 2001;188:137–143. [CrossRef]
  • [52] Bouguecha ST, Aly SE, Al-Beirutty MH, Hamdi MM, Boubakri A. Solar driven DCMD: Performance evaluation and thermal energy efficiency. Chem Eng Res Des 2015;100:331–340. [CrossRef]
  • [53] Asim M, Uday Kumar NT, Martin AR. Feasibility analysis of solar combi-system for simultaneous production of pure drinking water via membrane distillation and domestic hot water for single-family villa: Pilot plant setup in Dubai. Desalin Water Treat 2016;57:21674–21684. [CrossRef]
There are 53 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Articles
Authors

Mouad Bousmaha This is me 0000-0002-8285-7918

Ahmed Remlaoui This is me 0000-0001-6179-6493

Driss Nehari This is me 0000-0002-9371-1105

Publication Date January 31, 2025
Submission Date September 23, 2023
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Bousmaha, M., Remlaoui, A., & Nehari, D. (2025). Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module. Journal of Thermal Engineering, 11(1), 94-111. https://doi.org/10.14744/thermal.0000906
AMA Bousmaha M, Remlaoui A, Nehari D. Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module. Journal of Thermal Engineering. January 2025;11(1):94-111. doi:10.14744/thermal.0000906
Chicago Bousmaha, Mouad, Ahmed Remlaoui, and Driss Nehari. “Modeling and Co-Simulation of an Integrated Solar Heating System and Direct Contact Membrane Distillation Module”. Journal of Thermal Engineering 11, no. 1 (January 2025): 94-111. https://doi.org/10.14744/thermal.0000906.
EndNote Bousmaha M, Remlaoui A, Nehari D (January 1, 2025) Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module. Journal of Thermal Engineering 11 1 94–111.
IEEE M. Bousmaha, A. Remlaoui, and D. Nehari, “Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module”, Journal of Thermal Engineering, vol. 11, no. 1, pp. 94–111, 2025, doi: 10.14744/thermal.0000906.
ISNAD Bousmaha, Mouad et al. “Modeling and Co-Simulation of an Integrated Solar Heating System and Direct Contact Membrane Distillation Module”. Journal of Thermal Engineering 11/1 (January 2025), 94-111. https://doi.org/10.14744/thermal.0000906.
JAMA Bousmaha M, Remlaoui A, Nehari D. Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module. Journal of Thermal Engineering. 2025;11:94–111.
MLA Bousmaha, Mouad et al. “Modeling and Co-Simulation of an Integrated Solar Heating System and Direct Contact Membrane Distillation Module”. Journal of Thermal Engineering, vol. 11, no. 1, 2025, pp. 94-111, doi:10.14744/thermal.0000906.
Vancouver Bousmaha M, Remlaoui A, Nehari D. Modeling and co-simulation of an integrated solar heating system and direct contact membrane distillation module. Journal of Thermal Engineering. 2025;11(1):94-111.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering