Research Article
BibTex RIS Cite

Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects

Year 2025, Volume: 11 Issue: 1, 226 - 239, 31.01.2025

Abstract

This study examines factors associated with the cavities formed in 3D-printed porous thermoplastics, and establishes their relationship with the thermal conductivity of bulk material. The research has examined two porous thermoplastics, specifically poly-lactic acid (PLA) and acrylonitrile butadiene styrene (ABS). Certain categories have been used for the cavities based on their shapes (sphere, cube and diamond), sizes (0.5 to 1.9 mm), numbers (200 to 500), and distributions (in-line or staggered). Specific findings indicate that the optimal thermal conductivity value can be achieved by utilizing samples with 500 pores of 1.5 mm pore diameter. It is shown, the pores could be in the shape of diamonds and distributed in a staggered manner in order to have minimum thermal conductivity. The thermal conductivity values for the most favorable specimens were determined to be 0.13 W/m·K for PLA and 0.12 W/m·K for ABS. The observed values demonstrate a decrease of 40-45% in comparison to the non-porous samples of the same materials.

References

  • [1] Ebewele O. Polymer Science and Technology. 1st ed. Boca Raton: CRC Press; 2000. [CrossRef]
  • [2] Braun D, Cherdron H, Rehahn M, Ritter H, Voit B. Polymer Synthesis: Theory and Practice. 5th ed. New York: Springer; 2013. [CrossRef]
  • [3] Krevelen D, Nijenhuis K. Properties of Polymers. 4th ed. Amsterdam: Elsevier; 2009.
  • [4] Ehrenstein G. Polymeric Materials: Structure, Properties, Applications. 1st ed. Berlin: Hanser Verlag; 2001.
  • [5] Tawfeeq M. Insulation Materials: Principles and Applications. 1st ed. Baghdad: Mustansiriyah University; 2021.
  • [6] Anh L, Pásztory Z. An overview of factors influencing thermal conductivity of building insulation materials. J Build Eng 2021;44:102604. [CrossRef]
  • [7] Li H, Zeng Q, Xu S. Effect of pore shape on the thermal conductivity of partially saturated cement-based porous composites. Cem Concr Compos 2017;81:87–96. [CrossRef]
  • [8] Shalwan A, Alajmi A, Yousif B. Theoretical study of the effect of fibre porosity on the heat conductivity of reinforced gypsum composite material. Polymers 2022;14:3973. [CrossRef]
  • [9] Liu H, Zhao X. Thermal conductivity analysis of high porosity structures with open and closed pores. Int J Heat Mass Transf 2022;183:122089. [CrossRef]
  • [10] Kosny J, Yarbrough D. Thermal Insulation and Radiation Control Technologies for Buildings. New York: Springer; 2022. [CrossRef]
  • [11] Hong S, Yu C, Hwang U, Kim C, Ri B. Effect of porosity and temperature on thermal conductivity of jennite: A molecular dynamics study. Mater Chem Phys 2020;250:123146. [CrossRef]
  • [12] Smith D, Alzina A, Bourret J, Nait-Ali B, Pennec F, Tessier-Doyen N, et al. Thermal conductivity of porous materials. J Mater Res 2013;28:2260–2272. [CrossRef]
  • [13] Sundarram S, Li W. On thermal conductivity of micro- and nanocellular polymer foams. Polym Eng Sci 2013;53:1901–1909. [CrossRef]
  • [14] Zhang H, Fang W, Li Z, Tao W. The influence of gaseous heat conduction to the effective thermal conductivity of nano-porous materials. Int Commun Heat Mass Transf 2015;68:158–161. [CrossRef]
  • [15] Yu H, Zhang H, Zhao J, Liu J, Xia X, Wu X. The thermal conductivity of micro/nano-porous polymers: Prediction models and applications. Front Phys 2022;17:23202. [CrossRef]
  • [16] Baetens R. High performance thermal insulation materials for buildings. In: Pacheco-Torgal F, Diamanti MV, Nazari A, Granqvist CG, Pruna A, Amirkhanian S. Nanotechnology in Eco-Efficient Construction. New Delhi: Woodhead Publishing; 2013. pp. 188–206. [CrossRef]
  • [17] Wang X, Niu X, Wang X, Qiu X, Istikomah N, Wang L. Thermal conductivity of porous polymer materials considering pore special-shape and anisotropy. eXPRESS Polym Lett 2021;15:319–328. [CrossRef
  • [18] Presley M, Christensen F. Thermal conductivity measurements of particulate materials: 4. Effect of bulk density for granular particles. J Geophys Res 2010;115:E07003. [CrossRef]
  • [19] Østergaard M, Petersen R, König J, Bockowski M, Yue Y. Impact of gas composition on thermal conductivity of glass foams prepared via high-pressure sintering. J Non-Cryst Solids X 2019;1:100014. [CrossRef]
  • [20] Merillas B, Vareda J, León J, Rodríguez-Pérez M, Durães L. Thermal conductivity of nanoporous materials: where is the limit? Polymers 2022;14:2556. [CrossRef]
  • [21] Jasper L. Reconstructionism: IP and 3D Printing, SSRN, 2017. Available at: http://dx.doi.org/10.2139/ssrn.2842345. Accessed Jan 21, 2025. [CrossRef]
  • [22] Mirón V, Ferrándiz S, Juárez D, Mengual A. Manufacturing and characterization of 3D printer filament using tailoring materials. Procedia Manuf 2017;13:888–894. [CrossRef]
  • [23] MakerBot. 2020 Guide to 3D Printing Materials, 2020. Available at: https://cdn.cnetcontent.com/syndication/mediaserverredirect/e6b5204e10f48834b7bc52e4ebb89b69/original.pdf. Accessed Jan 21, 2025.
  • [24] 3D Learning Hub. Best Heat Resistant 3D Printing Materials, 2020. Available at: 25 May 2023. Available on: https://www.sculpteo.com/en/3d-learning-hub/3d-printing-materials-guide/heat-resistant-3d-printing/#:~:text=3D%20Printing%20material.-,Ultrasint%C2%AE%20PA6%20MF,and%20enhanced%20thermal%20distortion%20performance. Accessed Jan 21, 2025.
  • [25] He H, Zhan Z, Zhu Z, Xue B, Li J, Chen M, et al. Microscopic morphology, rheological behavior, and mechanical properties of polymers: Recycled acrylonitrile-butadienestyrene/polybutylene terephthalate blends. J Appl Polym Sci 2019;48310. [CrossRef]
  • [26] Jimenez-Perez J, Pincel P, Cruz-Orea A, Correa-Pacheco Z. Thermal characterization of a liquid resin for 3D printing using photothermal techniques. Appl Phys A 2016;122:556. [CrossRef]
  • [27] Billah K, Lorenzana F, Martinez N, Chacon S, Wicker R, Espalin D. Thermal analysis of thermoplastic materials filled with chopped fiber for large area 3D printing. Proceedings of the 30th Annual International Solid Freeform Fabrication Symposium–An Additive Manufacturing Conference, USA, August 12-14, 2019. [CrossRef]
  • [28] Halim N, Mogan J, Sandanamsamy L, Harun W, Kadirgama K, Ramasamy D, et al. A review on 3D printed polymer-based composite for thermal applications. IOP Conf Ser Mater Sci Eng 2021;1078:012029. [CrossRef]
  • [29] Smith M, Kim S, Lambert A, Walde M, Lindahl J, Mungale K, et al. Maximizing the performance of a 3D printed heat sink by accounting for anisotropic thermal conductivity during filament deposition. 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, USA, 2019. [CrossRef]
  • [30] formlabs. Guide to 3D Printing Materials: Types, Applications, and Properties, 2023. Available at: https://formlabs.com/asia/blog/3d-printing-materials/. Accessed May 22, 2023.
  • [31] Weiss K-P, Bagrets N, Lange C, Goldacker W, Wohlgemuth J. Thermal and mechanical properties of selected 3D printed thermoplastics in the cryogenic temperature regime. IOP Conf Ser Mater Sci Eng 2015;102:012022. [CrossRef]
  • [32] Wang B, Arias K, Zhang Z, Liu Y, Jiang Z, Sue H, et al. 3D printing of in-situ curing thermally insulated thermosets. Manuf Lett 2019;21:1–6. [CrossRef]
  • [33] Hu G, Cao Z, Hopkins M, Lyons J, Brennan-Fournet M, Devine D. Nanofillers can be used to enhance the thermal conductivity of commercially available SLA resins. Proc Manuf 2019;38:1236–1243. [CrossRef]
  • [34] Harris M. 3D Printing Materials for Large-Scale Insulation and Support Matrices [Doctoral dissertation]. Massey University; 2019.
  • [35] Grabowska B, Kasperski J. The thermal conductivity of 3D printed plastic insulation materials – The effect of optimizing the regular structure of closures. Materials 2020;13:4400. [CrossRef]
  • [36] Ibrahim Y, Elkholy A, Schofield J, Melenka G, Kempers R. Effective thermal conductivity of 3D-printed continuous fiber polymer composites. Adv Manuf Polym Compos Sci 2020;6:17–28. [CrossRef]
  • [37] Wang L, Feng J, Luo Y, Zhou Z, Jiang Y, Luo X, et al. Three-dimensional-printed silica aerogels for thermal insulation by directly writing temperature-induced solidifiable inks. ACS Appl Mater Interfaces. 2021;13(34):40964–40975. [CrossRef]
  • [38] Mihalache A, Hriţuc A, Boca M, Oroian B, Condrea I, Botezatu C, et al. Thermal insulation capacity of a 3D printed material. Macromol Symp 2021;396:2000286. [CrossRef]
  • [39] Zohdi N, Yang R. Material anisotropy in additively manufactured polymers and polymer composites: A review. Polymers 2021;13:3368. [CrossRef]
  • [40] Tirado-Garcia I, Garcia-Gonzalez D, Garzon-Hernandez S, Rusinek A, Robles G, Martinez-Tarifa J, et al. Conductive 3D printed PLA composites: On the interplay of mechanical, electrical and thermal behaviours. Compos Struct 2021;265:113744. [CrossRef]
  • [41] Ibrahim Y, Kempers R. Effective thermal conductivity of 3D-printed continuous wire polymer composites. Prog Addit Manuf 2022;7:699–712. [CrossRef]
  • [42] Panaite CE, Mihalache AM, Slătineanu L, Popescu A, Nagîț G, Hrițuc A, et al. Numerical and experimental investigations of thermal conductivity of 3D printed polylactic acid. Macromol Symp 2022;404. [CrossRef]
  • [43] Bahar A, Belhabib S, Guessasma S, Benmahiddine F, Hamami A, Belarbi R. Mechanical and thermal properties of 3D printed polycarbonate. Energies 2022;15:3686. [CrossRef]
  • [44] Nemova D, Kotov E, Andreeva D, Khorobrov S, Olshevskiy V, Vasileva I, et al. Experimental study on the thermal performance of 3D-printed enclosing structures. Energies 2022;15:4230. [CrossRef]
  • [45] Cai Z, Thirunavukkarasu N, Diao X, Wang H, Wu L, Zhang C, et al. Progress of polymer-based thermally conductive materials by fused filament fabrication: A comprehensive review. Polymers 2022;14:4297. [CrossRef]
  • [46] An L, Guo Z, Li Z, Fu Y, Hu Y, Huang Y, et al. Tailoring thermal insulation architectures from additive manufacturing. Nat Commun 2022;13:4309. [CrossRef]
  • [47] Olcun S, Ibrahim Y, Isaacs C, Karam M, Elkholy A, Kempers R. Thermal conductivity of 3D-printed continuous pitch carbon fiber composites. Addit Manuf Lett 2023;4:100106. [CrossRef]
  • [48] Lee M, Sarkar A, Guo Z, Zhou C, Armstrong J, Ren S. Additive manufacturing of eco-friendly building insulation materials by recycling pulp and paper. Nanoscale Adv 2023;5:2547–2552. [CrossRef]
  • [49] Vahabi H, Laoutid F, Mehrpouya M, Saeb M, Dubois F. Flame retardant polymer materials: An update and the future for 3D printing developments. Mater Sci Eng R Rep 2023;144:100604. [CrossRef]
  • [50] Islam S, Bhat G, Sikdar P. Thermal and acoustic performance evaluation of 3D-printable PLA materials. J Build Eng 2023;67:105979. [CrossRef]
  • [51] Hosseinzadeh K, Mardani M, Paikar M, Hasibi A, Tavangar T, Nimafar M, et al. Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results Eng 2023;17:100838. [CrossRef]
  • [52] Rostami H, Najafabadi M, Hosseinzadeh K, Ganji D. Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field using RBF method. Int J Ambient Energy 2022;43:6425–6435. [CrossRef]
  • [53] Mishra M, Panda J, Kumar D, Sahoo S. Thermal radiation and Soret effects on boundary layer flow past a vertical surface embedded in porous medium with induced magnetic field with reference to aluminum industry. J Therm Anal Calorim 2022;147:13829–13845. [CrossRef]
  • [54] Mavromatidis L, Bykalyuk A, El Mankibi M, Michel P, Santamouris M. Numerical estimation of air gaps’ influence on the insulating performance of multilayer thermal insulation. Build Environ 2012;49:227–237. [CrossRef]
  • [55] Schlanbusch R. A New Nano Insulation Material for Applications in Zero Emission Buildings [Master’s thesis]. Norwegian University of Science and Technology; 2013.
  • [56] Braginsky L, Shklover V, Hofmann H, Bowen P. High-temperature thermal conductivity of porous Al2O3 nanostructures. Phys Rev B 2004;70:134201. [CrossRef]
  • [57] Fang T, Lee Z, Chang W, Huang C. Determining porosity effect on the thermal conductivity of single-layer graphene using a molecular dynamics simulation. Phys E Low Dimens Syst Nanostruct 2019;106:90–94. [CrossRef]
  • [58] Sumirat M, Yamamoto N, Shimamura S. Optimization of thermal and mechanical properties in nanoporous material. Transact Mater Res Soc Jpn 2011;36:281–284. [CrossRef]
  • [59] Ordonez-Miranda J, Alvarado-Gil J. Effect of the pore shape on the thermal conductivity of porous media. J Mater Sci 2012;47:6733–6740. [CrossRef]
  • [60] Babaei H, McGaughey A, Wilmer C. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks. Chem Sci 2017;8:583–589. [CrossRef]
  • [61] Hu X, Gundlach B, Borstel I, Blum J, Shi X. Effect of radiative heat transfer in porous comet nuclei: case study of 67P/Churyumov-Gerasimenko. Astron Astrophys 2019;630:A5. [CrossRef]
  • [62] Kang S, Choi J, Choi S. Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers 2019;11:221. [CrossRef]
  • [63] Luo M, Wang C, Zhao J, Liu L. Characteristics of effective thermal conductivity of porous materials considering thermal radiation: A pore-level analysis. Int J Heat Mass Transf 2022;188:122597. [CrossRef]
  • [64] Yu H, Zhang H, Zhao J, Liu J, Xia X, Wu X. The thermal conductivity of micro/nano-porous polymers: Prediction models and applications. Front Phys 2022;17:23202. [CrossRef]
  • [65] Abuserwal A, Luna E, Goodall R, Woolley R. The effective thermal conductivity of open cell replicated aluminium metal sponges. Int J Heat Mass Transf 2017;108:1439–1448. [CrossRef]
  • [66] Zulkarnain M, Sharudin R, Ohshima M. Towards understanding of pore properties of polystyrene-b-polybutadiene-b-polystyrene (SEBS) foam effect on thermal conductivity using numerical analysis. Int J Technol 2022;13:533–543. [CrossRef]
  • [67] Li H, Zeng Q, Xu S. Effect of pore shape on the thermal conductivity of partially saturated cement-based porous composites. Cem Concr Compos 2017;81:87–96. [CrossRef]
  • [68] Skibinski J, Cwieka K, Haj Ibrahim S, Wejrzanowski T. Influence of pore size variation on thermal conductivity of open-porous foams. Materials 2019;12:2017. [CrossRef]
  • [69] Gündüz G. Thermodynamic characterization of planar shapes and curves, and the query of temperature in black holes. J Appl Math Phys 2021;9:2004–2037. [CrossRef]
  • [70] Wang X, Niu X, Wang X, Qiu X, Istikomah N, Wang L. Thermal conductivity of porous polymer materials considering pore special-shape and anisotropy. eXPRESS Polym Lett 2021;15:319–328. [CrossRef]
  • [71] Akbari S, Faghiri S, Poureslami P, Hosseinzadeh K, Mohammad Shafii B. Analytical solution of non-Fourier heat conduction in a 3-D hollow sphere under time-space varying boundary conditions. Heliyon 2022;8:e12496. [CrossRef]
  • [72] Alipour N, Jafari B, Hosseinzadeh K. Optimization of wavy trapezoidal porous cavity containing mixture hybrid nanofluid (water/ethylene glycol Go–Al2O3) by response surface method. Sci Rep 2023;13:1635. [CrossRef]
  • [73] Geoffroy L, Samyn F, Jimenez M, Bourbigot S. Innovative 3D printed design to conceive highly fire-retardant multi-material. Polym Degrad Stab 2019;169:108992. [CrossRef]
  • [74] Abdulsada G, Salih T. Experimental and theoretical study for the performance of new local thermal insulation in Iraqi building. In: Sayigh A, ed. Renewable Energy in the Service of Mankind. Vol I. New York: Springer; 2015. [CrossRef]
  • [75] Ray S, Tripathy A, Sahoo S, Bindra H. Performance analysis of receiver of parabolic trough solar collector: Effect of selective coating, vacuum, and semitransparent glass cover. Int J Energy Res 2018;42(13):4235–4249. [CrossRef]
There are 75 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Articles
Authors

Ahmed K. Muhammad This is me 0000-0003-4460-5063

Tawfeeq W. Mohammed This is me 0000-0001-9316-2540

Kadhim K. Resan This is me 0000-0002-1764-617X

Publication Date January 31, 2025
Submission Date December 5, 2023
Acceptance Date February 26, 2024
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Muhammad, A. K., Mohammed, T. W., & Resan, K. K. (2025). Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects. Journal of Thermal Engineering, 11(1), 226-239. https://doi.org/10.14744/thermal.0000915
AMA Muhammad AK, Mohammed TW, Resan KK. Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects. Journal of Thermal Engineering. January 2025;11(1):226-239. doi:10.14744/thermal.0000915
Chicago Muhammad, Ahmed K., Tawfeeq W. Mohammed, and Kadhim K. Resan. “Thermal Conductivity of Porous Plastics Manufactured by 3D Printing: Controlling the Design of the Cavities and Corresponding Effects”. Journal of Thermal Engineering 11, no. 1 (January 2025): 226-39. https://doi.org/10.14744/thermal.0000915.
EndNote Muhammad AK, Mohammed TW, Resan KK (January 1, 2025) Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects. Journal of Thermal Engineering 11 1 226–239.
IEEE A. K. Muhammad, T. W. Mohammed, and K. K. Resan, “Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects”, Journal of Thermal Engineering, vol. 11, no. 1, pp. 226–239, 2025, doi: 10.14744/thermal.0000915.
ISNAD Muhammad, Ahmed K. et al. “Thermal Conductivity of Porous Plastics Manufactured by 3D Printing: Controlling the Design of the Cavities and Corresponding Effects”. Journal of Thermal Engineering 11/1 (January 2025), 226-239. https://doi.org/10.14744/thermal.0000915.
JAMA Muhammad AK, Mohammed TW, Resan KK. Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects. Journal of Thermal Engineering. 2025;11:226–239.
MLA Muhammad, Ahmed K. et al. “Thermal Conductivity of Porous Plastics Manufactured by 3D Printing: Controlling the Design of the Cavities and Corresponding Effects”. Journal of Thermal Engineering, vol. 11, no. 1, 2025, pp. 226-39, doi:10.14744/thermal.0000915.
Vancouver Muhammad AK, Mohammed TW, Resan KK. Thermal conductivity of porous plastics manufactured by 3D printing: Controlling the design of the cavities and corresponding effects. Journal of Thermal Engineering. 2025;11(1):226-39.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering