Research Article
BibTex RIS Cite

HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights

Year 2025, Volume: 16 Issue: 3, 555 - 563, 30.09.2025
https://doi.org/10.18663/tjcl.1782609

Abstract

Aim: Euphorbia virgata (E. virgata), a species belonging to the Euphorbiaceae family, is distributed across diverse regions of the world. Owing to its rich phytochemical profile, particularly phenolics and alkaloids, it exhibits a wide range of biological activities. This study investigated the effects of ethanol extract from the aerial parts of E. virgata on HT-29 COAD and CCD-18Co normal fibroblast cell lines, as well as the expression profiles of HDACs.
Material and Methods: The plant material utilised in the present study was collected from the village of İmaret, located in Sivas province, during the months of June and July 2023. Prof. Dr. Yavuz Bülent Köse subsequently identified the specimen, which was then deposited at the Anadolu University Herbarium under specimen number 16195. Ethanol extracts from the aerial parts of E. virgata were applied to HT-29 and CCD-18Co cell lines at concentrations ranging from 0.5 to 250 µg/mL. Anticancer activity was assessed using the MTT assay. The expression levels of HDACs were analysed by RT-PCR using the ∆∆Ct method.
Results: Based on the cell culture experiments, anticancer activity was evaluated using the MTT assay. The IC₅₀ values for CCD-18Co cells were 149.9 µg/mL at 24 h, 36.37 µg/mL at 48 h, and 15.98 µg/mL at 72 h. In contrast, the IC₅₀ values for HT-29 cells were 3.9 µg/mL at 24 h, 1.295 µg/mL at 48 h, and 0.4653 µg/mL at 72 h. The expression levels of HDACs were determined in HT-29 COAD cells in comparison to CCD-18Co healthy control cells. The results demonstrated that the isolated E. virgata extract exhibited increased HDAC1 and HDAC3 gene expression. Furthermore, HDAC2 expression was decreased, demonstrating a significant inhibitory effect on E. virgata.
Conclusions: In conclusion, E. virgata may play an important role in HDAC regulation in COAD cells and may offer a potential therapeutic option for preventing COAD progression. However, further studies are required to confirm these findings and assess their transferability to clinical practice.

References

  • Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023; 72: 338-44.
  • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70: 145-64.
  • Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 2017; 17: 79-92.
  • Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27: 1386-422.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83: 770-803.
  • Vasas A, Hohmann J. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev 2014; 114: 8579-612.
  • Annam SCVAR, Ganga Rao B, Gunasekar D. Regioisomeric acylated polyhydroxy triterpenoids from the stems of Barringtonia racemosa. J Appl Pharm Sci 2015; 5: 370-4.
  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
  • Zhao L, Li W, Zhang M, Zhang X, Wang J. Epigenetic targets and their inhibitors in cancer therapy. Curr Med Chem 2018; 18: 2395-419.
  • Kumar S, Singh U, Singh O, Gautam A. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Curr Drug Targets 2021; 25: 75-85.
  • Gürer ES, Yüzbaşıoğlu G, Özkan H, Yılmaz MA, Ertas A. In Vitro Tyrosinase and Collagenase Inhibitory and Antioxidant Potential of Smyrnium rotundifolium Mill. and Euphorbia virgata Waldst. &Kit. from Türkiye. Iran J Pharm Res 2024; 23: 1-9.
  • Bouyahya A, El Omari N, Hakkur M, El Hachlafi N, Charfi S, Rebezov M, et al. Natural bioactive compounds targeting histone deacetylases in human cancers: recent updates. Molecules 2022; 27: 2568.
  • Nowrasteh G, Ebrahimi SN, Gholami M, Hayati-Roodbari N. Fruit extract, rich in polyphenols and flavonoids, modifies the expression of DNMT and HDAC genes involved in epigenetic processes. Nutrients 2023; 15: 1867.
  • Tsai FL, Wang YM, Hsieh MJ, Chen HY, Yang SF, Lin CW. Anticancer study of a novel pan-HDAC inhibitor MPT0G236 in colorectal cancer cells. Int J Mol Sci 2023; 24: 12588.
  • Tian J, Xu Z, Mo Z, Zhu S, Qin X. Advances of HDAC inhibitors in tumor therapy: potential applications through immune modulation. Front Immunol 2025; 15: 1576781.
  • Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ 2005; 12: 395-404.
  • Nuzzo G, Gallo C, Croceta F, Romano L, Barra G, Rubio BR, et al. Antitumor potential of immunomodulatory natural products. Mar Drugs 2022; 20: 386.
  • Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 2008; 14: 1669-77.
  • Rajendran P, Williams DE, Ho E, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 2011; 3: 4.
  • Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, et al. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 2008; 19: 4062-75.
  • Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 2008; 30: 61-72.
  • Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 2010; 24: 455-69.

Kolon adenokarsinomunda Euphorbia virgata'nın HDAC'ların modülasyonu ve antikanser potansiyeli: deneysel ve biyoenformatik bakış açıları

Year 2025, Volume: 16 Issue: 3, 555 - 563, 30.09.2025
https://doi.org/10.18663/tjcl.1782609

Abstract

Amaç: Euphorbiaceae familyasına ait bir tür olan Euphorbia virgata (E. virgata), dünyanın çeşitli bölgelerine yayılmıştır. Özellikle fenolikler ve alkaloidler olmak üzere zengin fitokimyasal profili sayesinde geniş bir biyolojik aktivite yelpazesi sergiler. Bu çalışmada, E. virgata'nın toprak üstü kısımlarından elde edilen etanol özütünün HT-29 COAD ve CCD-18Co normal fibroblast hücre hatları üzerindeki etkileri ve HDAC'lerin ekspresyon profilleri araştırılmıştır.
Gereç ve Yöntemler: Çalışmada kullanılan bitki materyali, Haziran ve Temmuz 2023 aylarında Sivas ilinin İmaret köyünden toplanmıştır. Prof. Dr. Yavuz Bülent Köse tarafından teşhis edilen örnek, Anadolu Üniversitesi Herbaryumu'na 16195 numaralı örnekle teslim edilmiştir. E. virgata'nın toprak üstü kısımlarından elde edilen etanol ekstraktları, HT-29 ve CCD-18Co hücre hatlarına 0,5 ila 250 µg/mL arasında değişen konsantrasyonlarda uygulanmıştır. Antikanser aktivitesi MTT yöntemi kullanılarak değerlendirilmiştir. HDAC'lerin ekspresyon düzeyleri, ∆∆Ct yöntemi kullanılarak RT-PCR ile analiz edilmiştir.
Sonuç: Hücre kültürü deneylerine dayanarak, antikanser aktivitesi MTT testi kullanılarak değerlendirildi. CCD-18Co hücreleri için IC₅₀ değerleri 24 saatte 149,9 µg/mL, 48 saatte 36,37 µg/mL ve 72 saatte 15,98 µg/mL olarak bulundu. Buna karşılık, HT-29 hücreleri için IC₅₀ değerleri 24 saatte 3,9 µg/mL, 48 saatte 1,295 µg/mL ve 72 saatte 0,4653 µg/mL olarak bulundu. HDAC'lerin ifade seviyeleri, HT-29 COAD hücrelerinde CCD-18Co sağlıklı kontrol hücreleriyle karşılaştırıldığında belirlendi. Sonuçlar, izole edilmiş E. virgata özütünün HDAC1 ve HDAC3 gen ifadesinde artış gösterdiğini gösterdi. Ayrıca, HDAC2 ekspresyonunun azaldığı ve E. virgata üzerinde önemli bir inhibitör etki gösterdiği görüldü.

References

  • Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 2023; 72: 338-44.
  • Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin 2020; 70: 145-64.
  • Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer 2017; 17: 79-92.
  • Van Cutsem E, Cervantes A, Adam R, Sobrero A, Van Krieken JH, Aderka D, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol 2016; 27: 1386-422.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020; 83: 770-803.
  • Vasas A, Hohmann J. Euphorbia diterpenes: isolation, structure, biological activity, and synthesis (2008–2012). Chem Rev 2014; 114: 8579-612.
  • Annam SCVAR, Ganga Rao B, Gunasekar D. Regioisomeric acylated polyhydroxy triterpenoids from the stems of Barringtonia racemosa. J Appl Pharm Sci 2015; 5: 370-4.
  • Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47.
  • Zhao L, Li W, Zhang M, Zhang X, Wang J. Epigenetic targets and their inhibitors in cancer therapy. Curr Med Chem 2018; 18: 2395-419.
  • Kumar S, Singh U, Singh O, Gautam A. Non-histone substrates of histone deacetylases as potential therapeutic targets in epilepsy. Curr Drug Targets 2021; 25: 75-85.
  • Gürer ES, Yüzbaşıoğlu G, Özkan H, Yılmaz MA, Ertas A. In Vitro Tyrosinase and Collagenase Inhibitory and Antioxidant Potential of Smyrnium rotundifolium Mill. and Euphorbia virgata Waldst. &Kit. from Türkiye. Iran J Pharm Res 2024; 23: 1-9.
  • Bouyahya A, El Omari N, Hakkur M, El Hachlafi N, Charfi S, Rebezov M, et al. Natural bioactive compounds targeting histone deacetylases in human cancers: recent updates. Molecules 2022; 27: 2568.
  • Nowrasteh G, Ebrahimi SN, Gholami M, Hayati-Roodbari N. Fruit extract, rich in polyphenols and flavonoids, modifies the expression of DNMT and HDAC genes involved in epigenetic processes. Nutrients 2023; 15: 1867.
  • Tsai FL, Wang YM, Hsieh MJ, Chen HY, Yang SF, Lin CW. Anticancer study of a novel pan-HDAC inhibitor MPT0G236 in colorectal cancer cells. Int J Mol Sci 2023; 24: 12588.
  • Tian J, Xu Z, Mo Z, Zhu S, Qin X. Advances of HDAC inhibitors in tumor therapy: potential applications through immune modulation. Front Immunol 2025; 15: 1576781.
  • Huang BH, Laban M, Leung CH, Lee L, Lee CK, Salto-Tellez M, et al. Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ 2005; 12: 395-404.
  • Nuzzo G, Gallo C, Croceta F, Romano L, Barra G, Rubio BR, et al. Antitumor potential of immunomodulatory natural products. Mar Drugs 2022; 20: 386.
  • Weichert W, Röske A, Gekeler V, Beckers T, Stephan C, Jung K, et al. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 2008; 14: 1669-77.
  • Rajendran P, Williams DE, Ho E, Dashwood RH. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin Epigenetics 2011; 3: 4.
  • Wilson AJ, Byun DS, Popova N, Murray LB, L'Italien K, Sowa Y, et al. HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 2008; 19: 4062-75.
  • Bhaskara S, Chyla BJ, Amann JM, Knutson SK, Cortez D, Sun ZW, et al. Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 2008; 30: 61-72.
  • Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, et al. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 2010; 24: 455-69.
There are 22 citations in total.

Details

Primary Language English
Subjects Medical Biochemistry - Amino Acids and Metabolites, Histology and Embryology
Journal Section Research Article
Authors

Zeynep Deniz Şahin İnan 0000-0002-0292-4448

Hüsnü Çağrı Genç 0000-0001-6963-2805

Tugba Agbektas 0000-0003-3433-8870

Cemile Zontul 0000-0002-1436-5145

Eda Sönmez Gürer 0000-0003-0319-6312

Ayça Taş 0000-0002-7132-1325

Publication Date September 30, 2025
Submission Date September 12, 2025
Acceptance Date September 28, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

APA Şahin İnan, Z. D., Genç, H. Ç., Agbektas, T., … Zontul, C. (2025). HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights. Turkish Journal of Clinics and Laboratory, 16(3), 555-563. https://doi.org/10.18663/tjcl.1782609
AMA Şahin İnan ZD, Genç HÇ, Agbektas T, Zontul C, Sönmez Gürer E, Taş A. HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights. TJCL. September 2025;16(3):555-563. doi:10.18663/tjcl.1782609
Chicago Şahin İnan, Zeynep Deniz, Hüsnü Çağrı Genç, Tugba Agbektas, Cemile Zontul, Eda Sönmez Gürer, and Ayça Taş. “HDACs Modulation and Anticancer Potential of Euphorbia Virgata in Colon Adenocarcinoma: Experimental and Bioinformatics Insights”. Turkish Journal of Clinics and Laboratory 16, no. 3 (September 2025): 555-63. https://doi.org/10.18663/tjcl.1782609.
EndNote Şahin İnan ZD, Genç HÇ, Agbektas T, Zontul C, Sönmez Gürer E, Taş A (September 1, 2025) HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights. Turkish Journal of Clinics and Laboratory 16 3 555–563.
IEEE Z. D. Şahin İnan, H. Ç. Genç, T. Agbektas, C. Zontul, E. Sönmez Gürer, and A. Taş, “HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights”, TJCL, vol. 16, no. 3, pp. 555–563, 2025, doi: 10.18663/tjcl.1782609.
ISNAD Şahin İnan, Zeynep Deniz et al. “HDACs Modulation and Anticancer Potential of Euphorbia Virgata in Colon Adenocarcinoma: Experimental and Bioinformatics Insights”. Turkish Journal of Clinics and Laboratory 16/3 (September2025), 555-563. https://doi.org/10.18663/tjcl.1782609.
JAMA Şahin İnan ZD, Genç HÇ, Agbektas T, Zontul C, Sönmez Gürer E, Taş A. HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights. TJCL. 2025;16:555–563.
MLA Şahin İnan, Zeynep Deniz et al. “HDACs Modulation and Anticancer Potential of Euphorbia Virgata in Colon Adenocarcinoma: Experimental and Bioinformatics Insights”. Turkish Journal of Clinics and Laboratory, vol. 16, no. 3, 2025, pp. 555-63, doi:10.18663/tjcl.1782609.
Vancouver Şahin İnan ZD, Genç HÇ, Agbektas T, Zontul C, Sönmez Gürer E, Taş A. HDACs modulation and anticancer potential of Euphorbia virgata in colon adenocarcinoma: experimental and bioinformatics insights. TJCL. 2025;16(3):555-63.