Research Article
BibTex RIS Cite

3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV

Year 2017, Volume: 60 Issue: 2, 223 - 242, 01.04.2017
https://doi.org/10.25288/tjb.303032

Abstract

Digital elevation models have been evolved in decades, their resolution and accuracy have improved vividly. Geological, structural and geomorphological benefits of those high-quality digital elevation models enhanced the quality of the research and engineering and unfold the visibility of the data. Modern techniques such as laser scanners provide a quantum leap on digital modelling, however the cost of those methods limits their widespread usage. Improvements in stereo-photogrammetry did not decelerate. On the contrary, the evolution of Structure from Motion–Multi-view stereo-photogrammetry (SfM-MVS) method is accelerated by the continuous developments in digital photography and computer vision technologies. We have used a lightweight drone to acquire digital aerial photographs of an open mine pit for an ultimate purpose of modelling the terrain using SfM-MVS procedure. We have been able to derive a high resolution (0.3 m/pixel) DEM and a very high resolution (0.04 m/pixel) orthorectified aerial image. Both datasets are representing the topography with high sample point densities. Elevation model dataset has been compared with the regular topographic point measurements of the mine pit and the accuracy of the aerially derived model have been investigated. Sources of modelling errors, the effect of temporal physical changes in the terrain, effect and importance of geo-referencing have been discussed in detail. SfM-MVS is a cost-effective, rapid and promising technique for digital mapping, modelling and monitoring in various spatial scales of Geology.

References

  • Abdullah, Q., Bethel, J., Hussain, M., Munjy, R., 2013. Photogrammetric project and mission planning. In Manual of Photogrammetry, in: McGlone, J.C. (Ed.), American Society for Photogrammetry and Remote Sensing: Bethesda. MD, pp. 1187–1220.
  • Agisoft [WWW Document], 2016. URL http://www.agisoft.com/ (accessed 1.30.16).
  • Barazzetti, L., Scaioni, M., Remondino, F., 2010. Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. The Photogrammetric Record 25, 356–381. doi:10.1111/j.1477 9730.2010.00599.x
  • Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology 69, 163–178. doi:10.1016/j.jsg.2014.10.007
  • Bennet, M.J., 2015. Evaluating the Creation and Preservation Challenges of Photogrammetry-based 3D Models. UConn Libraries Published Works. Paper 52.
  • Brothelande, E., Lénat, J.-F., Normier, A., Bacri, C., Peltier, A., Paris, R., Kelfoun, K., Merle, O., Finizola, A., Garaebiti, E., 2015. Insights into the evolution of the Yenkahe resurgent dome (Siwi caldera, Tanna Island, Vanuatu) inferred from aerial high-resolution photogrammetry. Journal of Volcanology and Geothermal Research 299, 78.
  • Burns, J.H.R., Delparte, D., Gates, R.D., Takabayashi, M., 2015. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3:e1077.doi:10.7717/peerj.1077
  • Calakli, F., Ulusoy, O.A., Restrepo, M., Taubin, G., Mundy, L.J., 2012. High resolution surface reconstruction from multi-view aerial imagery [WWW Document]. Second International Conference on 3D Imaging, Modeling, Processing,
  • Visualization and Transmission (3DIMPVT).doi:10.1109/3DIMPVT.2012.54
  • Esposito, S., Fallavollita, P., Wahbeh, W., Nardinocchi, C., Balsi, M., 2014. Performance evaluation of UAV photogrammetric 3D reconstruction, in: Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Quebec City, QC, pp. 4788–4791. doi:10.1109/IGARSS.2014.6947565
  • Etimaden [WWW Document], 2016. URL http://www.etimaden.gov.tr/tr/page/uretim-emet (accessed 1.29.16).
  • Fan, L., Smethurst, J.A., Atkinson, P.M., Powrie, W. 2015. Error in target-based georeferencing and registration in terrestrial laser scanning. Computers and Geosciences 83, 54-64.
  • Forte, M., 2014. 3D ARCHAEOLOGY New Perspectives and Challenges – The Example of Çatalhöyük. Journal of Eastern Mediterranean Archaeology and Heritage Studies 2(1).
  • Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview stereopsis. IEEE transactions on pattern analysis and machine intelligence. 8.
  • Gimenez, R., Marzolff, I., Campo, M., Seeger, M., Ries, J., Casali, J., Alvarez-Mozos, J., 2009. Accuracy of
  • Gomez, C., Purdie, H., 2014. High-resolution monitoring of glacier and valley with combined ground- and UAV-based Photogrammetry: Study of fox valley, New Zealand, in: IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). Indonesia.
  • Gong, Y., Wang, Y.-F., 2011. Multi-view stereo point clouds visualization. Lecture Notes in Computer Science 281–290. doi:10.1007/978-3-642-240287_26
  • Granshaw, S.I., 1980. Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record 10, 181–207. doi:10.1111/j.1477-9730.1980.tb00020.x
  • Haukaas, C., 2015. New opportunities in digital archaeology: The use of low-cost Photogrammetry for 3D documentation of archaeological objects from Banks island, NWT (Electronic Thesis and Dissertation Repository No. Paper 2117.).
  • Helvacı, C., 2015. Geological Features of Neogene Basins Hosting Borate Deposits: An Overview of Deposits and Future Forecast, Turkey. Bulletin of The Mineral Research and Exploration 151, 169–215. doi:10.19111/bmre.05207
  • James, M.R., Robson, S., 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research 117, F03017. doi:10.1029/2011jf002289
  • James, M.R., Robson, S., 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms 39, 1413–1420. doi:10.1002/esp.3609
  • James, M.R., Varley, N., 2012. Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophysical Research Letters 39, L22303. doi:10.1029/2012gl054245
  • Javernick, L., Brasington, J., Caruso, B., 2014. Modeling the topography of shallow braided rivers using structure from motion photogrammetry. Geomorphology 213, 166–182. doi:10.1016/j.geomorph.2014.01.006
  • Kraus, K., 1993. Photogrammetry, Vol. 1: Fundamentals and standard processes. Dümmlers.
  • Lewis, A., Hilley, G.E., Lewicki, J.L., 2015. Integrated thermal infrared imaging and structure-frommotion
  • Lowe, D.G., 2004. Distinctive image features from scale-invariant Keypoints. International Journal of Computer Vision 60, 91–110. doi:10.1023/b:visi.0000029664.99615.94
  • Mackenzie, D., Elliott, J.R., Altunel, E., Walker, R.T., Kurban, Y.C., Schwenninger, J.-L., Parsons, B., 2016. Seismotectonics and rupture process of the MW 7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening. Geophysical Journal International, 206 (1), 501-524.
  • McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Wang, L., Elder, J.H., 2013. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-PIT mine. Geomatica, 67(3), 173-180.
  • Niethammer, U., Rothmund, S., James, M.R., Travelletti, J., Joswig, M., 2010. UAV-Based Remote Sensing of Landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Commission V Symposium, Newcastle upon Tyne, UK. Vol. XXXVIII, Part 5.
  • Remondino, F., 2006. Detectors and descriptors for photogrammetric applications. International Archives of the Photogrammetry, Remote Sensing
  • and Spatial Information Sciences: Symposium of ISPRS Commission III Photogrammetric Computer Vision PCV ’06, Int. Soc. for Photogramm. and Remote Sens., Bonn, Germany. 36, 49–54.
  • Rosnell, T., Honkavaara, E., 2012. Point cloud generation from aerial image data acquired by a Quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12, 453–480. doi:10.3390/s120100453
  • Shahbazi, M., Sohn, G., Théau, J. and Ménard, P., 2015. UAV-based point cloud generation for openpit mine modelling. The international archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XL-1W4, 313-320.
  • Skarlatos, D., Kiparissi, S., 2012. Comparison of Laser Scanning, Photogrammetry and SfM-MVS Pipeline Applied in Structures and Artificial Surfaces, in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress. Melbourne, Australia.
  • Tong, X., Liu, X., Chen, P., Liu, S., Jin, Y., Li, L., Xie, H., Luan, K., 2015. Integration of UAV-Based Photogrammetry and terrestrial laser scanning for the Three-Dimensional mapping and monitoring of open-pit mine areas. Remote Sensing 7, 6635–6662. doi:10.3390/rs70606635
  • Tonkin, T.N., Midgley, N.G., Cook, S.J., Graham, D.J., 2016. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology (in press). doi:10.1016/j.geomorph.2015.12.019
  • Tuffen, H., James, M.R., Castro, J.M., Schipper, C.I., 2013. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communications 4. doi:10.1038/ncomms3709
  • Ullman, S., 1979. The interpretation of structure from motion. Proceedings of the Royal Society of London B: Biological Sciences 203, 405–426. doi:10.1098/rspb.1979.0006
  • Van Damme, T., 2015. Computer Vision Photogrammetry For Underwater Archaeological Site Recording In A Low-Visibility Environment, in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Underwater 3D Recording and Modeling. Piano di Sorrento, Italy. doi:10.5194/isprsarchives-XL5-W5-231-2015
  • Vepakomma, U., Cormier, D., Thiffault, N., 2015. Potential of Uav based Convergent Photogrammetry in monitoring regeneration standards, in: ISPRS - International Archives of the Photogrammetry, Remote Sensing and
  • Spatial Information Sciences. Toronto, Canada, pp. 281–285. doi:10.5194/isprsarchives-XL1-W4-281-2015
  • Yücel, M.A., Turan, R.Y., 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using HighResolution
Year 2017, Volume: 60 Issue: 2, 223 - 242, 01.04.2017
https://doi.org/10.25288/tjb.303032

Abstract

References

  • Abdullah, Q., Bethel, J., Hussain, M., Munjy, R., 2013. Photogrammetric project and mission planning. In Manual of Photogrammetry, in: McGlone, J.C. (Ed.), American Society for Photogrammetry and Remote Sensing: Bethesda. MD, pp. 1187–1220.
  • Agisoft [WWW Document], 2016. URL http://www.agisoft.com/ (accessed 1.30.16).
  • Barazzetti, L., Scaioni, M., Remondino, F., 2010. Orientation and 3D modelling from markerless terrestrial images: Combining accuracy with automation. The Photogrammetric Record 25, 356–381. doi:10.1111/j.1477 9730.2010.00599.x
  • Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., 2014. Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology 69, 163–178. doi:10.1016/j.jsg.2014.10.007
  • Bennet, M.J., 2015. Evaluating the Creation and Preservation Challenges of Photogrammetry-based 3D Models. UConn Libraries Published Works. Paper 52.
  • Brothelande, E., Lénat, J.-F., Normier, A., Bacri, C., Peltier, A., Paris, R., Kelfoun, K., Merle, O., Finizola, A., Garaebiti, E., 2015. Insights into the evolution of the Yenkahe resurgent dome (Siwi caldera, Tanna Island, Vanuatu) inferred from aerial high-resolution photogrammetry. Journal of Volcanology and Geothermal Research 299, 78.
  • Burns, J.H.R., Delparte, D., Gates, R.D., Takabayashi, M., 2015. Integrating structure-from-motion photogrammetry with geospatial software as a novel technique for quantifying 3D ecological characteristics of coral reefs. PeerJ 3:e1077.doi:10.7717/peerj.1077
  • Calakli, F., Ulusoy, O.A., Restrepo, M., Taubin, G., Mundy, L.J., 2012. High resolution surface reconstruction from multi-view aerial imagery [WWW Document]. Second International Conference on 3D Imaging, Modeling, Processing,
  • Visualization and Transmission (3DIMPVT).doi:10.1109/3DIMPVT.2012.54
  • Esposito, S., Fallavollita, P., Wahbeh, W., Nardinocchi, C., Balsi, M., 2014. Performance evaluation of UAV photogrammetric 3D reconstruction, in: Geoscience and Remote Sensing Symposium (IGARSS). IEEE, Quebec City, QC, pp. 4788–4791. doi:10.1109/IGARSS.2014.6947565
  • Etimaden [WWW Document], 2016. URL http://www.etimaden.gov.tr/tr/page/uretim-emet (accessed 1.29.16).
  • Fan, L., Smethurst, J.A., Atkinson, P.M., Powrie, W. 2015. Error in target-based georeferencing and registration in terrestrial laser scanning. Computers and Geosciences 83, 54-64.
  • Forte, M., 2014. 3D ARCHAEOLOGY New Perspectives and Challenges – The Example of Çatalhöyük. Journal of Eastern Mediterranean Archaeology and Heritage Studies 2(1).
  • Furukawa, Y., Ponce, J., 2010. Accurate, dense, and robust multiview stereopsis. IEEE transactions on pattern analysis and machine intelligence. 8.
  • Gimenez, R., Marzolff, I., Campo, M., Seeger, M., Ries, J., Casali, J., Alvarez-Mozos, J., 2009. Accuracy of
  • Gomez, C., Purdie, H., 2014. High-resolution monitoring of glacier and valley with combined ground- and UAV-based Photogrammetry: Study of fox valley, New Zealand, in: IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES). Indonesia.
  • Gong, Y., Wang, Y.-F., 2011. Multi-view stereo point clouds visualization. Lecture Notes in Computer Science 281–290. doi:10.1007/978-3-642-240287_26
  • Granshaw, S.I., 1980. Bundle adjustment methods in engineering photogrammetry. The Photogrammetric Record 10, 181–207. doi:10.1111/j.1477-9730.1980.tb00020.x
  • Haukaas, C., 2015. New opportunities in digital archaeology: The use of low-cost Photogrammetry for 3D documentation of archaeological objects from Banks island, NWT (Electronic Thesis and Dissertation Repository No. Paper 2117.).
  • Helvacı, C., 2015. Geological Features of Neogene Basins Hosting Borate Deposits: An Overview of Deposits and Future Forecast, Turkey. Bulletin of The Mineral Research and Exploration 151, 169–215. doi:10.19111/bmre.05207
  • James, M.R., Robson, S., 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. Journal of Geophysical Research 117, F03017. doi:10.1029/2011jf002289
  • James, M.R., Robson, S., 2014. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Processes and Landforms 39, 1413–1420. doi:10.1002/esp.3609
  • James, M.R., Varley, N., 2012. Identification of structural controls in an active lava dome with high resolution DEMs: Volcán de Colima, Mexico. Geophysical Research Letters 39, L22303. doi:10.1029/2012gl054245
  • Javernick, L., Brasington, J., Caruso, B., 2014. Modeling the topography of shallow braided rivers using structure from motion photogrammetry. Geomorphology 213, 166–182. doi:10.1016/j.geomorph.2014.01.006
  • Kraus, K., 1993. Photogrammetry, Vol. 1: Fundamentals and standard processes. Dümmlers.
  • Lewis, A., Hilley, G.E., Lewicki, J.L., 2015. Integrated thermal infrared imaging and structure-frommotion
  • Lowe, D.G., 2004. Distinctive image features from scale-invariant Keypoints. International Journal of Computer Vision 60, 91–110. doi:10.1023/b:visi.0000029664.99615.94
  • Mackenzie, D., Elliott, J.R., Altunel, E., Walker, R.T., Kurban, Y.C., Schwenninger, J.-L., Parsons, B., 2016. Seismotectonics and rupture process of the MW 7.1 2011 Van reverse-faulting earthquake, eastern Turkey, and implications for hazard in regions of distributed shortening. Geophysical Journal International, 206 (1), 501-524.
  • McLeod, T., Samson, C., Labrie, M., Shehata, K., Mah, J., Lai, P., Wang, L., Elder, J.H., 2013. Using video acquired from an unmanned aerial vehicle (UAV) to measure fracture orientation in an open-PIT mine. Geomatica, 67(3), 173-180.
  • Niethammer, U., Rothmund, S., James, M.R., Travelletti, J., Joswig, M., 2010. UAV-Based Remote Sensing of Landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Commission V Symposium, Newcastle upon Tyne, UK. Vol. XXXVIII, Part 5.
  • Remondino, F., 2006. Detectors and descriptors for photogrammetric applications. International Archives of the Photogrammetry, Remote Sensing
  • and Spatial Information Sciences: Symposium of ISPRS Commission III Photogrammetric Computer Vision PCV ’06, Int. Soc. for Photogramm. and Remote Sens., Bonn, Germany. 36, 49–54.
  • Rosnell, T., Honkavaara, E., 2012. Point cloud generation from aerial image data acquired by a Quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12, 453–480. doi:10.3390/s120100453
  • Shahbazi, M., Sohn, G., Théau, J. and Ménard, P., 2015. UAV-based point cloud generation for openpit mine modelling. The international archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol XL-1W4, 313-320.
  • Skarlatos, D., Kiparissi, S., 2012. Comparison of Laser Scanning, Photogrammetry and SfM-MVS Pipeline Applied in Structures and Artificial Surfaces, in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXII ISPRS Congress. Melbourne, Australia.
  • Tong, X., Liu, X., Chen, P., Liu, S., Jin, Y., Li, L., Xie, H., Luan, K., 2015. Integration of UAV-Based Photogrammetry and terrestrial laser scanning for the Three-Dimensional mapping and monitoring of open-pit mine areas. Remote Sensing 7, 6635–6662. doi:10.3390/rs70606635
  • Tonkin, T.N., Midgley, N.G., Cook, S.J., Graham, D.J., 2016. Ice-cored moraine degradation mapped and quantified using an unmanned aerial vehicle: A case study from a polythermal glacier in Svalbard. Geomorphology (in press). doi:10.1016/j.geomorph.2015.12.019
  • Tuffen, H., James, M.R., Castro, J.M., Schipper, C.I., 2013. Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nature Communications 4. doi:10.1038/ncomms3709
  • Ullman, S., 1979. The interpretation of structure from motion. Proceedings of the Royal Society of London B: Biological Sciences 203, 405–426. doi:10.1098/rspb.1979.0006
  • Van Damme, T., 2015. Computer Vision Photogrammetry For Underwater Archaeological Site Recording In A Low-Visibility Environment, in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Underwater 3D Recording and Modeling. Piano di Sorrento, Italy. doi:10.5194/isprsarchives-XL5-W5-231-2015
  • Vepakomma, U., Cormier, D., Thiffault, N., 2015. Potential of Uav based Convergent Photogrammetry in monitoring regeneration standards, in: ISPRS - International Archives of the Photogrammetry, Remote Sensing and
  • Spatial Information Sciences. Toronto, Canada, pp. 281–285. doi:10.5194/isprsarchives-XL1-W4-281-2015
  • Yücel, M.A., Turan, R.Y., 2016. Areal Change Detection and 3D Modeling of Mine Lakes Using HighResolution
There are 43 citations in total.

Details

Subjects Geological Sciences and Engineering (Other)
Journal Section Makaleler - Articles
Authors

İnan Ulusoy This is me

Erdal Şen This is me

Alaettin Tuncer This is me

Harun Sönmez This is me

Hasan Bayhan This is me

Publication Date April 1, 2017
Submission Date September 6, 2016
Acceptance Date March 14, 2017
Published in Issue Year 2017 Volume: 60 Issue: 2

Cite

APA Ulusoy, İ., Şen, E., Tuncer, A., Sönmez, H., et al. (2017). 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV. Türkiye Jeoloji Bülteni, 60(2), 223-242. https://doi.org/10.25288/tjb.303032
AMA Ulusoy İ, Şen E, Tuncer A, Sönmez H, Bayhan H. 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV. Geol. Bull. Turkey. April 2017;60(2):223-242. doi:10.25288/tjb.303032
Chicago Ulusoy, İnan, Erdal Şen, Alaettin Tuncer, Harun Sönmez, and Hasan Bayhan. “3D Multi-View Stereo Modelling of an Open Mine Pit Using a Lightweight UAV”. Türkiye Jeoloji Bülteni 60, no. 2 (April 2017): 223-42. https://doi.org/10.25288/tjb.303032.
EndNote Ulusoy İ, Şen E, Tuncer A, Sönmez H, Bayhan H (April 1, 2017) 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV. Türkiye Jeoloji Bülteni 60 2 223–242.
IEEE İ. Ulusoy, E. Şen, A. Tuncer, H. Sönmez, and H. Bayhan, “3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV”, Geol. Bull. Turkey, vol. 60, no. 2, pp. 223–242, 2017, doi: 10.25288/tjb.303032.
ISNAD Ulusoy, İnan et al. “3D Multi-View Stereo Modelling of an Open Mine Pit Using a Lightweight UAV”. Türkiye Jeoloji Bülteni 60/2 (April 2017), 223-242. https://doi.org/10.25288/tjb.303032.
JAMA Ulusoy İ, Şen E, Tuncer A, Sönmez H, Bayhan H. 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV. Geol. Bull. Turkey. 2017;60:223–242.
MLA Ulusoy, İnan et al. “3D Multi-View Stereo Modelling of an Open Mine Pit Using a Lightweight UAV”. Türkiye Jeoloji Bülteni, vol. 60, no. 2, 2017, pp. 223-42, doi:10.25288/tjb.303032.
Vancouver Ulusoy İ, Şen E, Tuncer A, Sönmez H, Bayhan H. 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV. Geol. Bull. Turkey. 2017;60(2):223-42.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php