Review
BibTex RIS Cite

3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı

Year 2023, , 81 - 97, 31.12.2023
https://doi.org/10.51534/tiha.1315188

Abstract

İnsansız hava araçları (İHA) ilk geliştirildiği yıllarda, nispeten az sayıda bileşenden oluşmuştur. Son yıllarda ise teknolojinin gelişmesiyle birlikte birçok mekanik, elektro-mekanik ve elektronik bileşenden meydana gelmektedir. Bu bileşenlerin, özellikle mekanik ve yapısal elemanların üretimi çeşitli teknikler ile yapılmakta ve çoğu zaman maliyetli olmaktadır. İHA üretiminde yaygın olarak kullanılan ve konvansiyonel üretim tekniklerinden olan kalıp enjeksiyon veya talaşlı imalat, zaman ve maliyet açısından giderleri arttırabilmektedir. Son yıllarda oldukça gelişen 3 boyutlu (3B) yazıcı teknolojisi, İHA bileşenlerinin üretiminde kullanılmaya başlanmıştır. 3B yazıcı teknolojilerinde kullanılan baskı malzemeleri, termoplastik ve türevleridir. Bu malzemeler geleneksel üretimde yaygınlıkla kullanılan metallere kıyasla çok daha hafif ve işlenmesi kolaydır. 3B yazıcılar sadece İHA bileşenlerinin basımında değil aynı zamanda İHA görüntüleri ile elde edilen 3B modellerin ölçekli şekilde baskısının elde edilmesinde de kullanılmaktadır. Lireratürde, özellikle kültürel miras ve arkeolojik çalışmalar başta olmak üzere, mühendislik uygulamalarında ve doğal afetlerin izlenmesinde önemli sonuçlar elde edildiği çalışmalar bulunmaktadır. Bu çalışma kapsamında 3B yazıcıların, İHA bileşenlerinin üretiminde ve İHA kullanılarak elde edilen görüntü çıktılarında kullanımı irdelenmiş, ilgili literatür çalışmalarına yer verilmiştir. Son olarak gelecekteki beklentiler sıralanmıştır.

References

  • Ahmed, F., Mohanta, J. C., Keshari, A., & Yadav, P. S. (2022). Recent Advances in Unmanned Aerial Vehicles: A Review. Arabian Journal for Science and Engineering, 47(7), 7963-7984.
  • Ahmed, N. A., & Page, J. R. (2013). Manufacture of an unmanned aerial vehicle (UAV) for advanced project Design using 3D printing technology. In Applied Mechanics and Materials, 397, 970-980.
  • Akkamış, M. & Çalışkan, S. (2020). İnsansız Hava Araçları ve Tarımsal Uygulamalarda Kullanımı. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 8-16.
  • Alptekin, A., & Yakar, M. (2021). 3D Model of Üçayak Ruins Obtained from Point Clouds. Mersin Photogrammetry Journal, 3(2), 37-40.
  • Alptekin, A., Çelik, M. Ö., Kuşak, L., Ünel, F. B., & Yakar, M. (2019). Anafi Parrot’un Heyelan Bölgesi Haritalandırılmasında Kullanımı. Türkiye İnsansız Hava Araçları Dergisi, 1(1), 33-37.
  • Anand, S., & Mishra, A. K. (2022). High-Performance Materials used for UAV Manufacturing: Classified Review. , International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211, 10,(7).
  • Atzeni, E., Iuliano, L., Minetola, P., & Salmi, A. (2010). Redesign and Cost Estimation of Rapid Manufactured Plastic Parts. Rapid Prototyping Journal, 16(5), 308–317.
  • Avdan U, Şenkal E, Cömert R & Tuncer S (2014). İnsansız Hava Aracı ile Oluşturulan Verilerin Doğruluk Analizi. V. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul.
  • Aydeniz, A. B. (2020). İnsansız Hava Aracı İle Çekilen Görüntülerden Ve Videolardan Oluşturulan 3b Modellerin Karşılaştırılması. Yüksek Lisans Tezi, Zonguldak Bülent Ecevit Üniversitesi, Fen Bilimleri Enstitüsü, Geomatik Mühendisliği Bölümü, Zonguldak, Türkiye.
  • Azarov, A. V., Antonov, F. K., Golubev, M. V., Khaziev, A. R., & Ushanov, S. A. (2019). Composite 3D Printing for the Small Size Unmanned Aerial Vehicle Structure. Composites Part B: Engineering, 169, 157-163.
  • Bento, M. D. F. (2008). Unmanned Aerial Vehicles: An Overview. InsideGNSS, Ocak/Şubat: 54-61.
  • Bikas, H., Stavropoulos, P., & Chryssolouris, G. (2016). Additive Manufacturing Methods and Modelling Approaches: A Critical Review. The International Journal of Advanced Manufacturing Technology, 83, 389-405.
  • Cairns, D. S., & Skramstad, J. D. (2000). Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing (No. SAND2000-1425). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States).
  • Cilek, A., Berberoğlu, S., Dönmez, C., & Ünal, M. (2020). Generation of High-Resolution 3-D Maps for Landscape Planning and Design Using UAV Technologies. Journal of Digital Landscape Architecture, 5(1).
  • Çelik, M. Ö., Alptekin, A., Ünel, F. B., Kuşak, L., & Kanun, E. (2020). The Effect of Different Flight Heights on Generated Digital Products: DSM and Orthophoto. Mersin Photogrammetry Journal, 2(1), 1-9.
  • de Oliveira, T. L., & de Carvalho, J. (2021). Design and numerical evaluation of quadrotor drone frame suitable for fabrication using fused filament fabrication with consumer-grade ABS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9), 436.
  • Dhanunjayarao, B. N., Naidu, N. S., Kumar, R. S., Phaneendra, Y., Sateesh, B., Olajide, J. L., & Sadiku, E. R. (2020). 3D Printing of Fiber Reinforced Polymer Nanocomposites: Additive Manufacturing. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1-29.
  • Donmez C, Villi O, Berberoglu S & Cilek A (2021). Computer Vision-Based Citrus Tree Detection in a Cultivated Environment Using UAV Imagery. Computers and Electronics in Agriculture, 187, 106273.
  • Easter, S., Turman, J., Sheffler, D., Balazs, M., & Rotner, J. (2013, May). Using Advanced Manufacturing to Produce Unmanned Aerial Vehicles: A Feasibility Study. In Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IV, 8742, 20-35.
  • Elmas, E. E. (2019). Bir İnsansız Hava Aracı Gerçekleştirme ve Hareketli Nesnelerin Tespit ve Takibinde Kullanımı. Yüksek lisans tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 122s.
  • Erdoğan, A., Görken, M., & Kabadayı, A. (2022a). Study on the use of unmanned aerial vehicles in open mine sites: A case study of Ordu Province Mine Site. Advanced UAV, 2(2), 35-40.
  • Erdoğan, A., Görken, M., Kabadayı, A., & Temizel, S. (2022). Evaluation of green areas with remote sensing and GIS: A case study of Yozgat city center. Advanced Remote Sensing, 2(2), 58-65.
  • Erdoğan, A., Kabadayı, A., & Akın, E. S. (2021). Kültürel mirasın fotogrametrik yöntemle 3B modellenmesi: Karabıyık Köprüsü Örneği. Türkiye İnsansız Hava Araçları Dergisi, 3(1), 23-27.
  • Fabbaloo. (2018). Repairing Potholes with 3D Printers?. https://www.fabbaloo.com/2018/07/repairing-potholes-with-3d-printers. Erişim Tarihi: 12.06.2023.
  • Fabweaver, 2022. Types of 3D Printing : FFF, Most Popular 3D Printer. https://blog.fabweaver.com/3d-printing-method-fff-most-popular-3d-printer-0. Erişim Tarihi: 02.06.2023.
  • Fasel, U., Keidel, D., Baumann, L., Cavolina, G., Eichenhofer, M., & Ermanni, P. (2020). Composite Additive Manufacturing of Morphing Eerospace Structures. Manufacturing Letters, 23, 85-88.
  • Fiz, J. I., Martín, P. M., Cuesta, R., Subías, E., Codina, D., & Cartes, A. (2022). Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing. Drones, 6(3), 59. MDPI AG.
  • Fotia, A., Modafferi, A., Nunnari, A., & D'Amico, S. (2021). From UAV Survey to 3D Printing, Geomatics Techniques for the Enhancement of Small Village Cultural Heritage. WSEAS Transactions on Environment and Development, 17, 479-489.
  • Gebhardt IA (2003) Rapid prototyping: industrial rapid prototyping system: prototyper: solid ground curing, Cubital, 105–109.
  • Goh, G.D., Agarwala, S., Goh, G. L., Dikshit, V., Sing, S. L., & Yeong, W. Y. (2017). Additive Manufacturing in Unmanned Aerial Vehicles (UAVs): Challenges and Potential, Aerospace Science and Technology.
  • Hoel, K. V., Kristoffersen, S., Moen, J., Holm, G., & Lande, T. S. (2016). Characterization of a 3D Printed Wideband Waveguide and Horn Antenna Structure Embedded in a UAV Wing. In 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4.
  • Jadhav, T. R., Kamble, N. K., & Padave, P. R. (2019). A Review on Additive Manufacturing for Bio-Implants. International Journal of Engineering Research & Technology (IJERT), 8(11).
  • Jiao, Z., Zhang, Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019). A Deep Learning Based Forest Fire Detection Approach Using UAV and Yolov3. In 2019 1st International Conference on Industrial Artificial Intelligence (IAI), 1-5.
  • Kabadayı, A. (2022). Maden Sahasının İnsansız Hava Aracı Yardımıyla Fotogrametrik Yöntemle Haritalanması. Türkiye İnsansız Hava Araçları Dergisi, 4(1), 19-23.
  • Kabadayı, A., & Erdoğan, A. (2022b). İHA Fotogrametrisi Kullanarak Kadastroda Binaların Konum Doğruluğunun İncelenmesi. Türkiye Fotogrametri Dergisi, 4(2), 66-72.
  • Kabadayı, A., & Erdoğan, A. (2023). İHA Fotogrametrisi Kullanarak Yozgat Çilekçi Türbesi’nin 3 Boyutlu Nokta Bulutu ve Modelinin Üretilmesi. Türkiye Fotogrametri Dergisi, 5(1), 29-35.
  • Kabadayı, A., Yunus, K., & Yiğit, A. Y. (2020). Comparison of documentation cultural artifacts using the 3D model in different software. Mersin Photogrammetry Journal, 2(2), 51-58.
  • Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural Heritage Modelling Using UAV Photogrammetric Methods: A Case Study of Kanlıdivane Archeological Site. Advanced UAV, 1(1), 24-33.
  • Karataş, L., Alptekin, A., & Yakar, M. (2022). Detection and Documentation of Stone Material Deterioration in Historical Masonry Structures Using UAV Photogrammetry: A Case Study of Mersin Aba Mausoleum. Advanced UAV, 2(2), 51-64.
  • Karataş, L., Alptekin, A., Karabacak, A., & Yakar, M. (2022). Detection and Documentation of Stone Material Deterioration in Historical Masonry Buildings Using UAV Photogrammetry: A Case Study of Mersin Sarisih Inn. Mersin Photogrammetry Journal, 4(2), 53-61.
  • Kruth, J. P., Leu, M. C., & Nakagawa, T. (1998). Progress in Additive Manufacturing and Rapid Prototyping. Cirp Annals, 47(2), 525-540.
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori Association Rule and K-means Clustering Algorithms for Interpretation of Pre-event Landslide Areas and Landslide Inventory Mapping. Open Geosciences, 13(1), 1226-1244.
  • Menteşoğlu, B. E., & İnan, M. (2016). İnsansız Hava Araçlarının (İHA) Ormancılık Uygulamalarında Kullanımı. VI. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2016), 5-7 Ekim 2016, Adana.
  • Mieloszyk, J., Tarnowski, A., Kowalik, M., Perz, R., & Rzadkowski, W. (2019). Preliminary Design of 3D Printed Fittings for UAV. Aircraft Engineering and Aerospace Technology, 91(5), 756-760.
  • Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin İnsansız Hava Aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125.
  • Mogan, J., Sandanamsamy, L., Halim, N. A., Harun, W. S. W., Kadirgama, K., & Ramasamy, D. (2021). A Review of FDM and Graphene-Based Polymer Composite. In IOP Conference Series: Materials Science and Engineering, 1078(1).
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6), 147.
  • Moon, S. K., Tan, Y. E., Hwang, J., & Yoon, Y. J. (2014). Application of 3d Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures. International Journal of Precision Engineering And Manufacturing-Green Technology, 1, 223-228.
  • Mosaddek, A., Kommula, H. K., & Gonzalez, F. (2018). Design and Testing of a Recycled 3D Printed and Foldable Unmanned Aerial Vehicle for Remote Sensing. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 1207-1216.
  • Mr. Digital (2011). Quadcopter Frame Design. https://n000000000icisdigital.wordpress.com/2011/06/22/frame-design/. Erişim Tarihi: 02.06.2023.
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering, 143, 172-196.
  • Niemand, J., Mathew, S. J., & Gonzalez, F. (2020, September). Design and Testing of Recycled 3D Printed Foldable Unmanned Aerial Vehicle for Remote Sensing. In 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 892-901.
  • Odo A, McKenna S, Flynn D & Vorstius J (2020). Towards the Automatic Visual Monitoring of Electricity Pylons from Aerial Images. 15th International Conference on Computer Vision Theory and Applications, 566-573.
  • Pecho, P., Azaltovic, V., Kandera, B., & Bugaj, M. (2019). Introduction Study of Design and Layout of Uavs 3D Printed Wings in Relation to Optimal Lightweight and Load Distribution. Transportation Research Procedia, 40, 861-868.
  • Ranjan, R., Kumar, D., Kundu, M., & Moi, S. C. (2022). A Critical Review on Classification of Materials Used in 3D Printing Process. Materials Today: Proceedings.
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. M. (2019). An overview on 3D Printing Technology: Technological, Materials and Applications. Procedia Manufacturing, 35, 1286-1296.
  • Shin, D., Kim, H., Gong, J., Jeong, U., Jo, Y., & Matson, E. (2020). Stealth UAV through Coandă Effect. In 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 202-209.
  • Sivakumar, M., & TYJ, N. M. (2021). A Literature Survey of Unmanned Aerial Vehicle Usage for Civil Applications. Journal of Aerospace Technology and Management, 13, e4021.
  • Sürmen, H. K. (2019). Eklemeli İmalat (3b Baski): Teknolojiler ve Uygulamalar. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 373-392.
  • Şasi, A., & Yakar, M. (2017). Photogrammetric Modelling of Sakahane Masjid Using an Unmanned Aerial Vehicle. Turkish Journal of Engineering, 1(2), 82-87.
  • Themistocleous, K., Ioannides, M., Agapiou, A., & Hadjimitsis, D. G. (2015). The Methodology of Documenting Cultural Heritage Sites Using Photogrammetry, UAV, And 3D Printing Techniques: The Case Study of Asinou Church in Cyprus. In Third International Conference on Remote Sensing and Geoinformation of the Environment (Rscy2015), 9535, 312-318.
  • Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities. Materials today, 21(1), 22-37.
  • Ünel, F. B., Kuşak, L., Çelik, M., Alptekin, A., & Yakar, M. (2020). Kıyı Çizgisinin Belirlenerek Mülkiyet Durumunun İncelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40.
  • Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100.
  • Villi, Ö., Villi, O., & Yavuz, H. (2023). Concept Design for Optimizing Mass Production Processes with 3D Printer in the Industry. Ases III. International Scientific Research Conference, pp. 59-60, Trabzon, Türkiye.
  • Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. International Scholarly Research Notices.
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018, 73-75.
  • Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı Fotogrametrik Rölöve Alımı ve Üç Boyutlu Modelleme Çalışması. Geomatik, 2(1), 11-17.
  • Yakar, M., & Doğan, Y. (2017). Uzuncaburç Antik Kentinin İHA Kullanılarak Eğik Fotogrametri Yöntemiyle Üç Boyutlu Modellenmesi. 16. Türkiye Harita Bilimsel ve Teknik Kurultayı. TMMOB Harita ve Kadastro Mühendisleri Odası, Ankara.
  • Yakar, M., Toprak, A. S., Ulvi, A., & Uysal, M. (2015). Konya Beyşehir Bezariye Hanının (Bedesten) İHA ile Fotogrametrik Teknik Kullanılarak Üç Boyutlu Modellenmesi. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25, 28.
  • Yakar, M., Ulvi, A., Fidan, Ş., Karabacak, A., Villi, O., Yiğit, A. Y., Çelik, M. Ö., & Hamal, S. N. G. (2023). İnsansız Hava Aracı Teknolojisi ve Operatörlüğü Eğitim Kitabı. Mersin Üniversitesi Harita Mühendisliği Kitapları.
  • Yakar, M., Ulvi, A., Yiğit, A. Y., & Alptekin, A. (2022). Discontinuity Set Extraction from 3D Point Clouds Obtained by UAV Photogrammetry in a Rockfall Site. Survey Review, 1-13.
  • Yeh, Y. L. (2020). The Standard Strength Test of 3D Printing Materials and its Application for UAV Propellers. Modern Physics Letters B, 34(07n09), 2040017.
  • Yiğit, A. Y., & Ulvi, A. (2020). İHA fotogrametrisi tekniği kullanarak 3B model oluşturma: Yakutiye Medresesi Örneği. Türkiye Fotogrametri Dergisi, 2(2), 46-54.
  • Zagidullin, R. S., Zezin, N. I., & Rodionov, N. V. (2021). Improving the Quality of FDM 3D Printing of UAV and Aircraft Parts and Assemblies by Parametric Software Changes. In IOP Conference Series: Materials Science and Engineering, 1027(1), 012031.
  • Zagidullin, R. S., Zezin, N. I., & Rodionov, N. V. (2021). Improving the Quality of FDM 3D Printing of UAV and Aircraft Parts and Assemblies by Parametric Software Changes. In IOP Conference Series: Materials Science and Engineering, 1027(1), 012031.
  • Zhu, L., Li, N., & Childs, P. R. N. (2018). Light-Weighting in Aerospace Component and System Design. Propulsion and Power Research, 7(2), 103-119.

Review on the Use of 3D Printers in Unmanned Aerial Vehicle Applications

Year 2023, , 81 - 97, 31.12.2023
https://doi.org/10.51534/tiha.1315188

Abstract

Unmanned aerial vehicles (UAVs), in their early development years, consisted of a relatively small number of components. However, in recent years, with the advancement of technology, they are composed of numerous mechanical, electro-mechanical, and electronic components. The production of these components, especially mechanical and structural elements, involves various techniques and is often costly. Commonly used in UAV manufacturing, conventional production techniques such as mold injection or machining can increase time and cost expenditures. The rapidly evolving 3D printing technology has been increasingly employed in the production of UAV components in recent years. The printing materials used in 3D printing technologies are thermoplastics and their derivatives. These materials are much lighter and easier to process compared to metals commonly used in traditional production. 3D printers are not only used in the printing of UAV components but also in the scaled printing of 3D models obtained from UAV images. In the literature, significant results have been achieved in various studies, particularly in cultural heritage, archaeological research, engineering applications, and natural disaster monitoring. In the context of this study, the utilization of 3D printers in the production of Unmanned Aerial Vehicle (UAV) components and in the generation of imagery outputs obtained through the use of UAVs has been scrutinized. Relevant literature studies have been referenced. Finally, future expectations are delineated.

References

  • Ahmed, F., Mohanta, J. C., Keshari, A., & Yadav, P. S. (2022). Recent Advances in Unmanned Aerial Vehicles: A Review. Arabian Journal for Science and Engineering, 47(7), 7963-7984.
  • Ahmed, N. A., & Page, J. R. (2013). Manufacture of an unmanned aerial vehicle (UAV) for advanced project Design using 3D printing technology. In Applied Mechanics and Materials, 397, 970-980.
  • Akkamış, M. & Çalışkan, S. (2020). İnsansız Hava Araçları ve Tarımsal Uygulamalarda Kullanımı. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 8-16.
  • Alptekin, A., & Yakar, M. (2021). 3D Model of Üçayak Ruins Obtained from Point Clouds. Mersin Photogrammetry Journal, 3(2), 37-40.
  • Alptekin, A., Çelik, M. Ö., Kuşak, L., Ünel, F. B., & Yakar, M. (2019). Anafi Parrot’un Heyelan Bölgesi Haritalandırılmasında Kullanımı. Türkiye İnsansız Hava Araçları Dergisi, 1(1), 33-37.
  • Anand, S., & Mishra, A. K. (2022). High-Performance Materials used for UAV Manufacturing: Classified Review. , International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211, 10,(7).
  • Atzeni, E., Iuliano, L., Minetola, P., & Salmi, A. (2010). Redesign and Cost Estimation of Rapid Manufactured Plastic Parts. Rapid Prototyping Journal, 16(5), 308–317.
  • Avdan U, Şenkal E, Cömert R & Tuncer S (2014). İnsansız Hava Aracı ile Oluşturulan Verilerin Doğruluk Analizi. V. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2014), 14-17 Ekim 2014, İstanbul.
  • Aydeniz, A. B. (2020). İnsansız Hava Aracı İle Çekilen Görüntülerden Ve Videolardan Oluşturulan 3b Modellerin Karşılaştırılması. Yüksek Lisans Tezi, Zonguldak Bülent Ecevit Üniversitesi, Fen Bilimleri Enstitüsü, Geomatik Mühendisliği Bölümü, Zonguldak, Türkiye.
  • Azarov, A. V., Antonov, F. K., Golubev, M. V., Khaziev, A. R., & Ushanov, S. A. (2019). Composite 3D Printing for the Small Size Unmanned Aerial Vehicle Structure. Composites Part B: Engineering, 169, 157-163.
  • Bento, M. D. F. (2008). Unmanned Aerial Vehicles: An Overview. InsideGNSS, Ocak/Şubat: 54-61.
  • Bikas, H., Stavropoulos, P., & Chryssolouris, G. (2016). Additive Manufacturing Methods and Modelling Approaches: A Critical Review. The International Journal of Advanced Manufacturing Technology, 83, 389-405.
  • Cairns, D. S., & Skramstad, J. D. (2000). Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing (No. SAND2000-1425). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States).
  • Cilek, A., Berberoğlu, S., Dönmez, C., & Ünal, M. (2020). Generation of High-Resolution 3-D Maps for Landscape Planning and Design Using UAV Technologies. Journal of Digital Landscape Architecture, 5(1).
  • Çelik, M. Ö., Alptekin, A., Ünel, F. B., Kuşak, L., & Kanun, E. (2020). The Effect of Different Flight Heights on Generated Digital Products: DSM and Orthophoto. Mersin Photogrammetry Journal, 2(1), 1-9.
  • de Oliveira, T. L., & de Carvalho, J. (2021). Design and numerical evaluation of quadrotor drone frame suitable for fabrication using fused filament fabrication with consumer-grade ABS. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(9), 436.
  • Dhanunjayarao, B. N., Naidu, N. S., Kumar, R. S., Phaneendra, Y., Sateesh, B., Olajide, J. L., & Sadiku, E. R. (2020). 3D Printing of Fiber Reinforced Polymer Nanocomposites: Additive Manufacturing. Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1-29.
  • Donmez C, Villi O, Berberoglu S & Cilek A (2021). Computer Vision-Based Citrus Tree Detection in a Cultivated Environment Using UAV Imagery. Computers and Electronics in Agriculture, 187, 106273.
  • Easter, S., Turman, J., Sheffler, D., Balazs, M., & Rotner, J. (2013, May). Using Advanced Manufacturing to Produce Unmanned Aerial Vehicles: A Feasibility Study. In Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR IV, 8742, 20-35.
  • Elmas, E. E. (2019). Bir İnsansız Hava Aracı Gerçekleştirme ve Hareketli Nesnelerin Tespit ve Takibinde Kullanımı. Yüksek lisans tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 122s.
  • Erdoğan, A., Görken, M., & Kabadayı, A. (2022a). Study on the use of unmanned aerial vehicles in open mine sites: A case study of Ordu Province Mine Site. Advanced UAV, 2(2), 35-40.
  • Erdoğan, A., Görken, M., Kabadayı, A., & Temizel, S. (2022). Evaluation of green areas with remote sensing and GIS: A case study of Yozgat city center. Advanced Remote Sensing, 2(2), 58-65.
  • Erdoğan, A., Kabadayı, A., & Akın, E. S. (2021). Kültürel mirasın fotogrametrik yöntemle 3B modellenmesi: Karabıyık Köprüsü Örneği. Türkiye İnsansız Hava Araçları Dergisi, 3(1), 23-27.
  • Fabbaloo. (2018). Repairing Potholes with 3D Printers?. https://www.fabbaloo.com/2018/07/repairing-potholes-with-3d-printers. Erişim Tarihi: 12.06.2023.
  • Fabweaver, 2022. Types of 3D Printing : FFF, Most Popular 3D Printer. https://blog.fabweaver.com/3d-printing-method-fff-most-popular-3d-printer-0. Erişim Tarihi: 02.06.2023.
  • Fasel, U., Keidel, D., Baumann, L., Cavolina, G., Eichenhofer, M., & Ermanni, P. (2020). Composite Additive Manufacturing of Morphing Eerospace Structures. Manufacturing Letters, 23, 85-88.
  • Fiz, J. I., Martín, P. M., Cuesta, R., Subías, E., Codina, D., & Cartes, A. (2022). Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing. Drones, 6(3), 59. MDPI AG.
  • Fotia, A., Modafferi, A., Nunnari, A., & D'Amico, S. (2021). From UAV Survey to 3D Printing, Geomatics Techniques for the Enhancement of Small Village Cultural Heritage. WSEAS Transactions on Environment and Development, 17, 479-489.
  • Gebhardt IA (2003) Rapid prototyping: industrial rapid prototyping system: prototyper: solid ground curing, Cubital, 105–109.
  • Goh, G.D., Agarwala, S., Goh, G. L., Dikshit, V., Sing, S. L., & Yeong, W. Y. (2017). Additive Manufacturing in Unmanned Aerial Vehicles (UAVs): Challenges and Potential, Aerospace Science and Technology.
  • Hoel, K. V., Kristoffersen, S., Moen, J., Holm, G., & Lande, T. S. (2016). Characterization of a 3D Printed Wideband Waveguide and Horn Antenna Structure Embedded in a UAV Wing. In 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4.
  • Jadhav, T. R., Kamble, N. K., & Padave, P. R. (2019). A Review on Additive Manufacturing for Bio-Implants. International Journal of Engineering Research & Technology (IJERT), 8(11).
  • Jiao, Z., Zhang, Y., Xin, J., Mu, L., Yi, Y., Liu, H., & Liu, D. (2019). A Deep Learning Based Forest Fire Detection Approach Using UAV and Yolov3. In 2019 1st International Conference on Industrial Artificial Intelligence (IAI), 1-5.
  • Kabadayı, A. (2022). Maden Sahasının İnsansız Hava Aracı Yardımıyla Fotogrametrik Yöntemle Haritalanması. Türkiye İnsansız Hava Araçları Dergisi, 4(1), 19-23.
  • Kabadayı, A., & Erdoğan, A. (2022b). İHA Fotogrametrisi Kullanarak Kadastroda Binaların Konum Doğruluğunun İncelenmesi. Türkiye Fotogrametri Dergisi, 4(2), 66-72.
  • Kabadayı, A., & Erdoğan, A. (2023). İHA Fotogrametrisi Kullanarak Yozgat Çilekçi Türbesi’nin 3 Boyutlu Nokta Bulutu ve Modelinin Üretilmesi. Türkiye Fotogrametri Dergisi, 5(1), 29-35.
  • Kabadayı, A., Yunus, K., & Yiğit, A. Y. (2020). Comparison of documentation cultural artifacts using the 3D model in different software. Mersin Photogrammetry Journal, 2(2), 51-58.
  • Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural Heritage Modelling Using UAV Photogrammetric Methods: A Case Study of Kanlıdivane Archeological Site. Advanced UAV, 1(1), 24-33.
  • Karataş, L., Alptekin, A., & Yakar, M. (2022). Detection and Documentation of Stone Material Deterioration in Historical Masonry Structures Using UAV Photogrammetry: A Case Study of Mersin Aba Mausoleum. Advanced UAV, 2(2), 51-64.
  • Karataş, L., Alptekin, A., Karabacak, A., & Yakar, M. (2022). Detection and Documentation of Stone Material Deterioration in Historical Masonry Buildings Using UAV Photogrammetry: A Case Study of Mersin Sarisih Inn. Mersin Photogrammetry Journal, 4(2), 53-61.
  • Kruth, J. P., Leu, M. C., & Nakagawa, T. (1998). Progress in Additive Manufacturing and Rapid Prototyping. Cirp Annals, 47(2), 525-540.
  • Kusak, L., Unel, F. B., Alptekin, A., Celik, M. O., & Yakar, M. (2021). Apriori Association Rule and K-means Clustering Algorithms for Interpretation of Pre-event Landslide Areas and Landslide Inventory Mapping. Open Geosciences, 13(1), 1226-1244.
  • Menteşoğlu, B. E., & İnan, M. (2016). İnsansız Hava Araçlarının (İHA) Ormancılık Uygulamalarında Kullanımı. VI. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu (UZAL-CBS 2016), 5-7 Ekim 2016, Adana.
  • Mieloszyk, J., Tarnowski, A., Kowalik, M., Perz, R., & Rzadkowski, W. (2019). Preliminary Design of 3D Printed Fittings for UAV. Aircraft Engineering and Aerospace Technology, 91(5), 756-760.
  • Mirdan, O., & Yakar, M. (2017). Tarihi eserlerin İnsansız Hava Aracı ile modellenmesinde karşılaşılan sorunlar. Geomatik, 2(3), 118-125.
  • Mogan, J., Sandanamsamy, L., Halim, N. A., Harun, W. S. W., Kadirgama, K., & Ramasamy, D. (2021). A Review of FDM and Graphene-Based Polymer Composite. In IOP Conference Series: Materials Science and Engineering, 1078(1).
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6), 147.
  • Moon, S. K., Tan, Y. E., Hwang, J., & Yoon, Y. J. (2014). Application of 3d Printing Technology for Designing Light-Weight Unmanned Aerial Vehicle Wing Structures. International Journal of Precision Engineering And Manufacturing-Green Technology, 1, 223-228.
  • Mosaddek, A., Kommula, H. K., & Gonzalez, F. (2018). Design and Testing of a Recycled 3D Printed and Foldable Unmanned Aerial Vehicle for Remote Sensing. In 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 1207-1216.
  • Mr. Digital (2011). Quadcopter Frame Design. https://n000000000icisdigital.wordpress.com/2011/06/22/frame-design/. Erişim Tarihi: 02.06.2023.
  • Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T., & Hui, D. (2018). Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges. Composites Part B: Engineering, 143, 172-196.
  • Niemand, J., Mathew, S. J., & Gonzalez, F. (2020, September). Design and Testing of Recycled 3D Printed Foldable Unmanned Aerial Vehicle for Remote Sensing. In 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 892-901.
  • Odo A, McKenna S, Flynn D & Vorstius J (2020). Towards the Automatic Visual Monitoring of Electricity Pylons from Aerial Images. 15th International Conference on Computer Vision Theory and Applications, 566-573.
  • Pecho, P., Azaltovic, V., Kandera, B., & Bugaj, M. (2019). Introduction Study of Design and Layout of Uavs 3D Printed Wings in Relation to Optimal Lightweight and Load Distribution. Transportation Research Procedia, 40, 861-868.
  • Ranjan, R., Kumar, D., Kundu, M., & Moi, S. C. (2022). A Critical Review on Classification of Materials Used in 3D Printing Process. Materials Today: Proceedings.
  • Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. M. (2019). An overview on 3D Printing Technology: Technological, Materials and Applications. Procedia Manufacturing, 35, 1286-1296.
  • Shin, D., Kim, H., Gong, J., Jeong, U., Jo, Y., & Matson, E. (2020). Stealth UAV through Coandă Effect. In 2020 Fourth IEEE International Conference on Robotic Computing (IRC), 202-209.
  • Sivakumar, M., & TYJ, N. M. (2021). A Literature Survey of Unmanned Aerial Vehicle Usage for Civil Applications. Journal of Aerospace Technology and Management, 13, e4021.
  • Sürmen, H. K. (2019). Eklemeli İmalat (3b Baski): Teknolojiler ve Uygulamalar. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 24(2), 373-392.
  • Şasi, A., & Yakar, M. (2017). Photogrammetric Modelling of Sakahane Masjid Using an Unmanned Aerial Vehicle. Turkish Journal of Engineering, 1(2), 82-87.
  • Themistocleous, K., Ioannides, M., Agapiou, A., & Hadjimitsis, D. G. (2015). The Methodology of Documenting Cultural Heritage Sites Using Photogrammetry, UAV, And 3D Printing Techniques: The Case Study of Asinou Church in Cyprus. In Third International Conference on Remote Sensing and Geoinformation of the Environment (Rscy2015), 9535, 312-318.
  • Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities. Materials today, 21(1), 22-37.
  • Ünel, F. B., Kuşak, L., Çelik, M., Alptekin, A., & Yakar, M. (2020). Kıyı Çizgisinin Belirlenerek Mülkiyet Durumunun İncelenmesi. Türkiye Arazi Yönetimi Dergisi, 2(1), 33-40.
  • Villi, O., & Yakar, M. (2022). İnsansız Hava Araçlarının Kullanım Alanları ve Sensör Tipleri. Türkiye İnsansız Hava Araçları Dergisi, 4(2), 73-100.
  • Villi, Ö., Villi, O., & Yavuz, H. (2023). Concept Design for Optimizing Mass Production Processes with 3D Printer in the Industry. Ases III. International Scientific Research Conference, pp. 59-60, Trabzon, Türkiye.
  • Wong, K. V., & Hernandez, A. (2012). A Review of Additive Manufacturing. International Scholarly Research Notices.
  • Yakar, M., & Dogan, Y. (2019). 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Advances in Remote Sensing and Geo Informatics Applications: Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018, 73-75.
  • Yakar, M., & Doğan, Y. (2017). Mersin Silifke Mezgit Kale Anıt Mezarı Fotogrametrik Rölöve Alımı ve Üç Boyutlu Modelleme Çalışması. Geomatik, 2(1), 11-17.
  • Yakar, M., & Doğan, Y. (2017). Uzuncaburç Antik Kentinin İHA Kullanılarak Eğik Fotogrametri Yöntemiyle Üç Boyutlu Modellenmesi. 16. Türkiye Harita Bilimsel ve Teknik Kurultayı. TMMOB Harita ve Kadastro Mühendisleri Odası, Ankara.
  • Yakar, M., Toprak, A. S., Ulvi, A., & Uysal, M. (2015). Konya Beyşehir Bezariye Hanının (Bedesten) İHA ile Fotogrametrik Teknik Kullanılarak Üç Boyutlu Modellenmesi. Türkiye Harita Bilimsel ve Teknik Kurultayı, 25, 28.
  • Yakar, M., Ulvi, A., Fidan, Ş., Karabacak, A., Villi, O., Yiğit, A. Y., Çelik, M. Ö., & Hamal, S. N. G. (2023). İnsansız Hava Aracı Teknolojisi ve Operatörlüğü Eğitim Kitabı. Mersin Üniversitesi Harita Mühendisliği Kitapları.
  • Yakar, M., Ulvi, A., Yiğit, A. Y., & Alptekin, A. (2022). Discontinuity Set Extraction from 3D Point Clouds Obtained by UAV Photogrammetry in a Rockfall Site. Survey Review, 1-13.
  • Yeh, Y. L. (2020). The Standard Strength Test of 3D Printing Materials and its Application for UAV Propellers. Modern Physics Letters B, 34(07n09), 2040017.
  • Yiğit, A. Y., & Ulvi, A. (2020). İHA fotogrametrisi tekniği kullanarak 3B model oluşturma: Yakutiye Medresesi Örneği. Türkiye Fotogrametri Dergisi, 2(2), 46-54.
  • Zagidullin, R. S., Zezin, N. I., & Rodionov, N. V. (2021). Improving the Quality of FDM 3D Printing of UAV and Aircraft Parts and Assemblies by Parametric Software Changes. In IOP Conference Series: Materials Science and Engineering, 1027(1), 012031.
  • Zagidullin, R. S., Zezin, N. I., & Rodionov, N. V. (2021). Improving the Quality of FDM 3D Printing of UAV and Aircraft Parts and Assemblies by Parametric Software Changes. In IOP Conference Series: Materials Science and Engineering, 1027(1), 012031.
  • Zhu, L., Li, N., & Childs, P. R. N. (2018). Light-Weighting in Aerospace Component and System Design. Propulsion and Power Research, 7(2), 103-119.
There are 77 citations in total.

Details

Primary Language Turkish
Subjects Electronics, Sensors and Digital Hardware (Other), Photogrammetry and Remote Sensing
Journal Section Derleme Makaleleri [tr] Review Articles [en]
Authors

Osman Villi 0000-0002-8174-409X

Özge Villi 0000-0001-7683-0324

Murat Yakar 0000-0002-2664-6251

Early Pub Date December 22, 2023
Publication Date December 31, 2023
Submission Date July 14, 2023
Published in Issue Year 2023

Cite

APA Villi, O., Villi, Ö., & Yakar, M. (2023). 3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı. Türkiye İnsansız Hava Araçları Dergisi, 5(2), 81-97. https://doi.org/10.51534/tiha.1315188
AMA Villi O, Villi Ö, Yakar M. 3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı. tiha. December 2023;5(2):81-97. doi:10.51534/tiha.1315188
Chicago Villi, Osman, Özge Villi, and Murat Yakar. “3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı”. Türkiye İnsansız Hava Araçları Dergisi 5, no. 2 (December 2023): 81-97. https://doi.org/10.51534/tiha.1315188.
EndNote Villi O, Villi Ö, Yakar M (December 1, 2023) 3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı. Türkiye İnsansız Hava Araçları Dergisi 5 2 81–97.
IEEE O. Villi, Ö. Villi, and M. Yakar, “3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı”, tiha, vol. 5, no. 2, pp. 81–97, 2023, doi: 10.51534/tiha.1315188.
ISNAD Villi, Osman et al. “3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı”. Türkiye İnsansız Hava Araçları Dergisi 5/2 (December 2023), 81-97. https://doi.org/10.51534/tiha.1315188.
JAMA Villi O, Villi Ö, Yakar M. 3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı. tiha. 2023;5:81–97.
MLA Villi, Osman et al. “3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı”. Türkiye İnsansız Hava Araçları Dergisi, vol. 5, no. 2, 2023, pp. 81-97, doi:10.51534/tiha.1315188.
Vancouver Villi O, Villi Ö, Yakar M. 3 Boyutlu Yazıcıların İnsansız Hava Aracı Uygulamalarında Kullanımı. tiha. 2023;5(2):81-97.