Research Article
BibTex RIS Cite

Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity

Year 2025, Volume: 11 Issue: 1, 159 - 169, 31.01.2025

Abstract

Hyperthermia therapy is one of the new technologies emerging from nanotechnology. This study examines the relationship between bio-nanofluid thermal conductivity and hematocrit differences. In the treatment of cancer, researchers have used several types of nanoparticles. The bio-nanofluid used in this study was created by adding two types of nanoparticles (Fe3O4 and Au) to blood for the first time. Based on the results, thermal conductivity was found to be significantly affected by the shape of nanoparticles, and the proposed thermal conductivity models agreed with the literature. According to the nanomaterial and the age and gender of the participants, as well as the nanoparticles’ shape, analysis of the study results is presented. For each group of men, women, and children, the effective thermal conductivity values of Plasma-Au nanoparticles and plasma-Fe3O4 nanoparticle fluids changed with the thickness of the interlayer. In comparison to iron nanoparticles (magnetite oxide Fe3O4), gold nanoparticles improved the thermal conductivity more. Nano-layer thickness increases with radius at the same time as thermal conductivity increases. A bio-nanofluid composed of plasma, nano-Fe3O4, or nano-Au was calculated by Yang’s model. In addition, the thermal conductivity of nano-biofluid, consisting of plasma nano-Fe3O4, nano-Au, and red blood cells, was calculated using the Maxwell model. As a result of varying hematocrit values, nano-biofluids improve at a different rate of thermal conductivity. Depending on the gender and age of the patient, the rate of improvement varies. Au nanoparticles (5 nm) increased the bio-nanofluid thermal conductivity for children by 0.623% and 0.306% more than that for men and women, respectively, at nano-layer thickness (t=1 nm). Using Fe3O4 NPs of 25 nm diameter, the children thermal conductivity of nano-biofluid increased by 0.58% and 0.268% higher than men and women, respectively, at nano-layer thickness (t= 5 nm).

References

  • [1] Hossain N, Mobarak MH, Mimona MA, Islam MA, Hossain A, Zohur FT, Chowdhury MA. Advances and significances of nanoparticles in semiconductor applications–A review. Results Eng 2023;101347. [CrossRef]
  • [2] Marta H, Rizki DI, Mardawati E, Djali M, Mohammad M, Cahyana Y. Starch nanoparticles: Preparation, properties and applications. Polym 2023;15:1167. [CrossRef]
  • [3] Peivandi S, Dehghanzadeh H, Baghizadeh A. Biosynthesis of gold nanoparticles using sansevieria plant extract and its biomedical application. Inorg Nano-Metal Chem 2023;53:482–489. [CrossRef]
  • [4] Habib NA, Ali AJ, Chaichan MT, Kareem M. Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system. Therm Sci Eng Prog 2021;23:100877. [CrossRef]
  • [5] Ali AH, Ibrahim SI, Jawad QA, Jawad RS, Chaichan MT. Effect of nanomaterial addition on the thermophysical properties of Iraqi paraffin wax. Case Stud Therm Eng 2019;15:100537. [CrossRef]
  • [6] Al-Shargabi M, Davoodi S, Wood DA, Al-Musai A, Rukavishnikov VS, Minaev KM. Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review. J Mol Liq 2022;352:118725. [CrossRef]
  • [7] Patel J, Soni A, Barai DP, Bhanvase BA. A minireview on nanofluids for automotive applications: Current status and future perspectives. Appl Therm Eng 2023;219:119428. [CrossRef]
  • [8] Dhahad HA, Ali SA, Chaichan MT. Combustion analysis and performance characteristics of compression ignition engines with diesel fuel supplemented with nano-TiO2 and nano-Al2O3. Case Stud Therm Eng 2020;20:100651. [CrossRef]
  • [9] Dubey V, Sharma AK. A short review on hybrid nanofluids in machining processes. Adv Mater Process Technol 2023;9:138–151. [CrossRef]
  • [10] Souza RR, Gonçalves IM, Rodrigues RO, Minas G, Miranda JM, Moreira AL, Lima R, Coutinho G, Pereira JE, Moita AS. Recent advances on the thermal properties and applications of nanofluids: From nanomedicine to renewable energies. Appl Therm Eng 2022;201:117725. [CrossRef]
  • [11] Wang X, Wen Q, Yang J, Shittu S, Wang X, Zhao X, Wang Z. Heat transfer and flow characteristic of a flat confined loop thermosyphon with ternary hybrid nanofluids for electronic devices cooling. Appl Therm Eng 2023;221:119758. [CrossRef]
  • [12] Tugolukov E, Ali AJ. Review enhancement of thermal conductivity and heat transfer using carbon nanotube for nanofluids and ionanofluids. J Therm Eng 2021;7:66–90. [CrossRef]
  • [13] Ravichandran S, Bansal V, Kim KK. Applications of nanoparticles in cancer detection. In: Karthik L, Kirthi AV, Ranjan S, Srinivasan VM, eds. Biological Synthesis of Nanoparticles and Their Applications. CRC Press; 2020.
  • [14] Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. Hyperthermia using nanoparticles–promises and pitfalls. Int J Hyperthermia 2016;32:76–88. [CrossRef]
  • [15] Saleh H, Alali E, Ebaid A. Medical applications for the flow of carbon-nanotubes suspended nanofluids in the presence of convective condition using Laplace transform. J Assoc Arab Univ Basic Appl Sci 2017;24:206–212. [CrossRef]
  • [16] Ali AJ, Tugolukov EN. An experimental study on the influence of functionalized carbon nanotubes CNT Taunt series on the thermal conductivity enhancement. In: IOP Conf Ser Mater Sci Eng 2019;693:012001. [CrossRef]
  • [17] Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys 2009;106:014304. [CrossRef]
  • [18] Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 2010;21:797–802. [CrossRef]
  • [19] Hosseinzadeh S, Hosseinzadeh K, Hasibi A, Ganji DD. Hydrothermal analysis on non-Newtonian nanofluid flow of blood through porous vessels. Proc Inst Mech Eng E J Process Mech Eng 2022;236:1604–1615. [CrossRef]
  • [20] Faghiri S, Akbari S, Shafii MB, Hosseinzadeh K. Hydrothermal analysis of non-Newtonian fluid flow (blood) through the circular tube under prescribed non-uniform wall heat flux. Theor Appl Mech Lett 2022;12:100360. [CrossRef]
  • [21] Gulzar MM, Aslam A, Waqas M, Javed MA, Hosseinzadeh K. A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification. Appl Nanosci 2020;10:4513–4518. [CrossRef]
  • [22] Zangooee MR, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of Ag and CuO hybrid NPs suspended in mixture of water 20%+ EG 80% between two concentric cylinders. Case Stud Therm Eng 2023;50:103398. [CrossRef]
  • [23] Hosseinzadeh K, Mardani MR, Paikar M, Hasibi A, Tavangar T, Nimafar M, Ganji DD, Shafii MB. Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results Eng 2023;17:100838. [CrossRef]
  • [24] Fallah Najafabadi M, Talebi Rostami H, Hosseinzadeh K, Ganji DD. Hydrothermal study of nanofluid flow in channel by RBF method with exponential boundary conditions. Proc Inst Mech Eng E J Process Mech Eng 2023;237:2268–2277. [CrossRef]
  • [25] Najafabadi MF, Talebi Rostami H, Hosseinzadeh K, Ganji DD. Investigation of nanofluid flow in a vertical channel considering polynomial boundary conditions by Akbari-Ganji's method. Theor Appl Mech Lett 2022;12:100356. [CrossRef]
  • [26] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424. [CrossRef]
  • [27] Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Beroukhim R. The somatic genomic landscape of glioblastoma. Cell 2013;155:462–477. [CrossRef]
  • [28] Huang SH. Oral cancer: Current role of radiotherapy and chemotherapy. Med Oral Patol Oral Cir Bucal 2013;18:e233. [CrossRef]
  • [29] Morrison J, Haldar K, Kehoe S, Lawrie TA. Chemotherapy versus surgery for initial treatment in advanced ovarian epithelial cancer. Cochrane Database Syst Rev 2012;8:CD005343. [CrossRef]
  • [30] Hedayatnasab Z, Abnisa F, Daud WMAW. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 2017;123:174–196. [CrossRef]
  • [31] Verma J, Lal S, Van Noorden CJF. Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma. Int J Nanomed 2014;9:2863–2877. [CrossRef]
  • [32] Singh MS, Torti SV. Carbon nanotubes in hyperthermia therapy. Adv Drug Deliv Rev 2013;65:2045–2060. [CrossRef]
  • [33] Sailor MJ, Park JH. Hybrid nanoparticles for detection and treatment of cancer. Adv Mater 2012;24:3779–3802. [CrossRef]
  • [34] Gas P. Essential facts on the history of hyperthermia and their connections with electromedicine. Przeglad Elektrotechniczny 2011;87:37–40.
  • [35] Ali AJ, Eddin BE, Chaichan MT. An investigation of effect of hematocrit on thermal conductivity of a bio-nanofluid (MWCNT or SWCNT with blood). Therm Sci Eng Prog 2021;27:100985. [CrossRef]
  • [36] Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984;10:787–800. [CrossRef]
  • [37] Terry MB, Delgado-Cruzata L, Vin-Raviv N, Wu HC, Santella RM. DNA methylation in white blood cells: association with risk factors in epidemiologic studies. Epigenetics 2011;6:828–837. [CrossRef]
  • [38] Huh AJ, Kwon YJ. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 2011;156:128–145. [CrossRef]
  • [39] Liu W, Li H. COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. Available at: https://chemrxiv.org/engage/chemrxiv/article-details/60c74fa50f50db305139743d. Accessed Jan 17, 2025.
  • [40] Chiriac H, Petreus T, Carasevici E, Labusca L, Herea DD, Danceanu C, Lupu N. In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field. J Magn Magn Mater 2015;380:13–19. [CrossRef]
  • [41] Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale 2014;6:11553–11573. [CrossRef]
  • [42] Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M. Targeting carbon nanotubes against cancer. Chem Commun 2012;48:3911–3926. [CrossRef]
  • [43] Mandelis A, Hess P, eds. Life and Earth Sciences. Vol. 3. SPIE Press; 1997.
  • [44] Estridge BH, Reynolds AP, Walters NJ. Basic Medical Laboratory Techniques. Cengage Learning; 2000.
  • [45] Mondal H, Budh DP. Hematocrit (HCT). In: StatPearls [Internet]. StatPearls Publishing; 2019.
  • [46] Murphy WG. The sex difference in haemoglobin levels in adults—mechanisms, causes, and consequences. Blood Rev 2014;28:41–47. [CrossRef]
  • [47] Long M, ed. World Congress on Medical Physics and Biomedical Engineering, Beijing, China. Vol. 39. Springer Science & Business Media; 2013. [CrossRef]
  • [48] Sukarno DH, Tandian N, Suwono A, Umar E. A new theoretical model for predicting the thermal conductivity of nanofluids. Contemp Eng Sci 2015;8:1583–1592. [CrossRef]
  • [49] Alkasasbeh HT, Swalmeh MZ, Hussanan A, Mamat M. Effects of mixed convection on methanol and kerosene oil based micropolar nanofluid containing oxide nanoparticles. CFD Lett 2019;11:55–68.
There are 49 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Articles
Authors

Ali J. Ali This is me 0000-0003-0047-8605

Bahaa E. Eddin This is me 0000-0003-0652-8853

Sanaa T. Mousa Al-musawi This is me 0000-0001-8836-3356

Hasan Shakir Majdi This is me 0000-0001-6752-4835

Miqdam T. Chaichan This is me 0000-0002-8362-9132

Publication Date January 31, 2025
Submission Date October 22, 2023
Acceptance Date February 10, 2024
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Ali, A. J., Eddin, B. E., Al-musawi, S. T. M., Majdi, H. S., et al. (2025). Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity. Journal of Thermal Engineering, 11(1), 159-169. https://doi.org/10.14744/thermal.0000910
AMA Ali AJ, Eddin BE, Al-musawi STM, Majdi HS, Chaichan MT. Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity. Journal of Thermal Engineering. January 2025;11(1):159-169. doi:10.14744/thermal.0000910
Chicago Ali, Ali J., Bahaa E. Eddin, Sanaa T. Mousa Al-musawi, Hasan Shakir Majdi, and Miqdam T. Chaichan. “Fe3O4, Au Nanoparticles Influence on Bio-Nanofluid Thermal Conductivity”. Journal of Thermal Engineering 11, no. 1 (January 2025): 159-69. https://doi.org/10.14744/thermal.0000910.
EndNote Ali AJ, Eddin BE, Al-musawi STM, Majdi HS, Chaichan MT (January 1, 2025) Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity. Journal of Thermal Engineering 11 1 159–169.
IEEE A. J. Ali, B. E. Eddin, S. T. M. Al-musawi, H. S. Majdi, and M. T. Chaichan, “Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity”, Journal of Thermal Engineering, vol. 11, no. 1, pp. 159–169, 2025, doi: 10.14744/thermal.0000910.
ISNAD Ali, Ali J. et al. “Fe3O4, Au Nanoparticles Influence on Bio-Nanofluid Thermal Conductivity”. Journal of Thermal Engineering 11/1 (January 2025), 159-169. https://doi.org/10.14744/thermal.0000910.
JAMA Ali AJ, Eddin BE, Al-musawi STM, Majdi HS, Chaichan MT. Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity. Journal of Thermal Engineering. 2025;11:159–169.
MLA Ali, Ali J. et al. “Fe3O4, Au Nanoparticles Influence on Bio-Nanofluid Thermal Conductivity”. Journal of Thermal Engineering, vol. 11, no. 1, 2025, pp. 159-6, doi:10.14744/thermal.0000910.
Vancouver Ali AJ, Eddin BE, Al-musawi STM, Majdi HS, Chaichan MT. Fe3O4, Au nanoparticles influence on bio-nanofluid thermal conductivity. Journal of Thermal Engineering. 2025;11(1):159-6.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering