Research Article
BibTex RIS Cite

Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years

Year 2025, Volume: 16 Issue: 1, 159 - 166, 25.03.2025
https://doi.org/10.18663/tjcl.1647005

Abstract

Aim: This study presents a bibliometric analysis of artificial intelligence (AI)-)-assisted publications in abdominal computed tomography (CT) over the past decade. By examining publication trends, citation patterns, and research collaborations, this study offers insights into the evolving impact of AI in abdominal imaging.
Materials and Methods: Data were retrieved from the Web of Science Core Collection using specific search criteria for 2014–2024. Bibliometric analysis was conducted using VOSviewer to generate co-occurrence networks, citation maps, and collaboration patterns. The study included keyword analysis, co-authorship analysis, co-citation analysis, and bibliographic coupling.
Results: A significant increase in AI-related publications in abdominal CT has been observed in recent years, with deep learning emerging as the dominant methodology. Citation network analysis identified key studies focused on image reconstruction, segmentation, and radiomics. Collaboration networks highlighted strong international and inter-institutional partnerships, particularly among institutions in the United States, China, and South Korea. Additionally, industry-academic collaborations, notably with GE Healthcare, have contributed to the advancement of AI in abdominal imaging.
Conclusions: AI-assisted abdominal CT imaging continues to expand as a critical area of research, demonstrating increasing interdisciplinary collaborations. Deep learning and radiomics have become focal points, influencing clinical decision support and quantitative imaging analysis. Future research should prioritize AI integration into routine radiology practice and explore its clinical effectiveness through large-scale validation studies.

References

  • Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel). 2023;13(17):2760. doi:10.3390/diagnostics13172760
  • Potočnik J, Foley S, Thomas E. Current and potential applications of artificial intelligence in medical imaging practice: A narrative review. J Med Imaging Radiat Sci. 2023;54(2):376-85. doi:10.1016/j.jmir.2023.03.033
  • Shehata MA, Saad AM, Kamel S, et al. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol (NY). 2023;48(8):2724-56. doi:10.1007/s00261-023-03966-2
  • van Stiphout JA, Driessen J, Koetzier LR, et al. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. Eur Radiol. 2022;32(5):2921-29. doi:10.1007/s00330-021-08438-z
  • Mileto A, Yu L, Revels JW, et al. State-of-the-Art Deep Learning CT Reconstruction Algorithms in Abdominal Imaging. Radiographics. 2024;44(12):e240095. doi:10.1148/rg.240095
  • Zhu K, Shen Z, Wang M, et al. Visual Knowledge Domain of Artificial Intelligence in Computed Tomography: A Review Based on Bibliometric Analysis. J Comput Assist Tomogr. 2024;48(4):652-62. doi:10.1097/RCT.0000000000001585
  • Wang R, Huang S, Wang P, et al. Bibliometric analysis of the application of deep learning in cancer from 2015 to 2023. Cancer Imaging. 2024;24(1):85. doi:10.1186/s40644-024-00737-0
  • Li Y, Zhiping W. Mapping the Literature on Academic Publishing: A Bibliometric Analysis on WOS. SAGE Open. 2023;13(1):1-16. doi:10.1177/21582440231158562.
  • van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111(2):1053-70. doi:10.1007/s11192-017-2300-7
  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-96. doi:10.1016/j.jbusres.2021.04.070.
  • Pereira V, Basilio MP, Santos CHT. pyBibX—A Python library for bibliometric and scientometric analysis powered with artificial intelligence tools. arXiv. Published April 2023. doi:10.48550/arXiv.2304.14516.
  • Gibson E, Giganti F, Hu Y, et al. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Trans Med Imaging. 2018;37(8):1822-34. doi:10.1109/TMI.2018.2806309
  • Jensen CT, Liu X, Tamm EP, et al. Image Quality Assessment of Abdominal CT by Use of New Deep Learning Image Reconstruction: Initial Experience. AJR Am J Roentgenol. 2020;215(1):50-57. doi:10.2214/AJR.19.22332
  • Singh R, Digumarthy SR, Muse VV, et al. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. AJR Am J Roentgenol. 2020;214(3):566-73. doi:10.2214/AJR.19.21809
  • Koetzier LR, Mastrodicasa D, Szczykutowicz TP, et al. Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology. 2023;306(3):e221257. doi:10.1148/radiol.221257
  • Park, C., Choo, K. S., Jung, Y., Jeong, H. S., Hwang, J. Y., & Yun, M. S. CT iterative vs deep learning reconstruction: comparison of noise and sharpness. European radiology. 2021;31(5), 3156–64. https://doi.org/10.1007/s00330-020-07358-8
  • Wu D, Kim K, El Fakhri G, Li Q. Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network. IEEE Trans Med Imaging. 2017;36(12):2479-86. doi:10.1109/TMI.2017.2753138
  • Loper, M. R., & Makary, M. S. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography (Ann Arbor, Mich.). 2024:10(11), 1814–31. https://doi.org/10.3390/tomography10110133
  • Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds). International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
  • Yao J, Chu LC, Patlas M. Applications of Artificial Intelligence in Acute Abdominal Imaging. Can Assoc Radiol J. 2024;75(4):761-70. doi:10.1177/08465371241250197
  • Shah RM, Gautam R. Overcoming diagnostic challenges of artificial intelligence in pathology and radiology: Innovative solutions and strategies. Indian J Med Sci 2023;75:107-13.
  • Cook, T. S., Erdal, B. S., Prevedello, L. M., White, R. D., & Lungren, M. P. (). Deployment of artificial intelligence in radiology: Strategies for success. American Journal of Roentgenology. 2025;224(2), 300-10. https://doi.org/10.2214/AJR.24.31898

Son 10 Yılda Abdomen BT Görüntülemede Kullanılan Yapay Zeka Destekli Yayınların Bibliyografik Analizi

Year 2025, Volume: 16 Issue: 1, 159 - 166, 25.03.2025
https://doi.org/10.18663/tjcl.1647005

Abstract

Amaç: Bu çalışma, son on yılda abdomen bilgisayarlı tomografi (BT) alanında yapay zeka (YZ) destekli yayınların bibliyometrik analizini sunmaktadır. Yayın eğilimleri, atıf modelleri ve araştırma iş birliklerini inceleyerek, YZ’nin abdomen görüntülemedeki gelişen etkisine dair içgörüler sağlamayı amaçlamaktadır.
Gereç ve Yöntemler: Veriler, 2014–2024 yılları için belirli arama kriterleri kullanılarak Web of Science Core Collection’dan alınmıştır. Bibliyometrik analiz, VOSviewer kullanılarak eş görülme ağları, atıf haritaları ve iş birliği modellerini oluşturmak amacıyla gerçekleştirilmiştir. Çalışma kapsamında anahtar kelime analizi, ortak yazarlık analizi, ortak atıf analizi ve bibliyografik eşleşme analizleri yapılmıştır.
Bulgular: Son yıllarda abdomen BT’de YZ ile ilgili yayınlarda önemli bir artış gözlenmiş ve derin öğrenme baskın metodoloji olarak öne çıkmıştır. Atıf ağı analizi, görüntü rekonstrüksiyonu, segmentasyon ve radyomikler üzerine odaklanan temel çalışmaları belirlemiştir. İş birliği ağları, özellikle Amerika Birleşik Devletleri, Çin ve Güney Kore’deki kurumlar arasında güçlü uluslararası ve kurumsal ortaklıkları ortaya koymuştur. Ayrıca, GE Healthcare gibi endüstri-akademi iş birlikleri, abdomen görüntülemede YZ’nin ilerlemesine önemli katkılar sağlamıştır.
Sonuçlar: YZ destekli abdomen BT görüntüleme, artan disiplinler arası iş birlikleri ile gelişmeye devam eden kritik bir araştırma alanıdır. Derin öğrenme ve radyomikler, klinik karar destek sistemleri ve kantitatif görüntüleme analizlerini şekillendiren temel odak noktaları haline gelmiştir. Gelecekteki araştırmalar, YZ’nin rutin radyoloji pratiğine entegrasyonunu ve geniş ölçekli doğrulama çalışmaları ile klinik etkinliğinin araştırılmasını önceliklendirmelidir.

References

  • Najjar R. Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging. Diagnostics (Basel). 2023;13(17):2760. doi:10.3390/diagnostics13172760
  • Potočnik J, Foley S, Thomas E. Current and potential applications of artificial intelligence in medical imaging practice: A narrative review. J Med Imaging Radiat Sci. 2023;54(2):376-85. doi:10.1016/j.jmir.2023.03.033
  • Shehata MA, Saad AM, Kamel S, et al. Deep-learning CT reconstruction in clinical scans of the abdomen: a systematic review and meta-analysis. Abdom Radiol (NY). 2023;48(8):2724-56. doi:10.1007/s00261-023-03966-2
  • van Stiphout JA, Driessen J, Koetzier LR, et al. The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis. Eur Radiol. 2022;32(5):2921-29. doi:10.1007/s00330-021-08438-z
  • Mileto A, Yu L, Revels JW, et al. State-of-the-Art Deep Learning CT Reconstruction Algorithms in Abdominal Imaging. Radiographics. 2024;44(12):e240095. doi:10.1148/rg.240095
  • Zhu K, Shen Z, Wang M, et al. Visual Knowledge Domain of Artificial Intelligence in Computed Tomography: A Review Based on Bibliometric Analysis. J Comput Assist Tomogr. 2024;48(4):652-62. doi:10.1097/RCT.0000000000001585
  • Wang R, Huang S, Wang P, et al. Bibliometric analysis of the application of deep learning in cancer from 2015 to 2023. Cancer Imaging. 2024;24(1):85. doi:10.1186/s40644-024-00737-0
  • Li Y, Zhiping W. Mapping the Literature on Academic Publishing: A Bibliometric Analysis on WOS. SAGE Open. 2023;13(1):1-16. doi:10.1177/21582440231158562.
  • van Eck NJ, Waltman L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics. 2017;111(2):1053-70. doi:10.1007/s11192-017-2300-7
  • Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM. How to conduct a bibliometric analysis: An overview and guidelines. J Bus Res. 2021;133:285-96. doi:10.1016/j.jbusres.2021.04.070.
  • Pereira V, Basilio MP, Santos CHT. pyBibX—A Python library for bibliometric and scientometric analysis powered with artificial intelligence tools. arXiv. Published April 2023. doi:10.48550/arXiv.2304.14516.
  • Gibson E, Giganti F, Hu Y, et al. Automatic Multi-Organ Segmentation on Abdominal CT With Dense V-Networks. IEEE Trans Med Imaging. 2018;37(8):1822-34. doi:10.1109/TMI.2018.2806309
  • Jensen CT, Liu X, Tamm EP, et al. Image Quality Assessment of Abdominal CT by Use of New Deep Learning Image Reconstruction: Initial Experience. AJR Am J Roentgenol. 2020;215(1):50-57. doi:10.2214/AJR.19.22332
  • Singh R, Digumarthy SR, Muse VV, et al. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. AJR Am J Roentgenol. 2020;214(3):566-73. doi:10.2214/AJR.19.21809
  • Koetzier LR, Mastrodicasa D, Szczykutowicz TP, et al. Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology. 2023;306(3):e221257. doi:10.1148/radiol.221257
  • Park, C., Choo, K. S., Jung, Y., Jeong, H. S., Hwang, J. Y., & Yun, M. S. CT iterative vs deep learning reconstruction: comparison of noise and sharpness. European radiology. 2021;31(5), 3156–64. https://doi.org/10.1007/s00330-020-07358-8
  • Wu D, Kim K, El Fakhri G, Li Q. Iterative Low-Dose CT Reconstruction With Priors Trained by Artificial Neural Network. IEEE Trans Med Imaging. 2017;36(12):2479-86. doi:10.1109/TMI.2017.2753138
  • Loper, M. R., & Makary, M. S. Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging. Tomography (Ann Arbor, Mich.). 2024:10(11), 1814–31. https://doi.org/10.3390/tomography10110133
  • Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds). International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
  • Yao J, Chu LC, Patlas M. Applications of Artificial Intelligence in Acute Abdominal Imaging. Can Assoc Radiol J. 2024;75(4):761-70. doi:10.1177/08465371241250197
  • Shah RM, Gautam R. Overcoming diagnostic challenges of artificial intelligence in pathology and radiology: Innovative solutions and strategies. Indian J Med Sci 2023;75:107-13.
  • Cook, T. S., Erdal, B. S., Prevedello, L. M., White, R. D., & Lungren, M. P. (). Deployment of artificial intelligence in radiology: Strategies for success. American Journal of Roentgenology. 2025;224(2), 300-10. https://doi.org/10.2214/AJR.24.31898
There are 22 citations in total.

Details

Primary Language English
Subjects Radiology and Organ Imaging
Journal Section Research Article
Authors

Gülay Güngör 0000-0002-4470-9076

Publication Date March 25, 2025
Submission Date February 25, 2025
Acceptance Date March 20, 2025
Published in Issue Year 2025 Volume: 16 Issue: 1

Cite

APA Güngör, G. (2025). Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years. Turkish Journal of Clinics and Laboratory, 16(1), 159-166. https://doi.org/10.18663/tjcl.1647005
AMA Güngör G. Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years. TJCL. March 2025;16(1):159-166. doi:10.18663/tjcl.1647005
Chicago Güngör, Gülay. “Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years”. Turkish Journal of Clinics and Laboratory 16, no. 1 (March 2025): 159-66. https://doi.org/10.18663/tjcl.1647005.
EndNote Güngör G (March 1, 2025) Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years. Turkish Journal of Clinics and Laboratory 16 1 159–166.
IEEE G. Güngör, “Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years”, TJCL, vol. 16, no. 1, pp. 159–166, 2025, doi: 10.18663/tjcl.1647005.
ISNAD Güngör, Gülay. “Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years”. Turkish Journal of Clinics and Laboratory 16/1 (March 2025), 159-166. https://doi.org/10.18663/tjcl.1647005.
JAMA Güngör G. Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years. TJCL. 2025;16:159–166.
MLA Güngör, Gülay. “Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years”. Turkish Journal of Clinics and Laboratory, vol. 16, no. 1, 2025, pp. 159-66, doi:10.18663/tjcl.1647005.
Vancouver Güngör G. Bibliographic Analysis of Artificial Intelligence-Assisted Publications Used in Abdominal CT Imaging in the Last 10 Years. TJCL. 2025;16(1):159-66.


e-ISSN: 2149-8296

The content of this site is intended for health care professionals. All the published articles are distributed under the terms of

Creative Commons Attribution Licence,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.