Review
BibTex RIS Cite

Development and Validation of Molecular Imprinted Sensors and Applicatıons to Real Samples

Year 2021, Volume: 4 Issue: 2, 168 - 177, 31.12.2021

Abstract

In this review, novel imprinted sensors approach based on nanomaterials such as graphene/graphene oxide/graphene quantum dots, carbon nanotubes, carbon nitride nanotubes and two-dimensional (2D) hexagonal boron nitride (2D-hBN) nanosheets were presented for important agent’s detection in real samples. Firstly, the chemical and physical properties of novel nanomaterials in development of nanosensors were investigated. After that, various techniques such as x-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) methods were explained for characterization application. Finally, the development and procedure of the imprinted electrodes on nanomaterials were investigated.

References

  • [1] Yola, M.L.; Atar, N.; Üstündağ, Z.; Solak, A.O. A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem., 2013, 698, 9-16.
  • [2] Sanghavi, B.J.; Gadhari, N.S.; Kalambate, P.K.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of arsenic using a graphene paste electrode modified with a thiacrown ether and gold nanoparticles. Microchim. Acta, 2015, 182(7-8),1473-1481.
  • [3] Sanghavi, B.J.; Kalambate, P.K.; Karna, S.P.; Srivastava, A.K. Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta, 2014, 120, 1-9.
  • [4] Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51(1), 91-99.
  • [5] Atar, N.; Yola, M.L. Core-Shell Nanoparticles/two-dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc., 2018, 165(5), H255-H262.
  • [6] Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M.A. Voltammetric Sensor for Simultaneous Determination of Vitamin C and Vitamin B6 in Food Samples Using ZrO2 Nanoparticle/Ionic Liquids Carbon Paste Electrode. Food Anal Methods, 2015, 8(3), 549-557.
  • [7] Golestanifar, F.; Karimi-Maleh, H.; Atar, N.; Aydoğdu, E.; Ertan, B.; Taghavi, M.; Yola, M.L.; Ghaemy, M. Voltammetric determination of hydroxylamine using a ferrocene derivative and NiO/CNTs nanocomposite modified carbon paste electrode. Int. J. Electrochem. Sci., 2015, 10(7), 5456-5464.
  • [8] Kalambate, P.K.; Sanghavi, B.J.; Karna, S.P.; Srivastava, A.K. Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sens. Actuators B., 2015, 213, 285-294.
  • [9] Yola, M.L.; Atar, N. A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multiwalled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim. Acta, 2014, 119, 24- 31.
  • [10] Yola, M.L.; Eren, T.; Atar, N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta, 2014, 125, 38-47.
  • [11] Yola, M.L.; Gupta, V.K.; Eren, T.; Sen, A.E.; Atar, N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
  • [12] Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim. Acta, 2015, 182(1-2), 1-41.
  • [13] Gergel-Hackett, N.; Majumdar, N.; Martin, Z.; Swami, N.; Harriott, L.R.; Bean, J.C.; Pattanaik, G.; Zangari, G.; Zhu, Y.; Pu, L.; Yao, Y.; Tour, J.M. The Effects of Molecular Environments on the Electrical Switching with Memory of Nitro-Containing OPEs. J. Vac. Sci. Technol. A, 2006, 24, 1243–1248.
  • [14] Martin, Z.; Majumdar, N.; Cabral, M.; Camacho-Alanis, F.; Gergel, N.; Swami, N.; Harriott, L.; Yao, T.; Tour, J.; Long, D.; Shashidhar, R. Fabrication and characterization of interconnected molecular devices in a nanowell crossbar architecture. IEEE T Nanotechnol., 2009, 8, 574–581.
  • [15] Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008, 321, 385-388.
  • [16] Freitag, M.; Steiner, M.; Martin, Y.; Perebeino,s V.; Chen, Z.H. Tsang JC, Avouris P. Energy Dissipation in Graphene Field-Effect Transistors. Nano Lett., 2009, 9 (5), 1883–1888.
  • [17] Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Nature, 2006, 442, 282-286.
  • [18] Wei, T.; Luo, G.L.; Fan, Z.J.; Zheng, C.; Yan, J.; Yao, C.Z.; Li, W.F.; Zhang, C. Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon, 2009, 47, 2296-2299.
  • [19] Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang. Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.
  • [20] Ozyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D.A.; Levitov, L.S.; Kim, P. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p−n−p Junctions. Phys. Rev. Lett., 2007, 99, 186804.
  • [21] Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett., 2008, 100, 016602.
  • [22] Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320, 1308.
  • [23] Blake, P.; Hill, E.W.; Neto, A.H.C.; Novoselov, K.S.; Jiang, D.; Yang, R.; Booth, T.J.; Geim, A.K. Making graphene visible. Appl. Phys. Lett., 2007, 91, 063124.
  • [24] Mazloum-Ardakani, M.; Aghaei, R.; Abdollahi-Alibeik, M.; Moaddeli, A. Fabrication of modified glassy carbon electrode using graphene quantum dot, gold nanoparticles and 4-(((4-mercaptophenyl)imino)methyl) benzene-1,2-diol by self-assembly method and investigation of their electrocatalytic activities. J. Electroanal. Chem., 2015, 738, 113-122.
  • [25] Çolak, A.T.; Eren, T.; Yola, M.L.; Beşli, E.; Şahi,n O.; Atar, N. Novel 3D polyoxometalate-functionalized graphene quantum dots with mono-metallic and bi-metallic nanoparticles for application in direct methanol fuel cells. J. Electrochem. Soc., 2016, 163(10), F1237-F1244.
  • [26] Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol., 2001, 61, 1899–1912.
  • [27] Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
  • [28] Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7, 15-37.
  • [29] Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc., 2013, 135, 18-21.
  • [30] Tian, J.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu(2+). Anal. Chem., 2013, 85, 5595-5599.
  • [31] Yola, M.L.; Eren, T.; Atar, N. A Molecular Imprinted Voltammetric Sensor Based on Carbon Nitride Nanotubes: Application to Determination of Melamine. J. Electrochem. Soc., 2016, 163(13), B588-B593,
  • [32] Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D. Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano, 2014, 8, 6123-6130.
  • [33] Lin, Y.; Bunker, C.E.; Fernando, K.A.S.; Connell, J.W. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices. ACS Appl. Mater. Interfaces, 2012, 4, 1110-1117.
  • [34] Atar, N.; Yola, M.L. Core-Shell Nanoparticles/two-dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc., 2018, 165(5), H255-H262.
  • [35] Yola, M.L.; Uzun, L.; Özaltın, N.; Denizli, A. Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta, 2014, 120, 318-324.
  • [36] Yola, M.L.; Atar, N. A Review: Molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal Chem., 2017, 13(1), 13-17.
  • [37] Atar, N.; Yola, M.L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci., 2016, 362, 315-322.
  • [38] Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators, B. 2015, 210, 149-157.
  • [39] Yola, M.L.; Gupta, V.K.; Atar, N. New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng., C, 2016, 61, 368-375.
  • [40] Yola, M.L.; Atar, N. A Highly Efficient Nanomaterial with Molecular Imprinting Polymer: Carbon Nitride Nanotubes Decorated with Graphene Quantum Dots for Sensitive Electrochemical Determination of Chlorpyrifos. J. Electrochem. Soc., 2017, 164(6), B223-B229.
  • [41] Atar, N.; Yola, M.L. Core-Shell Nanoparticles/two-dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc., 2018, 165(5), H255-H262.
Year 2021, Volume: 4 Issue: 2, 168 - 177, 31.12.2021

Abstract

References

  • [1] Yola, M.L.; Atar, N.; Üstündağ, Z.; Solak, A.O. A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem., 2013, 698, 9-16.
  • [2] Sanghavi, B.J.; Gadhari, N.S.; Kalambate, P.K.; Karna, S.P.; Srivastava, A.K. Potentiometric stripping analysis of arsenic using a graphene paste electrode modified with a thiacrown ether and gold nanoparticles. Microchim. Acta, 2015, 182(7-8),1473-1481.
  • [3] Sanghavi, B.J.; Kalambate, P.K.; Karna, S.P.; Srivastava, A.K. Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta, 2014, 120, 1-9.
  • [4] Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. A sensitive nanocomposite-based electrochemical sensor for voltammetric simultaneous determination of isoproterenol, acetaminophen and tryptophan. Measurement, 2014, 51(1), 91-99.
  • [5] Atar, N.; Yola, M.L. Core-Shell Nanoparticles/two-dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc., 2018, 165(5), H255-H262.
  • [6] Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M.A. Voltammetric Sensor for Simultaneous Determination of Vitamin C and Vitamin B6 in Food Samples Using ZrO2 Nanoparticle/Ionic Liquids Carbon Paste Electrode. Food Anal Methods, 2015, 8(3), 549-557.
  • [7] Golestanifar, F.; Karimi-Maleh, H.; Atar, N.; Aydoğdu, E.; Ertan, B.; Taghavi, M.; Yola, M.L.; Ghaemy, M. Voltammetric determination of hydroxylamine using a ferrocene derivative and NiO/CNTs nanocomposite modified carbon paste electrode. Int. J. Electrochem. Sci., 2015, 10(7), 5456-5464.
  • [8] Kalambate, P.K.; Sanghavi, B.J.; Karna, S.P.; Srivastava, A.K. Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sens. Actuators B., 2015, 213, 285-294.
  • [9] Yola, M.L.; Atar, N. A novel voltammetric sensor based on gold nanoparticles involved in p-aminothiophenol functionalized multiwalled carbon nanotubes: Application to the simultaneous determination of quercetin and rutin. Electrochim. Acta, 2014, 119, 24- 31.
  • [10] Yola, M.L.; Eren, T.; Atar, N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta, 2014, 125, 38-47.
  • [11] Yola, M.L.; Gupta, V.K.; Eren, T.; Sen, A.E.; Atar, N. A novel electro analytical nanosensor based on graphene oxide/silver nanoparticles for simultaneous determination of quercetin and morin. Electrochim. Acta, 2014, 120, 204-211.
  • [12] Sanghavi, B.J.; Wolfbeis, O.S.; Hirsch, T.; Swami, N.S. Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim. Acta, 2015, 182(1-2), 1-41.
  • [13] Gergel-Hackett, N.; Majumdar, N.; Martin, Z.; Swami, N.; Harriott, L.R.; Bean, J.C.; Pattanaik, G.; Zangari, G.; Zhu, Y.; Pu, L.; Yao, Y.; Tour, J.M. The Effects of Molecular Environments on the Electrical Switching with Memory of Nitro-Containing OPEs. J. Vac. Sci. Technol. A, 2006, 24, 1243–1248.
  • [14] Martin, Z.; Majumdar, N.; Cabral, M.; Camacho-Alanis, F.; Gergel, N.; Swami, N.; Harriott, L.; Yao, T.; Tour, J.; Long, D.; Shashidhar, R. Fabrication and characterization of interconnected molecular devices in a nanowell crossbar architecture. IEEE T Nanotechnol., 2009, 8, 574–581.
  • [15] Lee, C.; Wei, X.D.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008, 321, 385-388.
  • [16] Freitag, M.; Steiner, M.; Martin, Y.; Perebeino,s V.; Chen, Z.H. Tsang JC, Avouris P. Energy Dissipation in Graphene Field-Effect Transistors. Nano Lett., 2009, 9 (5), 1883–1888.
  • [17] Stankovich, S.; Dikin, D.A.; Dommett, G.H.B.; Kohlhaas, K.M.; Zimney, E.J.; Stach, E.A.; Piner, R.D.; Nguyen, S.T.; Ruoff, R.S. Nature, 2006, 442, 282-286.
  • [18] Wei, T.; Luo, G.L.; Fan, Z.J.; Zheng, C.; Yan, J.; Yao, C.Z.; Li, W.F.; Zhang, C. Preparation of graphene nanosheet/polymer composites using in situ reduction–extractive dispersion. Carbon, 2009, 47, 2296-2299.
  • [19] Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang. Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.
  • [20] Ozyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D.A.; Levitov, L.S.; Kim, P. Electronic Transport and Quantum Hall Effect in Bipolar Graphene p−n−p Junctions. Phys. Rev. Lett., 2007, 99, 186804.
  • [21] Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Phys. Rev. Lett., 2008, 100, 016602.
  • [22] Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320, 1308.
  • [23] Blake, P.; Hill, E.W.; Neto, A.H.C.; Novoselov, K.S.; Jiang, D.; Yang, R.; Booth, T.J.; Geim, A.K. Making graphene visible. Appl. Phys. Lett., 2007, 91, 063124.
  • [24] Mazloum-Ardakani, M.; Aghaei, R.; Abdollahi-Alibeik, M.; Moaddeli, A. Fabrication of modified glassy carbon electrode using graphene quantum dot, gold nanoparticles and 4-(((4-mercaptophenyl)imino)methyl) benzene-1,2-diol by self-assembly method and investigation of their electrocatalytic activities. J. Electroanal. Chem., 2015, 738, 113-122.
  • [25] Çolak, A.T.; Eren, T.; Yola, M.L.; Beşli, E.; Şahi,n O.; Atar, N. Novel 3D polyoxometalate-functionalized graphene quantum dots with mono-metallic and bi-metallic nanoparticles for application in direct methanol fuel cells. J. Electrochem. Soc., 2016, 163(10), F1237-F1244.
  • [26] Thostenson, E.T.; Ren, Z.; Chou, T.W. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol., 2001, 61, 1899–1912.
  • [27] Yola, M.L.; Eren, T.; Atar, N. Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma. Biosens. Bioelectron., 2014, 60, 277-285.
  • [28] Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015, 7, 15-37.
  • [29] Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc., 2013, 135, 18-21.
  • [30] Tian, J.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheet: a highly efficient fluorosensor for rapid, ultrasensitive detection of Cu(2+). Anal. Chem., 2013, 85, 5595-5599.
  • [31] Yola, M.L.; Eren, T.; Atar, N. A Molecular Imprinted Voltammetric Sensor Based on Carbon Nitride Nanotubes: Application to Determination of Melamine. J. Electrochem. Soc., 2016, 163(13), B588-B593,
  • [32] Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D. Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano, 2014, 8, 6123-6130.
  • [33] Lin, Y.; Bunker, C.E.; Fernando, K.A.S.; Connell, J.W. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices. ACS Appl. Mater. Interfaces, 2012, 4, 1110-1117.
  • [34] Atar, N.; Yola, M.L. Core-Shell Nanoparticles/two-dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc., 2018, 165(5), H255-H262.
  • [35] Yola, M.L.; Uzun, L.; Özaltın, N.; Denizli, A. Development of molecular imprinted nanosensor for determination of tobramycin in pharmaceuticals and foods. Talanta, 2014, 120, 318-324.
  • [36] Yola, M.L.; Atar, N. A Review: Molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal Chem., 2017, 13(1), 13-17.
  • [37] Atar, N.; Yola, M.L.; Eren, T. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Appl. Surf. Sci., 2016, 362, 315-322.
  • [38] Yola, M.L.; Eren, T.; Atar, N. A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: Application to selective determination of tyrosine in milk. Sens. Actuators, B. 2015, 210, 149-157.
  • [39] Yola, M.L.; Gupta, V.K.; Atar, N. New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng., C, 2016, 61, 368-375.
  • [40] Yola, M.L.; Atar, N. A Highly Efficient Nanomaterial with Molecular Imprinting Polymer: Carbon Nitride Nanotubes Decorated with Graphene Quantum Dots for Sensitive Electrochemical Determination of Chlorpyrifos. J. Electrochem. Soc., 2017, 164(6), B223-B229.
  • [41] Atar, N.; Yola, M.L. Core-Shell Nanoparticles/two-dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. J. Electrochem. Soc., 2018, 165(5), H255-H262.
There are 41 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Nermin Ozcan 0000-0001-5327-9090

Bahar Bankoğlu Yola This is me 0000-0002-2931-077X

Asiye Şahin 0000-0001-9287-2049

Necip Atar 0000-0001-8779-1412

Mehmet Lütfi Yola 0000-0001-7424-3425

Publication Date December 31, 2021
Acceptance Date December 29, 2021
Published in Issue Year 2021 Volume: 4 Issue: 2

Cite

APA Ozcan, N., Bankoğlu Yola, B., Şahin, A., Atar, N., et al. (2021). Development and Validation of Molecular Imprinted Sensors and Applicatıons to Real Samples. The International Journal of Materials and Engineering Technology, 4(2), 168-177.