Research Article
BibTex RIS Cite

Olivin minerali ile güçlendirilmiş alçılı yonga levhaların çeşitli özelliklerinin değerlendirilmesi

Year 2022, , 305 - 312, 29.12.2022
https://doi.org/10.18182/tjf.1142148

Abstract

Bu çalışmada, olivin minerali ile üretilen alçılı yonga levhaların bazı özellikleri araştırılmıştır. İki farklı oranda alçı (%70 ve %30) eklenerek oluşturulan levhalara farklı oranlarda odun yongaları eklenmiştir. Bu iki tip levhaya ilave edilen inorganik olivin mineralinin, levhanın fiziksel özellikleri, mekanik özellikleri, ısıl iletkenlik ve yanma davranışlarına olan etkileri değerlendirilmiştir. Üretilen levhaların su alma, kalınlığına şişme, çekme direnci, eğilme direnci, elastikiyet modülü, termal iletkenlik ve yanma performansını belirlemek için testler yapılmıştır. FTIR analizi, ahşap malzemede selüloz, hemiselüloz ve lignin varlığını, bağlayıcı olarak alçının ve katkı oranına göre değişen olivinin varlığını ortaya koymaktadır. Termal analiz ile olivin'in her iki tip levhanın stabilitesine olumlu etkisi olduğu belirlenmiştir. Olivin, farklı oranlarda eklendiğinde, alçılı yonga levhanın bazı özelliklerini geliştirmek için uygun bir takviye malzemesi olduğu sonucuna varılabilir

References

  • Ahmad, Z., Lum, W.C., Lee, S.H., Rameli, R., 2017. Preliminary study on properties evaluation of cement added gypsum board reinforced with kenaf (Hibiscus cannabinus) bast fibres. Journal of the Indian Academy of Wood Science, 14(1): 46-48. DOI: 10.1007/s13196-017-0186-x
  • Akgul, M., Gumuskaya, E., Korkut, S., 2007. Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludag fir (Abies nordmanniana (Stev.) subsp bornmuelleriana (Mattf.)) wood. Wood Science and Technology, 41(3): 1-9. DOI: 10.1007/s00226-006-0110-9
  • ASTM C 1113-90, 1990. Standard test methods for thermal conductivity of refractories by hot wire (platinum resistance thermometer technique). ASTM International, West Conshohocken, PA.
  • ASTM D 1037, 1999. Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM International, West Conshohocken, PA.
  • Barbero-Barrera, M.D.M., Flores-Medina, N., Pérez-Villar, V., 2017. Assessment of thermal performance of gypsum-based composites with revalorized graphite filler. Construction and Building Materials, 142: 83-91. DOI: 10.1016/j.conbuildmat.2017.03.060
  • Deng, Y., Furuno, T., Uehara, T., 1998. Improvement on the properties of gypsum particleboard by adding cement. Journal of Wood Science, 44(2): 98-102. DOI:10.1007/BF00526252
  • Deng, Y.H., Furuno, T., 2001. Properties of gypsum particleboard reinforced with polypropylene fibers. Journal of Wood Science, 47(6): 445-450. DOI: 10.1007/BF00767896
  • Dubis, E.N., Dubis, A.T., Morzycki, J.W., 1999. Comparative analysis of plant cuticular waxes using HATR FT-IR reflection technique. Journal of Molecular Structure, 511-512: 173-179. DOI: 10.1016/S0022-2860(99)00157-X
  • EN 310, 1993. Wood based panels - Determination of modulus of elasticity and modulus of rupture in static bending. European Committee for Standardization, Brussels, Belgium.
  • EN 319, 1999. Particleboards and fiberboards - Determination of tensile strength perpendicular to plane of the board. European Committee for Standardization, Brussels, Belgium.
  • Espinoza-Herrera, R., Cloutier, A., 2009. Thermal degradation and thermal conductivity of gypsum-cement particleboard. Wood and Fiber Science, 41(1): 13-21.
  • Espinoza-Herrera, R., Cloutier, A., 2011. Physical and mechanical properties of gypsum particleboard reinforced with Portland cement. European Journal of Wood and Wood Products, 69(2): 247-254. DOI: 10.1007/s00107-010-0434-x
  • Falcão, L., Araújo, M.E.M., 2014. Application of ATR-–FTIR spectroscopy to the analysis of tannins in historic leathers: The case study of the upholstery from the 19th century Portuguese Royal Train. Vibrational Spectroscopy, 74: 98-103. DOI: 10.1016/j.vibspec.2014.08.001
  • Fengel, D., 1991. Possibilities and limitations of FTIR spectroscopy in the characterization of cellulose. Part 3. Effect of accompanying compounds on the IR spectrum of cellulose. Papier, 46(1): 7-11.
  • Gao, M., Niu, J.,Yang, R., 2006. Synergism of GUP and boric acid characterized by cone calorimetry and thermogravimetry. Journal of Fire Sciences, 24(6): 499-511. DOI: 10.1177/0734904106061522
  • Grishechko, L.I., Amaral-Labat, G., Szczurek, A., Fierro, V., Kuznetsov, B.N., Pizzi, A., Celzard, A., 2013. New tannin-–lignin aerogels. Industrial Crops and Products, 41: 347-355. DOI: 10.1016/j.indcrop.2012.04.052
  • Guo, G.Y., Chen, Y.L., 2004. Preparation and characterization of a novel zirconia precursor. Ceramics International, 30(3): 469-475. DOI: 10.1016/S0272-8842(03)00133-0
  • He, W., Hu, H., 2013. Rapid prediction of different wood species extractives and lignin content using near infrared spectroscopy. Journal of Wood Chemistry and Technology, 33(1): 52-64. DOI: 10.1080/02773813.2012.731463
  • Hu, G., Zhao, C., Zhang, S., Yang, M., Wang, Z., 2006. Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer, 47(1): 480-488. DOI: 10.1016/j.polymer.2005.11.028
  • Ismail, H., Rusli, A., Rashid, A.A., 2005. Maleated natural rubber as a coupling agent for paper sludge filled natural rubber composites. Polymer Testing, 24(7): 856-862. DOI: 10.1016/j.polymertesting.2005.06.011
  • EN ISO 11925-2, 2010. Reaction to fire tests: Ignitability of building products subjected to direct impingement of flame - Part 2: Single-flame source test, International Organization for Standardization, Geneva, Switzerland.
  • Iucolano, F., Liguori, B., Aprea, P., Caputo, D., 2018. Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Construction and Building Materials, 185: 256-263. DOI: 10.1016/j.conbuildmat.2018.07.036
  • Kondo, T., Sawatari, C., 1996. A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer, 37(3): 393-399. DOI: 10.1016/0032-3861(96)82908-9
  • Kozlowski, R., Mieleniak, B., Helwig, M., Przepiera, A., 1999. Flame resistant lignocellulosic-mineral composite particleboards. Polymer Degradation and Stability, 64(3): 523-528. DOI: 10.1016/S0141-3910(98)00145-1
  • Liang, C.Y., Marchessault, R.H., 1959. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm-1. Journal of Polymer Science, 39(135): 269-278. DOI: 10.1002/pol.1959.1203913521
  • Matveev, S., Stachel, T., 2007. FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration. Geochimica et Cosmochimica Acta, 71(22): 5528-5543. DOI: 10.1016/j.gca.2007.08.016
  • Mendes, L. M., Loschi, F. A. P., Paula, L. E. D. R., Mendes, R. F., Guimarães Júnior, J. B., Mori, F. A., 2011. Utilization potential of wood clones of Eucalyptus urophylla in the production of wood-cement panels. Cerne, 17(1): 69-75. DOI: 10.1590/S0104-77602011000100008
  • Merk, S., Blume, A., Riederer, M., 1997. Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy. Planta, 204(1): 44-53. DOI: 10.1007/s004250050228
  • Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S.,Youk, J. H., 2005. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340(15): 2376-2391. DOI: 10.1016/j.carres. 2005.08.007
  • Park, J.H., Kang, Y., Lee, J., Wi, S., Chang, J.D., Kim, S., 2019. Analysis of walls of functional gypsum board added with porous material and phase change material to improve hygrothermal performance. Energy and Buildings, 183: 803-816. DOI: 10.1016/j.enbuild.2018.11.023
  • Pasquali, C.L., and Herrera, H.,1997. Pyrolysis of lignin and IR analysis of residues. Thermochimica Acta, 293(1-2): 39-46. DOI: 10.1016/S0040-6031(97)00059-2
  • Prasad, P.S.R., Chaitanya, V.K., Prasad, K.S., Rao, D.N., 2005. Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. American Mineralogist, 90(4): 672-678. DOI: 10.2138/am.2005.1742
  • Schwanninger, M.J.C.R., Rodrigues, J.C., Pereira, H., Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1): 23-40. DOI: 10.1016/j.vibspec.2004.02.003
  • Shi, X., Zhang, S.C., Chen, Y.F., Li, M.Q., Ouyang, S.X., Peng, X.Y., 2010. Effects of infrared scattering powders on the thermal properties of porous SiO2 insulation material. Key Engineering Materials, 434: 689-692. DOI: 10.4028/www.scientific.net/KEM.434-435.689
  • Singthong, J., Cui, S.W., Ningsanond, S., Goff, H.D., 2004. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydrate Polymers, 58(4): 391-400. DOI: 10.1016/j.carbpol.2004.07.018
  • Singthong, J., Ningsanond, S., Cui, S.W., Goff, H.D., 2005. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 19(5): 793-801. DOI: 10.1016/j.foodhyd.2004.09.007
  • Tichi, A.H., Bazyar, B., Khademieslan, H., Rangavar, H., Taleipour, M., 2016. The effect of nano-wollastonite on biological, mechanical, physical and microstructural properties of the composite made of wood-cement fiber. Journal of Fundamental and Applied Sciences, 8(3S): 1466-1479. DOI: 10.4314/jfas.v8i3s.285
  • Yalçın, O.U., 2018. Investigation of performance properties of panels produced from some lignocellulosic sources with mineral (dolomite and olivine) additives. Ph.D. Dissertation, Isparta University of Applied Sciences, Isparta, Turkey.

Evaluation of various properties of gypsum particleboards reinforced with olivine mineral

Year 2022, , 305 - 312, 29.12.2022
https://doi.org/10.18182/tjf.1142148

Abstract

In this study, it was investigated some properties of gypsum particleboards which is produced with olivine mineral. Wood particles were added as reinforcement in different proportions (70% and 30%) to two types of plasterboard. The effects of inorganic olivine mineral added to these two types of boards were evaluated in terms of their physical and mechanical properties, thermal conductivity, and combustion behaviour. Subsequently, tests were carried to determine their water absorption, thickness swelling, internal bonding, bending strength, modulus of elasticity, thermal conductivity, and combustion performance. The properties of the boards were then examined using Fourier-transform infrared spectroscopy and thermogravimetric analysis. The Fourier-transform infrared analysis revealed the typical traces of cellulose, hemicellulose, and lignin in the wood material, traces of gypsum as the binder, and varying traces of olivine, according to the additive ratio, were also observed. Thermal analysis determined the positive contribution of olivine to the basic stability of both types of boards. It can be concluded that olivine, when added in different proportions, is a suitable reinforcement material for improving the technical properties of gypsum particleboard.

References

  • Ahmad, Z., Lum, W.C., Lee, S.H., Rameli, R., 2017. Preliminary study on properties evaluation of cement added gypsum board reinforced with kenaf (Hibiscus cannabinus) bast fibres. Journal of the Indian Academy of Wood Science, 14(1): 46-48. DOI: 10.1007/s13196-017-0186-x
  • Akgul, M., Gumuskaya, E., Korkut, S., 2007. Crystalline structure of heat-treated Scots pine (Pinus sylvestris L.) and Uludag fir (Abies nordmanniana (Stev.) subsp bornmuelleriana (Mattf.)) wood. Wood Science and Technology, 41(3): 1-9. DOI: 10.1007/s00226-006-0110-9
  • ASTM C 1113-90, 1990. Standard test methods for thermal conductivity of refractories by hot wire (platinum resistance thermometer technique). ASTM International, West Conshohocken, PA.
  • ASTM D 1037, 1999. Standard test methods for evaluating properties of wood-base fiber and particle panel materials. ASTM International, West Conshohocken, PA.
  • Barbero-Barrera, M.D.M., Flores-Medina, N., Pérez-Villar, V., 2017. Assessment of thermal performance of gypsum-based composites with revalorized graphite filler. Construction and Building Materials, 142: 83-91. DOI: 10.1016/j.conbuildmat.2017.03.060
  • Deng, Y., Furuno, T., Uehara, T., 1998. Improvement on the properties of gypsum particleboard by adding cement. Journal of Wood Science, 44(2): 98-102. DOI:10.1007/BF00526252
  • Deng, Y.H., Furuno, T., 2001. Properties of gypsum particleboard reinforced with polypropylene fibers. Journal of Wood Science, 47(6): 445-450. DOI: 10.1007/BF00767896
  • Dubis, E.N., Dubis, A.T., Morzycki, J.W., 1999. Comparative analysis of plant cuticular waxes using HATR FT-IR reflection technique. Journal of Molecular Structure, 511-512: 173-179. DOI: 10.1016/S0022-2860(99)00157-X
  • EN 310, 1993. Wood based panels - Determination of modulus of elasticity and modulus of rupture in static bending. European Committee for Standardization, Brussels, Belgium.
  • EN 319, 1999. Particleboards and fiberboards - Determination of tensile strength perpendicular to plane of the board. European Committee for Standardization, Brussels, Belgium.
  • Espinoza-Herrera, R., Cloutier, A., 2009. Thermal degradation and thermal conductivity of gypsum-cement particleboard. Wood and Fiber Science, 41(1): 13-21.
  • Espinoza-Herrera, R., Cloutier, A., 2011. Physical and mechanical properties of gypsum particleboard reinforced with Portland cement. European Journal of Wood and Wood Products, 69(2): 247-254. DOI: 10.1007/s00107-010-0434-x
  • Falcão, L., Araújo, M.E.M., 2014. Application of ATR-–FTIR spectroscopy to the analysis of tannins in historic leathers: The case study of the upholstery from the 19th century Portuguese Royal Train. Vibrational Spectroscopy, 74: 98-103. DOI: 10.1016/j.vibspec.2014.08.001
  • Fengel, D., 1991. Possibilities and limitations of FTIR spectroscopy in the characterization of cellulose. Part 3. Effect of accompanying compounds on the IR spectrum of cellulose. Papier, 46(1): 7-11.
  • Gao, M., Niu, J.,Yang, R., 2006. Synergism of GUP and boric acid characterized by cone calorimetry and thermogravimetry. Journal of Fire Sciences, 24(6): 499-511. DOI: 10.1177/0734904106061522
  • Grishechko, L.I., Amaral-Labat, G., Szczurek, A., Fierro, V., Kuznetsov, B.N., Pizzi, A., Celzard, A., 2013. New tannin-–lignin aerogels. Industrial Crops and Products, 41: 347-355. DOI: 10.1016/j.indcrop.2012.04.052
  • Guo, G.Y., Chen, Y.L., 2004. Preparation and characterization of a novel zirconia precursor. Ceramics International, 30(3): 469-475. DOI: 10.1016/S0272-8842(03)00133-0
  • He, W., Hu, H., 2013. Rapid prediction of different wood species extractives and lignin content using near infrared spectroscopy. Journal of Wood Chemistry and Technology, 33(1): 52-64. DOI: 10.1080/02773813.2012.731463
  • Hu, G., Zhao, C., Zhang, S., Yang, M., Wang, Z., 2006. Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer, 47(1): 480-488. DOI: 10.1016/j.polymer.2005.11.028
  • Ismail, H., Rusli, A., Rashid, A.A., 2005. Maleated natural rubber as a coupling agent for paper sludge filled natural rubber composites. Polymer Testing, 24(7): 856-862. DOI: 10.1016/j.polymertesting.2005.06.011
  • EN ISO 11925-2, 2010. Reaction to fire tests: Ignitability of building products subjected to direct impingement of flame - Part 2: Single-flame source test, International Organization for Standardization, Geneva, Switzerland.
  • Iucolano, F., Liguori, B., Aprea, P., Caputo, D., 2018. Thermo-mechanical behaviour of hemp fibers-reinforced gypsum plasters. Construction and Building Materials, 185: 256-263. DOI: 10.1016/j.conbuildmat.2018.07.036
  • Kondo, T., Sawatari, C., 1996. A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer, 37(3): 393-399. DOI: 10.1016/0032-3861(96)82908-9
  • Kozlowski, R., Mieleniak, B., Helwig, M., Przepiera, A., 1999. Flame resistant lignocellulosic-mineral composite particleboards. Polymer Degradation and Stability, 64(3): 523-528. DOI: 10.1016/S0141-3910(98)00145-1
  • Liang, C.Y., Marchessault, R.H., 1959. Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640 to 1700 cm-1. Journal of Polymer Science, 39(135): 269-278. DOI: 10.1002/pol.1959.1203913521
  • Matveev, S., Stachel, T., 2007. FTIR spectroscopy of OH in olivine: A new tool in kimberlite exploration. Geochimica et Cosmochimica Acta, 71(22): 5528-5543. DOI: 10.1016/j.gca.2007.08.016
  • Mendes, L. M., Loschi, F. A. P., Paula, L. E. D. R., Mendes, R. F., Guimarães Júnior, J. B., Mori, F. A., 2011. Utilization potential of wood clones of Eucalyptus urophylla in the production of wood-cement panels. Cerne, 17(1): 69-75. DOI: 10.1590/S0104-77602011000100008
  • Merk, S., Blume, A., Riederer, M., 1997. Phase behaviour and crystallinity of plant cuticular waxes studied by Fourier transform infrared spectroscopy. Planta, 204(1): 44-53. DOI: 10.1007/s004250050228
  • Oh, S. Y., Yoo, D. I., Shin, Y., Kim, H. C., Kim, H. Y., Chung, Y. S.,Youk, J. H., 2005. Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydrate Research, 340(15): 2376-2391. DOI: 10.1016/j.carres. 2005.08.007
  • Park, J.H., Kang, Y., Lee, J., Wi, S., Chang, J.D., Kim, S., 2019. Analysis of walls of functional gypsum board added with porous material and phase change material to improve hygrothermal performance. Energy and Buildings, 183: 803-816. DOI: 10.1016/j.enbuild.2018.11.023
  • Pasquali, C.L., and Herrera, H.,1997. Pyrolysis of lignin and IR analysis of residues. Thermochimica Acta, 293(1-2): 39-46. DOI: 10.1016/S0040-6031(97)00059-2
  • Prasad, P.S.R., Chaitanya, V.K., Prasad, K.S., Rao, D.N., 2005. Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. American Mineralogist, 90(4): 672-678. DOI: 10.2138/am.2005.1742
  • Schwanninger, M.J.C.R., Rodrigues, J.C., Pereira, H., Hinterstoisser, B., 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1): 23-40. DOI: 10.1016/j.vibspec.2004.02.003
  • Shi, X., Zhang, S.C., Chen, Y.F., Li, M.Q., Ouyang, S.X., Peng, X.Y., 2010. Effects of infrared scattering powders on the thermal properties of porous SiO2 insulation material. Key Engineering Materials, 434: 689-692. DOI: 10.4028/www.scientific.net/KEM.434-435.689
  • Singthong, J., Cui, S.W., Ningsanond, S., Goff, H.D., 2004. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydrate Polymers, 58(4): 391-400. DOI: 10.1016/j.carbpol.2004.07.018
  • Singthong, J., Ningsanond, S., Cui, S.W., Goff, H.D., 2005. Extraction and physicochemical characterization of Krueo Ma Noy pectin. Food Hydrocolloids, 19(5): 793-801. DOI: 10.1016/j.foodhyd.2004.09.007
  • Tichi, A.H., Bazyar, B., Khademieslan, H., Rangavar, H., Taleipour, M., 2016. The effect of nano-wollastonite on biological, mechanical, physical and microstructural properties of the composite made of wood-cement fiber. Journal of Fundamental and Applied Sciences, 8(3S): 1466-1479. DOI: 10.4314/jfas.v8i3s.285
  • Yalçın, O.U., 2018. Investigation of performance properties of panels produced from some lignocellulosic sources with mineral (dolomite and olivine) additives. Ph.D. Dissertation, Isparta University of Applied Sciences, Isparta, Turkey.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Ömer Ümit Yalçın 0000-0003-2241-3677

Publication Date December 29, 2022
Acceptance Date September 26, 2022
Published in Issue Year 2022

Cite

APA Yalçın, Ö. Ü. (2022). Evaluation of various properties of gypsum particleboards reinforced with olivine mineral. Turkish Journal of Forestry, 23(4), 305-312. https://doi.org/10.18182/tjf.1142148
AMA Yalçın ÖÜ. Evaluation of various properties of gypsum particleboards reinforced with olivine mineral. Turkish Journal of Forestry. December 2022;23(4):305-312. doi:10.18182/tjf.1142148
Chicago Yalçın, Ömer Ümit. “Evaluation of Various Properties of Gypsum Particleboards Reinforced With Olivine Mineral”. Turkish Journal of Forestry 23, no. 4 (December 2022): 305-12. https://doi.org/10.18182/tjf.1142148.
EndNote Yalçın ÖÜ (December 1, 2022) Evaluation of various properties of gypsum particleboards reinforced with olivine mineral. Turkish Journal of Forestry 23 4 305–312.
IEEE Ö. Ü. Yalçın, “Evaluation of various properties of gypsum particleboards reinforced with olivine mineral”, Turkish Journal of Forestry, vol. 23, no. 4, pp. 305–312, 2022, doi: 10.18182/tjf.1142148.
ISNAD Yalçın, Ömer Ümit. “Evaluation of Various Properties of Gypsum Particleboards Reinforced With Olivine Mineral”. Turkish Journal of Forestry 23/4 (December 2022), 305-312. https://doi.org/10.18182/tjf.1142148.
JAMA Yalçın ÖÜ. Evaluation of various properties of gypsum particleboards reinforced with olivine mineral. Turkish Journal of Forestry. 2022;23:305–312.
MLA Yalçın, Ömer Ümit. “Evaluation of Various Properties of Gypsum Particleboards Reinforced With Olivine Mineral”. Turkish Journal of Forestry, vol. 23, no. 4, 2022, pp. 305-12, doi:10.18182/tjf.1142148.
Vancouver Yalçın ÖÜ. Evaluation of various properties of gypsum particleboards reinforced with olivine mineral. Turkish Journal of Forestry. 2022;23(4):305-12.