Research Article
BibTex RIS Cite

Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı

Year 2021, Volume: 64 Issue: 3, 349 - 382, 09.07.2021
https://doi.org/10.25288/tjb.846813

Abstract

Kuşadası Körfezi’ni kuzeyden sınırlayan Gümüldür Fayı (GF), yaklaşık 30 km uzunluğuyla Karacadağ ile Ege Denizi arasında keskin bir morfolojik sarplık sunar. Bu çalışmada, fay boyunca gelişen jeomorfolojik belirteçler ve morfometrik parametreler arazi çalışmalarıyla birlikte değerlendirilmiş ve buna göre Gümüldür Fayı’nın Kuvaterner dönem aktivitesi ile bölgesel yükselim hızına dair veriler elde edilmiştir. Arazi çalışmaları Gümüldür Fayı’nın genel olarak K40°-75°B doğrultulu, 60°-83° GB eğimli (eğim açısı batıya doğru artan) ve kuzeydoğuya doğru dış bükey bir geometri sergileyen eğim atımlı normal fay olduğunu göstermektedir. Dağ önü cephesi eğriliği (Smf: 1,13-1,56), vadi tabanı genişliği-yüksekliği oranı (Vf; 0,10-1,00), üçgen yüzey oranı Lf/Ls (B: 4,75-88,35; K: 0,12-9,30), asimetri faktörü (AF: 19-78), havza şekli geometrisi (Bs: 1,05-5,8), akarsu eğim-uzunluk (Hack) indisi (SL: 25-6094,44), hipsometrik eğri ve hipsometrik eğri integral (HI: 0,16-0,53) ve kaya dayanım parametreleri gibi morfometrik indislerin kantitatif ölçümü, fayın taban bloğunun 0,5 mm’den daha fazla bir hızla yükseldiğine ve fayın yüksek derecede aktif olarak değerlendirilebileceğine işaret etmektedir. Geometrik olarak üç segmentten oluşan GF üzerinde yapılan kinematik çalışmalara göre bölgede KKD-GGB yönündeki bir genişleme rejiminin denetiminde geliştiği, üç segmentin bağımsız olarak kırılması halinde Payamlı segmenti 6,12 büyüklüğünde, Gümüldür ana segmenti 6,45 büyüklüğünde, Ahmetbeyli segmenti ise 5,78 büyüklüğünde, tek segment olarak kırılması halinde ise magnitüdü 6,81’e ulaşabilecek depremler üretebilecek potansiyeli olduğu söylenebilir. Bu nedenle Gümüldür Fayı’nın geçmiş dönem aktivitesini ortaya çıkartmak ve bölgedeki sismik tehlike düzeyini belirlemek için hendek tabanlı paleosismolojik çalışmalara ihtiyaç vardır.

References

  • Akkar, S., Azak, T., Çan, T., Çeken, U., Demircioğlu Tümsa, M. D., Duman, T. Y., ... & Zülfikar, Ö. (2018). Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 16(8), 3197-3228. https://doi.org/10.1007/s10518-018-0349-1
  • Aktuğ, B. & Kılıçoğlu, A. 2006. Recent crustal deformation of Izmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field. Journal of Geodynamics, 41(5), 471-484.
  • Akyol, N., Zhu, L., Mitchell, B. J., Sözbilir, H. & Kekovalı, K. 2006. Crustal structure and local seismicity in western Anatolia. Geophysical Journal International, 166(3), 1259-1269.
  • Akyüz, H. S. & Altunel, E. (2001). Geological and archaeological evidence for post–Roman earthquake surface faulting at Cibyra, SW Turkey. Geodinamica Acta, 14(1-3), 95-101.
  • Alipoor, R., Poorkermani, M., Zare, M. & El Hamdouni, R. (2011). Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology, 128(1-2), 1-14.
  • Altunel, E. & Pınar, A. (2021). Tectonic implications of the Mw 6.8, 30 October 2020 Kuşadası Gulf earthquake in the frame of active faults of Western Turkey. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-2011-6
  • Altunel, E. (1999). Geological and geomorphological observations in relation to the 20 September 1899 Menderes earthquake, western Turkey. Journal of the Geological Society, 156(2), 241-246.
  • Ambraseys, N. (2009). Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press.
  • Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. The Annals of Mathematical Statistics, 22(3), 327-351.
  • Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848.
  • Bagha, N., Arian, M., Ghorashi, M., Pourkermani, M., El Hamdouni, R. & Solgi, A. (2014). Evaluation of relative tectonic activity in the Tehran basin, central Alborz, northern Iran. Geomorphology, 213, 66-87.
  • Balaban U. D. (2019). Lebedos antik kenti Ürkmez-Mersinalanı kurtarma kazısından ele geçen seramikler [Yayımlanmamış Yüksek Lisans Tezi]. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü.
  • Barka A. A. & Reilinger R. (1997). Active tectonics of the Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geophis. XI, 587-610.
  • Başarır Baştürk, N., Özel, N.M., Altınok, Y. ve Duman, T.Y. 2017. Türkiye ve yakın çevresi için geliştirilmiş tarihsel dönem (MÖ 2000 - MS 1900) deprem katalogu. T.Y. Duman (Ed.), Türkiye Sismotektonik Haritası Açıklama Kitabı Özel Yayınlar Serisi-34 (239 s.). Maden Tetkik ve Arama Genel Müdürlüğü.
  • Başarır, E. & Konuk, Y. T. (1981). Gümüldür yöresinin kristalin temeli ve allokton birimleri. Türkiye Jeoloji Kurumu Bülteni, 24(2), 1-6.
  • Bayrak, Y. & Bayrak, E. (2012). Regional variations and correlations of Gutenberg–Richter parameters and fractal dimension for the different seismogenic zones in Western Anatolia. Journal of Asian Earth Sciences, 58, 98-107.
  • Bayrak, Y. & Türker, T. (2016) The determination of earthquake hazard parameters deduced from Bayesian approach for different seismic source regions of Western Anatolia. Pure and Applied Geophysics, 173(1), 205-220.
  • Berberian, M. & Arshadi, S. (1976). On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city. Geol. Surv. Iran Rep, 39, 397-418.
  • Borsi, S., Ferrara, G., Innocenti, F. & Mazzuoli, R. (1972). Geochronology and petrology of recent volcanics in the Eastern Aegean Sea (West Anatolia and Lesvos Island). Bulletin Volcanologique, 36(3), 473.
  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological magazine, 96(2), 109-117.
  • Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica acta, 14(1-3), 3-30.
  • Bozkurt, E. & Park, R. G. (1997). Evolution of a mid-Tertiary extensional shear zone in the southern Menderes Massif, western Turkey. Bulletin de la Société Géologique de France, 168(1), 3-14.
  • Bull, W. B. (1978). Geomorphic Tectonic Activity Classes of the South Front of the San Gabriel Mountains, California. Geosciences Department, University of Arizona.
  • Bull, W. B. (2007). Mountain Fronts. In Tectonic Geomorphology of Mountains, (pp. 75-116). Blackwell Publishing Ltd.
  • Bull, W. B., 2007. Tectonic Geomorphology of Mountains: a new Approach to Paleoseismology. Blackwell Publishing Ltd.
  • Bull, W.B. & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. Doehring, D.O (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium (115-138). State University of New York, Binghamton.
  • Burbank, D. & Anderson, R. A. (2000). Tectonic Geomorphology, (pp. 201-231). Blackwell Science, USA.
  • Burbank, D. W., Anderson, R. S. (2000). Tectonic Geomorphology. Backwell Science.
  • Cannon, P. J. (1976). Generation of explicit parameters for a quantitative geomorphic study of the mill creek drainage basin. Oklahoma Geology Notes, 36(1), 3–16.
  • Caputo, R. & Helly, B. (2005). The Holocene activity of the Rodia Fault, Central Greece. Journal of Geodynamics, 40(2-3), 153–169.
  • Caputo, R. & Helly, B. 2008. The use of distinct disciplines to investigate past earthquakes. Tectonophysics, 453(1-4), 7-19.
  • Caputo, R., Helly, B., Pavlides, S. & Papadopoulos, G. (2004). Palaeoseismological investigation of the Tyrnavos Fault, Central Greece. A contribution to the seismic hazard assessment of Thessaly. Tectonophysics, 394(1), 1–20.
  • Chamot-Rooke N. & Dotmed Working Group (2005). DOTMED – Deep Offshore Tectonics of the Mediterranean: A synthesis of deep marine data in eastern Mediterranean. Mémoire de la Société géologique de France and American Association of Petroleum Geologists, numéro spécial, 177, 64 pp, 9 maps.
  • Chatzipetros, A., Kiratzi, A., Sboras, S., Zouros, N. & Pavlides, S. (2013). Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics, 597, 106-122.
  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571-581.
  • Çetinkaplan, M., Candan, O., Oberhänsli, R., Sudo, M., & Cenki‐Tok, B. (2020) P–T–t evolution of the Cycladic Blueschist Unit in Western Anatolia/Turkey: Geodynamic implications for the Aegean region. Journal of Metamorphic Geology, 38(4), 379-419.
  • Daxberger, H. & Riller, U. (2015). Kinematics of Neogene to Recent upper-crustal deformation in the southern Central Andes (23–28 S) inferred from fault–slip analysis: evidence for gravitational spreading of the Puna Plateau. Tectonophysics, 642, 16-28.
  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84-92.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96, 150–173.
  • Emre, Ö., Duman, T. Y., Özalp, S., Elmaci, H. & Olgun, S. (2011). 1:250.000 scale active fault map series of Turkey, Kayseri (NJ36-8) Quadrange. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275.
  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. & Göktaş, F. (2005). İzmir yakın çevresinin diri fayları ve deprem potansiyelleri (Rapor no:10754). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.
  • Emre, T., Sözbilir, H. (2007). Tectonic Evolution of the Kiraz Basin, Küçük Menderes Graben: Evidence for Compression/Uplift-related Basin Formation Overprinted by Extensional Tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16(4), 441-470.
  • Erdoğan, B. (1990). Tectonic relations between Izmir-Ankara zone and Karaburun belt. Maden Tetkik ve Arama Dergisi, 110, 1-15.
  • Eski, S., Sözbilir, H., Uzel, B., Özkaymak, Ç. & Sümer, Ö. (2020). Gölmarmara Fayı’nın Morfotektonik Evriminin CBS Tabanlı Yöntemlerle Araştırılması, Gediz Grabeni, Batı Anadolu. Türkiye Jeoloji Bülteni, 63(3), 345-372. https://doi.org/10.25288/tjb.679584
  • Eyubagil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B. & Özkaymak, Ç. (2020). Present-day strike-slip deformation within the southern part of İzmir Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment, western Anatolia. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-2005-26
  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14(1-3), 45-55.
  • Gürer, A., Bayrak, M. & Gürer, Ö. F. (2004). Magnetotelluric images of the crust and mantle in the southwestern Taurides, Turkey. Tectonophysics, 391(1-4), 109-120.
  • Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the us Geological Survey, 1(4), 421-429.
  • Hare, P. W. & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.
  • Hurtrez, J. E., Sol, C. & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small‐scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(9), 799-808.
  • ISC (2020). http://www.isc.ac.uk/iscbulletin/search/catalogue/interactive/ Retrieved 05.03.2021.
  • Jackson, J. & McKenzie, D. (1989). Relations between seismicity and paleomagnetic rotations in zones of distributed continental deformation. In Paleomagnetic Rotations and Continental Deformation (pp. 33-42). Springer, Dordrecht.
  • Keller, E. A. (1986). Investigation of active tectonics: use of surficial earth processes. In: R. E. Wallace (Ed.), Active Tectonics, Studies in Geophysics (136-147). National Academy Press.
  • Keller, E.A., & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift, and Landscape. Upper Saddle River, New Jersey, Prentice-Hall Inc.
  • Khalifa, A., Cakir, Z., Lewis, O. & Şinasi, K. (2018). Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27(2), 110-126.
  • Koçyigit, A., Yusufoglu, H., Bozkurt, E. 1999. Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society, London, 156, 1240-1242.
  • Konak N. (2002a). 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel M. (ed.)). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.
  • Konak N. (2002b). 1/500.000 Türkiye Jeoloji Haritası Denizli Paftası, (Şenel M. (ed.)). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.
  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1-2), 1-42.
  • Lykousis, V., Anagnostou, C., Pavlakis, P., Rousakis, G. & Alexandri, M. (1995). Quaternary sedimentary history and neotectonic evolution of the eastern part of Central Aegean Sea, Greece. Marine Geology, 128(1-2), 59-71.
  • Maniatis, G. & Hampel, A. (2008). Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models. Journal of Structural Geology, 30(1), 21-28.
  • Mayer, L. (1986). Tectonic geomorphology of escarpments and mountain fronts. In R. E. Wallace (Ed.), Active tectonics, Studies in Geophysics (pp. 125-135). National Academy Press.
  • McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • McKenzie, D. (1978). Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254.
  • Mountrakis, D., Kilias, A., Vavliakis, E., Psilovikos, A. & Thomaidou, E. (2003). Neotectonic map of Samos island (Aegean Sea, Greece): implication of geographical information systems in the geological mapping. In 4th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy (pp. 11-13).
  • Mozafari, N., Tikhomirov, D., Sumer, Ö., Özkaymak, Ç., Uzel, B., Yeşilyurt, S., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H. & Akçar, N. (2019). Dating of active normal fault scarps in the Büyük Menderes Graben (western Anatolia) and its implications for seismic history. Quaternary Science Reviews, 220, 111-123. https://doi.org/10.1016/j.quascirev.2019.07.002
  • Necmioğlu, Ö. (2014). Tsunami Hazard in Turkey and Surroundings [Doctoral dissertation, PhD. Thesis]. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute Istanbul, Turkey.
  • Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. (2004). Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strike-slip faulting in the Aegean extensional province. Tectonophysics, 391(1-4), 67-83.
  • Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. (2005). Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219(2-3), 155-171.
  • Okay, A. I. (2001). Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. International Journal of Earth Sciences, 89(4), 709-727.
  • Okay, A. I. & Altiner, D. (2007). A condensed Mesozoic succession north of Izmir: A fragment of the Anatolide-Tauride platform in the Bornova Flysch Zone. Turkish Journal of Earth Sciences, 16(3), 257-279.
  • Okay, A. I. & Siyako, M. (1993). İzmir-Balıkesir arasında İzmir-Ankara Neo-Tetis Kenedinin yeni konumu. Türkiye ve Çevresinin Tektoniği-Petrol Potansiyeli. S. Turgut (Ed.) Ozan Sungurlu Sempozyumu Bildirileri, (s. 333-355).
  • Okay, A. İ., Kaşlılar-Özcan, A., Imren, C., Boztepe-Güney, A., Demirbağ, E. & Kuşçu, İ. (2000). Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics, 321(2), 189-218.
  • Özgenç, İ. (1978). Cumaovası (İzmir) asit volkanitlerinde saptanan iki ekstrüzyon aşaması arasındaki göreli yaş ilişkisi. Türkiye Jeoloji Kurumu Bülteni, 21(1), 31-84.
  • Özkaymak, Ç. & Sözbilir, H. (2008). Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17(3), 615-635.
  • Özkaymak, Ç., Sözbi̇li̇r, H., Uzel, B. & Akyüz, H. S. (2011). Geological and palaeoseismological evidence for late Pleistocene− Holocene activity on the Manisa Fault Zone, western Anatolia. Turkish Journal of Earth Sciences, 20(4), 449-474.
  • Özkaymak, Ç. & Sözbilir, H. (2012). Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173, 128-140.
  • Özkaymak, Ç., Sözbilir, H. & Uzel, B. (2013). Neogene–Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.
  • Özkaymak, Ç. (2015) Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27(2-3), 110-129.
  • Özkaymak, Ç., Sözbilir, H., Gecievi, M. O., & Tiryakioğlu, İ. (2019). Late Holocene coseismic rupture and aseismic creep on the Bolvadin Fault, Afyon Akşehir Graben, western Anatolia. Turkish Journal of Earth Sciences, 28(6), 787-804.
  • Özsayın, E. (2016). Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253.
  • Pavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G. & Chatzipetros, A. (2009). Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. In Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering (Vol. 10, p. 2009).
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1-2), 74-87.
  • Radaideh, O. M. & Mosar, J. (2019). Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics, 768, Artcile 228179. https://doi.org/10.1016/j.tecto.2019.228179
  • Ramírez‐Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23(4), 317-332. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4<317::AID-ESP845>3.0.CO;2-V
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., ... & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005JB004051
  • Rimando, J. M. & Schoenbohm, L. M. (2020). Regional relative tectonic activity of structures in the Pampean flat slab segment of Argentina from 30 to 32° S. Geomorphology, 350, Artcile 106908.
  • Ring, U. W. E., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441.
  • Roberts, G. P. (1996). Variation in fault-slip directions along active and segmented normal fault systems. Journal of Structural Geology, 18(6), 835-845.
  • Rockwell, T. K., Keller, E. A., Clark, M. N. & Johnson, D. L. (1984). Chronology and rates of faulting of Ventura River terraces, California. Geological Society of America Bulletin, 95(12), 1466-1474.
  • Schumm, S.A., Dumont, J.F. & Holbrook, J.M. (2000). Active Tectonics and Alluvial Rivers. Cambridge University Press
  • Schwanghart, W. & Kuhn, N.J. (2010) TopoToolbox: A set of Matlab functions for topographic analysis. Environment Modelling and Software 25, 770-781.
  • Selby, M. J. (1980). A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie Stuttgart, 24(1), 31-51.
  • Seyitoǧlu, G. & Scott, B. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155-166.
  • Seyitoğlu, G., Scott, B. C. & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149(4), 533-538.
  • Seyitoǧlu, G., Işık, V. & Çemen, I. (2004). Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova, 16(6), 358-364.
  • Seyitoğlu, G. ve Esat, K. (2019) Bolu-İzmir Arasında Kuzey Anadolu Fay Zonu Güney Kolu’na Ait Olası Segment Dağılımı: İzmir-Balıkesir Transfer Zonu Yorumunun Uygunluğu Üzerine Bir Tartışma. H. Sözbilir, Ç. Özkaymak, B. Uzel, Ö. Sümer, M. Softa, Ç. Tepe, S. Eski (Ed.ler), 72. Türkiye Jeoloji Kurultayı Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s.475-477). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo.org.tr/resimler/ekler/174e0f6fa731893_ek.pdf 475-477.
  • Silva, P. G., Goy, J. L., Zazo, C. & Bardajı, T. (2003). Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225.
  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q. & Turan, M. (2018). Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta, 30(1), 249-264.
  • Soysal, H., Sipahioğlu, S., Kolçak, D. & Altınok, Y. (1981). Türkiye ve Cevresinin Tarihsel Deprem Kataloğu. (Proje no: TBAG 341). İstanbul. TUBITAK.
  • Sözbilir, H. (2001). Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Sciences, 10(2), 51-67.
  • Sözbilir, H. (2002). Geometry and origin of folding in the Neogene sediments of the Gediz Graben, western Anatolia, Turkey. Geodinamica Acta, 15(5-6), 277-288.
  • Sözbilir, H. (2005). Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey. Geodinamica Acta, 18(3-4), 255-282.
  • Sözbilir, H., Bora, U., Sümer, Ö., Özkaymak, Ç., Ersoy, E. Y., Koçer, T. & Demirtaş, R. (2008). D-B Uzanımlı İzmir Fayı ile KD-Uzanımlı Seferihisar Fayı’nın Birlikte Çalıştığına Dair Veriler: İzmir Körfezi’ni Oluşturan Aktif Faylarda Kinematik ve Paleosismolojik Çalışmalar, Batı Anadolu/. Türkiye Jeoloji Bülteni, 51(2), 91-114. https://dergipark.org.tr/tr/pub/tjb/issue/28370/301652
  • Sözbilir, H., Softa, M., Eski, S., Tepe, Ç., Akgün, M., Pamukçu, OA., Çırmık, A., Utku, M., Özdağ, ÖC., Özden, G., Özçelik, Ö., Evlek, D. A., Çakır, R., Baba, A., Uzelli, T. & Tatar, O. (2020). 30 Ekim 2020 Sisam (Samos) Depremi (Mw: 6,9) Değerlendirme Raporu. Dokuz Eylül Üniversitesi, Deprem Araştırma ve Uygulama Merkezi (DAUM). Erişim adresi http://daum.deu.edu.tr/wp-content/uploads/2020/11/Samos-Deprem-Raporu.pdf
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül, F., İnci, U., Helvacı, U. & Özkaymak, Ç. 2009. 17-20 Ekim 2005-Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52(2), 217-238. https://dergipark.org.tr/tr/pub/tjb/issue/28366/301607
  • Stiros, S. C., Laborel, J., Laborel-Deguen, F., Papageorgiou, S., Evin, J. & Pirazzoli, P. A. (2000). Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece. Marine Geology, 170(1-2), 41-58.
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142.
  • Stucchi, M., Rovida, A., Capera, A. G., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., ... Sesetyan, K. 2013. The SHARE European earthquake catalogue (SHEEC) 1000–1899. Journal of Seismology, 17(2), 523-544. https://doi.org/10.1007/s10950-012-9335-2
  • Sümer, Ö. (2015). Evidence for the reactivation of a pre-existing zone of weakness and its contributions to the evolution of the Küçük Menderes Graben: a study on the Ephesus Fault, Western Anatolia, Turkey. Geodinamica Acta, 27(2-3), 130-154.
  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: Extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.
  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society, London, Special Publications, 28 (1), 575-589.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N. Christie-Blick (eds) Strike-Slip Faulting and Basin Formation. Spec. Publ. Soc. Econ. Paleontol. Mineral, 37, 227- 264.
  • Şengör, A. M. C. & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.
  • Tan, O., Papadimitriou, E. E., Pabucçu, Z., Karakostas, V., Yörük, A. & Leptokaropoulos, K. (2014). A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophysica, 62(6), 1283-1309.
  • Tan, O., Tapirdamaz, M. C. & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17(2), 405-418.
  • Taxeidis, K. (2003). Study of historical seismicity of the Eastern Aegean Islands [Doctoral dissertation, PhD thesis], N. K. University of Athens.
  • Taymaz, T., Jackson, J. & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433-490.
  • Tepe, Ç. & Sözbilir, H. (2017). Tectonic geomorphology of the Kemalpaşa Basin and surrounding horsts, southwestern part of the Gediz Graben, Western Anatolia. Geodinamica Acta, 29(1), 70-90.
  • Topal, S. & Özkul, M. (2018). Determination of relative tectonic activity of the Honaz fault (SW Turkey) using geomorphic indices. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1200-1208.
  • Topal, S. (2019a). Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): Insights from geomorphic indices and drainage analysis. Journal of Mountain Science, 16(4), 909-923.
  • Topal, S. (2019b). Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 37-48.
  • Troiani, F., Della Seta, M. (2008). The use of the Stream Length–Gradient index in morphotectonic analysis of small catchments: A case study from Central Italy. Geomorphology, 102(1), 159-168.
  • Tsimi, C. & Ganas, A. (2015). Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults. Geomorphology, 234, 171-181.
  • Tüysüz, O. (2002). Aktif Tektonikte Jeomorfik İndisler. Aktif Tektonik Ders Notları. İstanbul, (yayınlanmamış).
  • Uzel, B. & Sözbilir, H. (2008). A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17(3), 559-591.
  • Uzel, B., Sözbilir, H. & Özkaymak, Ç. (2012). Neotectonic evolution of an actively growing superimposed basin in western Anatolia: The inner bay of Izmir, Turkey. Turkish Journal of Earth Sciences, 21(4), 439-471.
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N. & Langereis, C. G. (2013). Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics, 65, 94-116.
  • Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118-130.
  • Wells, D. L. & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Ritter, J. B. & Wesling, J. R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1(3), 239-265. https://doi.org/10.1016/0169-555X(88)90016-5
  • Willgoose, G. & Hancock, G. (1998). Revisiting the hypsometric curve as an indicator of form and process in transport‐limited catchment. Earth Surface Processes and Landforms 23(7), 611-623.
  • Yıldırım, C. (2014). Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183-192.
  • Zhu, L., Akyol, N., Mitchell, B. J. & Sozbilir, H. (2006). Seismotectonics of western Turkey from high resolution earthquake relocations and moment tensor determinations. Geophysical Research Letters, 33(7).
  • Zimmermann, R., Brandmeier, M., Andreani, L., Mhopjeni, K. & Gloaguen, R. (2016). Remote sensing exploration of Nb-Ta-LREE-enriched carbonatite (Epembe/Namibia). Remote Sensing, 8(8), 620.

Morphometric and Kinematic Analysis of the Gümüldür Fault and Its Seismotectonic Implications for Western Anatolia

Year 2021, Volume: 64 Issue: 3, 349 - 382, 09.07.2021
https://doi.org/10.25288/tjb.846813

Abstract

Kuşadası Bay, which is controlled by active normal faults, is located in an evolving graben in the west of the Western Anatolian Extension System. Gümüldür Fault (GF), which restricts Kuşadası Bay to the north, has approximately 30 km long, fragmented structure between Ürkmez and Ahmetbeyli. GF, which strikes N (50o-55o) W direction, forms a sharp morphological escarpment between Ürkmez and Ahmetbeyli starting from Paleozoic basement rocks to Quaternary alluvium units. The dip angle of the fault planes increases to the west (40o-85oSW), and the fault is a dip-slip active normal fault with convex structure and geometry toward the northeast. To unravel the Quaternary activity of Gümüldür Fault and the evaluation of the regional uplift, morphometric and kinematic analysis was performed for the first time on the fault that includes well-preserved geomorphological markers. Quantitative measurement of morphometric indices such as mountain front sinuosity (Smf: 1.13-1.56), valley floor width to height ratio (Vf: 0.10-1.00), percentage faceting Lf/Ls ([L: 4.75-88.35, S: 0.12-9.30]), asymmetry factor (AF: 19-78 ), basin shape geometry (Bs: 1.05-5.98), stream length gradient (Hack) index (SL: 25-6094.44), hypsometric curve and hypsometric integral (HI: 0.16-0.53) and rock strength and climate parameters indicate that the footwall of the GF has been uplifting toward the west with more than 0.5 mm per year. According to kinematic studies of the GF, which is geometrically composed of three parts, the region developed under the control of an extensional regime oriented NNE-SSW. If it is broken into seperate segments, it has the potential to produce earthquakes with a magnitude of 6.12, 6,45 and 5.78, respectively. If considered as a single segment, it has the potential to produce earthquakes with a magnitude of 6.81 in Kuşadası Bay. For this reason, trench-based paleoseismological studies are needed to reveal the past activity of Gümüldür Fault and to determine the seismic hazard level in the region.

References

  • Akkar, S., Azak, T., Çan, T., Çeken, U., Demircioğlu Tümsa, M. D., Duman, T. Y., ... & Zülfikar, Ö. (2018). Evolution of seismic hazard maps in Turkey. Bulletin of Earthquake Engineering, 16(8), 3197-3228. https://doi.org/10.1007/s10518-018-0349-1
  • Aktuğ, B. & Kılıçoğlu, A. 2006. Recent crustal deformation of Izmir, Western Anatolia and surrounding regions as deduced from repeated GPS measurements and strain field. Journal of Geodynamics, 41(5), 471-484.
  • Akyol, N., Zhu, L., Mitchell, B. J., Sözbilir, H. & Kekovalı, K. 2006. Crustal structure and local seismicity in western Anatolia. Geophysical Journal International, 166(3), 1259-1269.
  • Akyüz, H. S. & Altunel, E. (2001). Geological and archaeological evidence for post–Roman earthquake surface faulting at Cibyra, SW Turkey. Geodinamica Acta, 14(1-3), 95-101.
  • Alipoor, R., Poorkermani, M., Zare, M. & El Hamdouni, R. (2011). Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran). Geomorphology, 128(1-2), 1-14.
  • Altunel, E. & Pınar, A. (2021). Tectonic implications of the Mw 6.8, 30 October 2020 Kuşadası Gulf earthquake in the frame of active faults of Western Turkey. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-2011-6
  • Altunel, E. (1999). Geological and geomorphological observations in relation to the 20 September 1899 Menderes earthquake, western Turkey. Journal of the Geological Society, 156(2), 241-246.
  • Ambraseys, N. (2009). Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press.
  • Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions. The Annals of Mathematical Statistics, 22(3), 327-351.
  • Angelier, J. (1984). Tectonic analysis of fault slip data sets. Journal of Geophysical Research: Solid Earth, 89(B7), 5835-5848.
  • Bagha, N., Arian, M., Ghorashi, M., Pourkermani, M., El Hamdouni, R. & Solgi, A. (2014). Evaluation of relative tectonic activity in the Tehran basin, central Alborz, northern Iran. Geomorphology, 213, 66-87.
  • Balaban U. D. (2019). Lebedos antik kenti Ürkmez-Mersinalanı kurtarma kazısından ele geçen seramikler [Yayımlanmamış Yüksek Lisans Tezi]. Adnan Menderes Üniversitesi Sosyal Bilimler Enstitüsü.
  • Barka A. A. & Reilinger R. (1997). Active tectonics of the Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geophis. XI, 587-610.
  • Başarır Baştürk, N., Özel, N.M., Altınok, Y. ve Duman, T.Y. 2017. Türkiye ve yakın çevresi için geliştirilmiş tarihsel dönem (MÖ 2000 - MS 1900) deprem katalogu. T.Y. Duman (Ed.), Türkiye Sismotektonik Haritası Açıklama Kitabı Özel Yayınlar Serisi-34 (239 s.). Maden Tetkik ve Arama Genel Müdürlüğü.
  • Başarır, E. & Konuk, Y. T. (1981). Gümüldür yöresinin kristalin temeli ve allokton birimleri. Türkiye Jeoloji Kurumu Bülteni, 24(2), 1-6.
  • Bayrak, Y. & Bayrak, E. (2012). Regional variations and correlations of Gutenberg–Richter parameters and fractal dimension for the different seismogenic zones in Western Anatolia. Journal of Asian Earth Sciences, 58, 98-107.
  • Bayrak, Y. & Türker, T. (2016) The determination of earthquake hazard parameters deduced from Bayesian approach for different seismic source regions of Western Anatolia. Pure and Applied Geophysics, 173(1), 205-220.
  • Berberian, M. & Arshadi, S. (1976). On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city. Geol. Surv. Iran Rep, 39, 397-418.
  • Borsi, S., Ferrara, G., Innocenti, F. & Mazzuoli, R. (1972). Geochronology and petrology of recent volcanics in the Eastern Aegean Sea (West Anatolia and Lesvos Island). Bulletin Volcanologique, 36(3), 473.
  • Bott, M. H. P. (1959). The mechanics of oblique slip faulting. Geological magazine, 96(2), 109-117.
  • Bozkurt, E. (2001). Neotectonics of Turkey–a synthesis. Geodinamica acta, 14(1-3), 3-30.
  • Bozkurt, E. & Park, R. G. (1997). Evolution of a mid-Tertiary extensional shear zone in the southern Menderes Massif, western Turkey. Bulletin de la Société Géologique de France, 168(1), 3-14.
  • Bull, W. B. (1978). Geomorphic Tectonic Activity Classes of the South Front of the San Gabriel Mountains, California. Geosciences Department, University of Arizona.
  • Bull, W. B. (2007). Mountain Fronts. In Tectonic Geomorphology of Mountains, (pp. 75-116). Blackwell Publishing Ltd.
  • Bull, W. B., 2007. Tectonic Geomorphology of Mountains: a new Approach to Paleoseismology. Blackwell Publishing Ltd.
  • Bull, W.B. & McFadden, L. D. (1977). Tectonic geomorphology north and south of the Garlock fault, California. Doehring, D.O (Ed.), Geomorphology in Arid Regions. Proceedings of the Eighth Annual Geomorphology Symposium (115-138). State University of New York, Binghamton.
  • Burbank, D. & Anderson, R. A. (2000). Tectonic Geomorphology, (pp. 201-231). Blackwell Science, USA.
  • Burbank, D. W., Anderson, R. S. (2000). Tectonic Geomorphology. Backwell Science.
  • Cannon, P. J. (1976). Generation of explicit parameters for a quantitative geomorphic study of the mill creek drainage basin. Oklahoma Geology Notes, 36(1), 3–16.
  • Caputo, R. & Helly, B. (2005). The Holocene activity of the Rodia Fault, Central Greece. Journal of Geodynamics, 40(2-3), 153–169.
  • Caputo, R. & Helly, B. 2008. The use of distinct disciplines to investigate past earthquakes. Tectonophysics, 453(1-4), 7-19.
  • Caputo, R., Helly, B., Pavlides, S. & Papadopoulos, G. (2004). Palaeoseismological investigation of the Tyrnavos Fault, Central Greece. A contribution to the seismic hazard assessment of Thessaly. Tectonophysics, 394(1), 1–20.
  • Chamot-Rooke N. & Dotmed Working Group (2005). DOTMED – Deep Offshore Tectonics of the Mediterranean: A synthesis of deep marine data in eastern Mediterranean. Mémoire de la Société géologique de France and American Association of Petroleum Geologists, numéro spécial, 177, 64 pp, 9 maps.
  • Chatzipetros, A., Kiratzi, A., Sboras, S., Zouros, N. & Pavlides, S. (2013). Active faulting in the north-eastern Aegean Sea Islands. Tectonophysics, 597, 106-122.
  • Cox, R. T. (1994). Analysis of drainage-basin symmetry as a rapid technique to identify areas of possible Quaternary tilt-block tectonics: An example from the Mississippi Embayment. Geological Society of America Bulletin, 106(5), 571-581.
  • Çetinkaplan, M., Candan, O., Oberhänsli, R., Sudo, M., & Cenki‐Tok, B. (2020) P–T–t evolution of the Cycladic Blueschist Unit in Western Anatolia/Turkey: Geodynamic implications for the Aegean region. Journal of Metamorphic Geology, 38(4), 379-419.
  • Daxberger, H. & Riller, U. (2015). Kinematics of Neogene to Recent upper-crustal deformation in the southern Central Andes (23–28 S) inferred from fault–slip analysis: evidence for gravitational spreading of the Puna Plateau. Tectonophysics, 642, 16-28.
  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84-92.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. & Keller, E. A. (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology, 96, 150–173.
  • Emre, Ö., Duman, T. Y., Özalp, S., Elmaci, H. & Olgun, S. (2011). 1:250.000 scale active fault map series of Turkey, Kayseri (NJ36-8) Quadrange. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Can, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275.
  • Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C. & Göktaş, F. (2005). İzmir yakın çevresinin diri fayları ve deprem potansiyelleri (Rapor no:10754). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, Türkiye.
  • Emre, T., Sözbilir, H. (2007). Tectonic Evolution of the Kiraz Basin, Küçük Menderes Graben: Evidence for Compression/Uplift-related Basin Formation Overprinted by Extensional Tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16(4), 441-470.
  • Erdoğan, B. (1990). Tectonic relations between Izmir-Ankara zone and Karaburun belt. Maden Tetkik ve Arama Dergisi, 110, 1-15.
  • Eski, S., Sözbilir, H., Uzel, B., Özkaymak, Ç. & Sümer, Ö. (2020). Gölmarmara Fayı’nın Morfotektonik Evriminin CBS Tabanlı Yöntemlerle Araştırılması, Gediz Grabeni, Batı Anadolu. Türkiye Jeoloji Bülteni, 63(3), 345-372. https://doi.org/10.25288/tjb.679584
  • Eyubagil, E. E., Solak, H. İ., Kavak, U. S., Tiryakioğlu, İ., Sözbilir, H., Aktuğ, B. & Özkaymak, Ç. (2020). Present-day strike-slip deformation within the southern part of İzmir Balıkesir Transfer Zone based on GNSS data and implications for seismic hazard assessment, western Anatolia. Turkish Journal of Earth Sciences. https://doi.org/10.3906/yer-2005-26
  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14(1-3), 45-55.
  • Gürer, A., Bayrak, M. & Gürer, Ö. F. (2004). Magnetotelluric images of the crust and mantle in the southwestern Taurides, Turkey. Tectonophysics, 391(1-4), 109-120.
  • Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. Journal of Research of the us Geological Survey, 1(4), 421-429.
  • Hare, P. W. & Gardner, T. W. (1985). Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.
  • Hurtrez, J. E., Sol, C. & Lucazeau, F. (1999). Effect of drainage area on hypsometry from an analysis of small‐scale drainage basins in the Siwalik Hills (Central Nepal). Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 24(9), 799-808.
  • ISC (2020). http://www.isc.ac.uk/iscbulletin/search/catalogue/interactive/ Retrieved 05.03.2021.
  • Jackson, J. & McKenzie, D. (1989). Relations between seismicity and paleomagnetic rotations in zones of distributed continental deformation. In Paleomagnetic Rotations and Continental Deformation (pp. 33-42). Springer, Dordrecht.
  • Keller, E. A. (1986). Investigation of active tectonics: use of surficial earth processes. In: R. E. Wallace (Ed.), Active Tectonics, Studies in Geophysics (136-147). National Academy Press.
  • Keller, E.A., & Pinter, N. (2002). Active Tectonics: Earthquakes, Uplift, and Landscape. Upper Saddle River, New Jersey, Prentice-Hall Inc.
  • Khalifa, A., Cakir, Z., Lewis, O. & Şinasi, K. (2018). Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish Journal of Earth Sciences, 27(2), 110-126.
  • Koçyigit, A., Yusufoglu, H., Bozkurt, E. 1999. Discussion on evidence from the Gediz Graben for episodic two-stage extension in western Turkey. Journal of the Geological Society, London, 156, 1240-1242.
  • Konak N. (2002a). 1/500.000 Türkiye Jeoloji Haritası İzmir Paftası, (Şenel M. (ed.)). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.
  • Konak N. (2002b). 1/500.000 Türkiye Jeoloji Haritası Denizli Paftası, (Şenel M. (ed.)). Maden Tetkik ve Arama Genel Müdürlüğü Yayınları, Ankara.
  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60(1-2), 1-42.
  • Lykousis, V., Anagnostou, C., Pavlakis, P., Rousakis, G. & Alexandri, M. (1995). Quaternary sedimentary history and neotectonic evolution of the eastern part of Central Aegean Sea, Greece. Marine Geology, 128(1-2), 59-71.
  • Maniatis, G. & Hampel, A. (2008). Along-strike variations of the slip direction on normal faults: Insights from three-dimensional finite-element models. Journal of Structural Geology, 30(1), 21-28.
  • Mayer, L. (1986). Tectonic geomorphology of escarpments and mountain fronts. In R. E. Wallace (Ed.), Active tectonics, Studies in Geophysics (pp. 125-135). National Academy Press.
  • McKenzie, D. (1972). Active tectonics of the Mediterranean region. Geophysical Journal International, 30(2), 109-185.
  • McKenzie, D. (1978). Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254.
  • Mountrakis, D., Kilias, A., Vavliakis, E., Psilovikos, A. & Thomaidou, E. (2003). Neotectonic map of Samos island (Aegean Sea, Greece): implication of geographical information systems in the geological mapping. In 4th European Congress on Regional Geoscientific Cartography and Information Systems, Bologna, Italy (pp. 11-13).
  • Mozafari, N., Tikhomirov, D., Sumer, Ö., Özkaymak, Ç., Uzel, B., Yeşilyurt, S., Ivy-Ochs, S., Vockenhuber, C., Sözbilir, H. & Akçar, N. (2019). Dating of active normal fault scarps in the Büyük Menderes Graben (western Anatolia) and its implications for seismic history. Quaternary Science Reviews, 220, 111-123. https://doi.org/10.1016/j.quascirev.2019.07.002
  • Necmioğlu, Ö. (2014). Tsunami Hazard in Turkey and Surroundings [Doctoral dissertation, PhD. Thesis]. Boğaziçi University, Kandilli Observatory and Earthquake Research Institute Istanbul, Turkey.
  • Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. (2004). Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strike-slip faulting in the Aegean extensional province. Tectonophysics, 391(1-4), 67-83.
  • Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. (2005). Neotectonic structures in İzmir Gulf and surrounding regions (western Turkey): evidences of strike-slip faulting with compression in the Aegean extensional regime. Marine Geology, 219(2-3), 155-171.
  • Okay, A. I. (2001). Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. International Journal of Earth Sciences, 89(4), 709-727.
  • Okay, A. I. & Altiner, D. (2007). A condensed Mesozoic succession north of Izmir: A fragment of the Anatolide-Tauride platform in the Bornova Flysch Zone. Turkish Journal of Earth Sciences, 16(3), 257-279.
  • Okay, A. I. & Siyako, M. (1993). İzmir-Balıkesir arasında İzmir-Ankara Neo-Tetis Kenedinin yeni konumu. Türkiye ve Çevresinin Tektoniği-Petrol Potansiyeli. S. Turgut (Ed.) Ozan Sungurlu Sempozyumu Bildirileri, (s. 333-355).
  • Okay, A. İ., Kaşlılar-Özcan, A., Imren, C., Boztepe-Güney, A., Demirbağ, E. & Kuşçu, İ. (2000). Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey: a multichannel seismic reflection study. Tectonophysics, 321(2), 189-218.
  • Özgenç, İ. (1978). Cumaovası (İzmir) asit volkanitlerinde saptanan iki ekstrüzyon aşaması arasındaki göreli yaş ilişkisi. Türkiye Jeoloji Kurumu Bülteni, 21(1), 31-84.
  • Özkaymak, Ç. & Sözbilir, H. (2008). Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17(3), 615-635.
  • Özkaymak, Ç., Sözbi̇li̇r, H., Uzel, B. & Akyüz, H. S. (2011). Geological and palaeoseismological evidence for late Pleistocene− Holocene activity on the Manisa Fault Zone, western Anatolia. Turkish Journal of Earth Sciences, 20(4), 449-474.
  • Özkaymak, Ç. & Sözbilir, H. (2012). Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173, 128-140.
  • Özkaymak, Ç., Sözbilir, H. & Uzel, B. (2013). Neogene–Quaternary evolution of the Manisa Basin: Evidence for variation in the stress pattern of the İzmir-Balıkesir Transfer Zone, western Anatolia. Journal of Geodynamics, 65, 117-135.
  • Özkaymak, Ç. (2015) Tectonic analysis of the Honaz Fault (western Anatolia) using geomorphic indices and the regional implications. Geodinamica Acta, 27(2-3), 110-129.
  • Özkaymak, Ç., Sözbilir, H., Gecievi, M. O., & Tiryakioğlu, İ. (2019). Late Holocene coseismic rupture and aseismic creep on the Bolvadin Fault, Afyon Akşehir Graben, western Anatolia. Turkish Journal of Earth Sciences, 28(6), 787-804.
  • Özsayın, E. (2016). Relative tectonic activity assessment of the Çameli Basin, Western Anatolia, using geomorphic indices. Geodinamica Acta, 28(4), 241-253.
  • Pavlides, S., Tsapanos, T., Zouros, N., Sboras, S., Koravos, G. & Chatzipetros, A. (2009). Using active fault data for assessing seismic hazard: a case study from NE Aegean sea, Greece. In Earthquake Geotechnical Engineering Satellite Conference XVIIth International Conference on Soil Mechanics & Geotechnical Engineering (Vol. 10, p. 2009).
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. & Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119(1-2), 74-87.
  • Radaideh, O. M. & Mosar, J. (2019). Tectonics controls on fluvial landscapes and drainage development in the westernmost part of Switzerland: Insights from DEM-derived geomorphic indices. Tectonophysics, 768, Artcile 228179. https://doi.org/10.1016/j.tecto.2019.228179
  • Ramírez‐Herrera, M. T. (1998). Geomorphic assessment of active tectonics in the Acambay Graben, Mexican volcanic belt. Earth Surface Processes and Landforms, 23(4), 317-332. https://doi.org/10.1002/(SICI)1096-9837(199804)23:4<317::AID-ESP845>3.0.CO;2-V
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., ... & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth, 111(B5). https://doi.org/10.1029/2005JB004051
  • Rimando, J. M. & Schoenbohm, L. M. (2020). Regional relative tectonic activity of structures in the Pampean flat slab segment of Argentina from 30 to 32° S. Geomorphology, 350, Artcile 106908.
  • Ring, U. W. E., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441.
  • Roberts, G. P. (1996). Variation in fault-slip directions along active and segmented normal fault systems. Journal of Structural Geology, 18(6), 835-845.
  • Rockwell, T. K., Keller, E. A., Clark, M. N. & Johnson, D. L. (1984). Chronology and rates of faulting of Ventura River terraces, California. Geological Society of America Bulletin, 95(12), 1466-1474.
  • Schumm, S.A., Dumont, J.F. & Holbrook, J.M. (2000). Active Tectonics and Alluvial Rivers. Cambridge University Press
  • Schwanghart, W. & Kuhn, N.J. (2010) TopoToolbox: A set of Matlab functions for topographic analysis. Environment Modelling and Software 25, 770-781.
  • Selby, M. J. (1980). A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie Stuttgart, 24(1), 31-51.
  • Seyitoǧlu, G. & Scott, B. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155-166.
  • Seyitoğlu, G., Scott, B. C. & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149(4), 533-538.
  • Seyitoǧlu, G., Işık, V. & Çemen, I. (2004). Complete Tertiary exhumation history of the Menderes massif, western Turkey: an alternative working hypothesis. Terra Nova, 16(6), 358-364.
  • Seyitoğlu, G. ve Esat, K. (2019) Bolu-İzmir Arasında Kuzey Anadolu Fay Zonu Güney Kolu’na Ait Olası Segment Dağılımı: İzmir-Balıkesir Transfer Zonu Yorumunun Uygunluğu Üzerine Bir Tartışma. H. Sözbilir, Ç. Özkaymak, B. Uzel, Ö. Sümer, M. Softa, Ç. Tepe, S. Eski (Ed.ler), 72. Türkiye Jeoloji Kurultayı Bildiri Özleri ve Tam Metin Bildiriler Kitabı, (s.475-477). Jeoloji Mühendisleri Odası Yayınları. https://www.jmo.org.tr/resimler/ekler/174e0f6fa731893_ek.pdf 475-477.
  • Silva, P. G., Goy, J. L., Zazo, C. & Bardajı, T. (2003). Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology, 50(1-3), 203-225.
  • Softa, M., Emre, T., Sözbilir, H., Spencer, J. Q. & Turan, M. (2018). Geomorphic evidence for active tectonic deformation in the coastal part of Eastern Black Sea, Eastern Pontides, Turkey. Geodinamica Acta, 30(1), 249-264.
  • Soysal, H., Sipahioğlu, S., Kolçak, D. & Altınok, Y. (1981). Türkiye ve Cevresinin Tarihsel Deprem Kataloğu. (Proje no: TBAG 341). İstanbul. TUBITAK.
  • Sözbilir, H. (2001). Extensional tectonics and the geometry of related macroscopic structures: field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Sciences, 10(2), 51-67.
  • Sözbilir, H. (2002). Geometry and origin of folding in the Neogene sediments of the Gediz Graben, western Anatolia, Turkey. Geodinamica Acta, 15(5-6), 277-288.
  • Sözbilir, H. (2005). Oligo-Miocene extension in the Lycian orogen: evidence from the Lycian molasse basin, SW Turkey. Geodinamica Acta, 18(3-4), 255-282.
  • Sözbilir, H., Bora, U., Sümer, Ö., Özkaymak, Ç., Ersoy, E. Y., Koçer, T. & Demirtaş, R. (2008). D-B Uzanımlı İzmir Fayı ile KD-Uzanımlı Seferihisar Fayı’nın Birlikte Çalıştığına Dair Veriler: İzmir Körfezi’ni Oluşturan Aktif Faylarda Kinematik ve Paleosismolojik Çalışmalar, Batı Anadolu/. Türkiye Jeoloji Bülteni, 51(2), 91-114. https://dergipark.org.tr/tr/pub/tjb/issue/28370/301652
  • Sözbilir, H., Softa, M., Eski, S., Tepe, Ç., Akgün, M., Pamukçu, OA., Çırmık, A., Utku, M., Özdağ, ÖC., Özden, G., Özçelik, Ö., Evlek, D. A., Çakır, R., Baba, A., Uzelli, T. & Tatar, O. (2020). 30 Ekim 2020 Sisam (Samos) Depremi (Mw: 6,9) Değerlendirme Raporu. Dokuz Eylül Üniversitesi, Deprem Araştırma ve Uygulama Merkezi (DAUM). Erişim adresi http://daum.deu.edu.tr/wp-content/uploads/2020/11/Samos-Deprem-Raporu.pdf
  • Sözbilir, H., Sümer, Ö., Uzel, B., Ersoy, Y., Erkül, F., İnci, U., Helvacı, U. & Özkaymak, Ç. 2009. 17-20 Ekim 2005-Sığacık Körfezi (İzmir) depremlerinin sismik jeomorfolojisi ve bölgedeki gerilme alanları ile ilişkisi, Batı Anadolu. Türkiye Jeoloji Bülteni, 52(2), 217-238. https://dergipark.org.tr/tr/pub/tjb/issue/28366/301607
  • Stiros, S. C., Laborel, J., Laborel-Deguen, F., Papageorgiou, S., Evin, J. & Pirazzoli, P. A. (2000). Seismic coastal uplift in a region of subsidence: Holocene raised shorelines of Samos Island, Aegean Sea, Greece. Marine Geology, 170(1-2), 41-58.
  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin, 63(11), 1117-1142.
  • Stucchi, M., Rovida, A., Capera, A. G., Alexandre, P., Camelbeeck, T., Demircioglu, M. B., ... Sesetyan, K. 2013. The SHARE European earthquake catalogue (SHEEC) 1000–1899. Journal of Seismology, 17(2), 523-544. https://doi.org/10.1007/s10950-012-9335-2
  • Sümer, Ö. (2015). Evidence for the reactivation of a pre-existing zone of weakness and its contributions to the evolution of the Küçük Menderes Graben: a study on the Ephesus Fault, Western Anatolia, Turkey. Geodinamica Acta, 27(2-3), 130-154.
  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: Extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.
  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society, London, Special Publications, 28 (1), 575-589.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In K.T. Biddle & N. Christie-Blick (eds) Strike-Slip Faulting and Basin Formation. Spec. Publ. Soc. Econ. Paleontol. Mineral, 37, 227- 264.
  • Şengör, A. M. C. & Yilmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.
  • Tan, O., Papadimitriou, E. E., Pabucçu, Z., Karakostas, V., Yörük, A. & Leptokaropoulos, K. (2014). A detailed analysis of microseismicity in Samos and Kusadasi (Eastern Aegean Sea) areas. Acta Geophysica, 62(6), 1283-1309.
  • Tan, O., Tapirdamaz, M. C. & Yörük, A. (2008). The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17(2), 405-418.
  • Taxeidis, K. (2003). Study of historical seismicity of the Eastern Aegean Islands [Doctoral dissertation, PhD thesis], N. K. University of Athens.
  • Taymaz, T., Jackson, J. & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433-490.
  • Tepe, Ç. & Sözbilir, H. (2017). Tectonic geomorphology of the Kemalpaşa Basin and surrounding horsts, southwestern part of the Gediz Graben, Western Anatolia. Geodinamica Acta, 29(1), 70-90.
  • Topal, S. & Özkul, M. (2018). Determination of relative tectonic activity of the Honaz fault (SW Turkey) using geomorphic indices. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(6), 1200-1208.
  • Topal, S. (2019a). Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): Insights from geomorphic indices and drainage analysis. Journal of Mountain Science, 16(4), 909-923.
  • Topal, S. (2019b). Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(1), 37-48.
  • Troiani, F., Della Seta, M. (2008). The use of the Stream Length–Gradient index in morphotectonic analysis of small catchments: A case study from Central Italy. Geomorphology, 102(1), 159-168.
  • Tsimi, C. & Ganas, A. (2015). Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults. Geomorphology, 234, 171-181.
  • Tüysüz, O. (2002). Aktif Tektonikte Jeomorfik İndisler. Aktif Tektonik Ders Notları. İstanbul, (yayınlanmamış).
  • Uzel, B. & Sözbilir, H. (2008). A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17(3), 559-591.
  • Uzel, B., Sözbilir, H. & Özkaymak, Ç. (2012). Neotectonic evolution of an actively growing superimposed basin in western Anatolia: The inner bay of Izmir, Turkey. Turkish Journal of Earth Sciences, 21(4), 439-471.
  • Uzel, B., Sözbilir, H., Özkaymak, Ç., Kaymakcı, N. & Langereis, C. G. (2013). Structural evidence for strike-slip deformation in the İzmir–Balıkesir transfer zone and consequences for late Cenozoic evolution of western Anatolia (Turkey). Journal of Geodynamics, 65, 94-116.
  • Wallace, R. E. (1951). Geometry of shearing stress and relation to faulting. The Journal of Geology, 59(2), 118-130.
  • Wells, D. L. & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
  • Wells, S. G., Bullard, T. F., Menges, C. M., Drake, P. G., Karas, P. A., Kelson, K. I., Ritter, J. B. & Wesling, J. R. (1988). Regional variations in tectonic geomorphology along a segmented convergent plate boundary pacific coast of Costa Rica. Geomorphology, 1(3), 239-265. https://doi.org/10.1016/0169-555X(88)90016-5
  • Willgoose, G. & Hancock, G. (1998). Revisiting the hypsometric curve as an indicator of form and process in transport‐limited catchment. Earth Surface Processes and Landforms 23(7), 611-623.
  • Yıldırım, C. (2014). Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics, 630, 183-192.
  • Zhu, L., Akyol, N., Mitchell, B. J. & Sozbilir, H. (2006). Seismotectonics of western Turkey from high resolution earthquake relocations and moment tensor determinations. Geophysical Research Letters, 33(7).
  • Zimmermann, R., Brandmeier, M., Andreani, L., Mhopjeni, K. & Gloaguen, R. (2016). Remote sensing exploration of Nb-Ta-LREE-enriched carbonatite (Epembe/Namibia). Remote Sensing, 8(8), 620.
There are 136 citations in total.

Details

Primary Language Turkish
Subjects General Geology
Journal Section Makaleler - Articles
Authors

Büşra Yerli 0000-0003-1665-4618

Mustafa Softa 0000-0001-5064-9260

Hasan Sözbilir 0000-0002-3777-4830

Publication Date July 9, 2021
Submission Date December 25, 2020
Acceptance Date May 1, 2021
Published in Issue Year 2021 Volume: 64 Issue: 3

Cite

APA Yerli, B., Softa, M., & Sözbilir, H. (2021). Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı. Türkiye Jeoloji Bülteni, 64(3), 349-382. https://doi.org/10.25288/tjb.846813
AMA Yerli B, Softa M, Sözbilir H. Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı. Geol. Bull. Turkey. June 2021;64(3):349-382. doi:10.25288/tjb.846813
Chicago Yerli, Büşra, Mustafa Softa, and Hasan Sözbilir. “Gümüldür Fayının Morfometrik Ve Kinematik Analizi Ve Batı Anadolu’daki Sismotektonik Anlamı”. Türkiye Jeoloji Bülteni 64, no. 3 (June 2021): 349-82. https://doi.org/10.25288/tjb.846813.
EndNote Yerli B, Softa M, Sözbilir H (June 1, 2021) Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı. Türkiye Jeoloji Bülteni 64 3 349–382.
IEEE B. Yerli, M. Softa, and H. Sözbilir, “Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı”, Geol. Bull. Turkey, vol. 64, no. 3, pp. 349–382, 2021, doi: 10.25288/tjb.846813.
ISNAD Yerli, Büşra et al. “Gümüldür Fayının Morfometrik Ve Kinematik Analizi Ve Batı Anadolu’daki Sismotektonik Anlamı”. Türkiye Jeoloji Bülteni 64/3 (June 2021), 349-382. https://doi.org/10.25288/tjb.846813.
JAMA Yerli B, Softa M, Sözbilir H. Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı. Geol. Bull. Turkey. 2021;64:349–382.
MLA Yerli, Büşra et al. “Gümüldür Fayının Morfometrik Ve Kinematik Analizi Ve Batı Anadolu’daki Sismotektonik Anlamı”. Türkiye Jeoloji Bülteni, vol. 64, no. 3, 2021, pp. 349-82, doi:10.25288/tjb.846813.
Vancouver Yerli B, Softa M, Sözbilir H. Gümüldür Fayının Morfometrik ve Kinematik Analizi ve Batı Anadolu’daki Sismotektonik Anlamı. Geol. Bull. Turkey. 2021;64(3):349-82.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php