Research Article
BibTex RIS Cite

Determination of some properties of guar gum added chitosan based adhesives

Year 2023, , 39 - 44, 29.03.2023
https://doi.org/10.18182/tjf.1205757

Abstract

Most of the adhesives used in the wood industry are fossil fuel-based and cause risks to the environment and human health, especially due to formaldehyde content. In order to reduce this negative situation, research on different methods to reduce formaldehyde emissions has been carried out in recent years. Among these research, the use of bio-based adhesives attracts attention, especially because of its positive properties in terms of health. This study investigated the potential of using natural polymers chitosan and guar gum as a wood adhesive. For this purpose, guar gum was incorporated into the chitosan-based adhesive in 4 different ratios (0.06%, 0.2%, 1%, and 2%). The impact of adding different amounts of guar gum on the binding strength was assessed by measuring the viscosity of the produced glue. In addition, Fourier transform infrared spectroscopy (FTIR) analysis was performed to examine the interaction of chitosan-based adhesives with wood. The viscosity of the chitosan-based adhesive with the addition of guar gum was found to be between 1380 CP and 5264 CP. It was found that the bond strength value of the chitosan-based adhesive with % 0.2 guar gum added improved by 88% compared to the group without guar gum. It was concluded that chitosan-based glue with guar gum added has positive properties especially with its environmentalist structure and can be used in different areas.

References

  • Abdelmoula, M., Ben Hlima, H., Michalet, F., Bourduche, G., Chavant, J.Y., Gravier, A., Delattre, C., Grédiac, M., Mathias, J.D., Abdelkafi, S., Michaud, P., de Baynast, H., 2021. Chitosan-based adhesive: Optimization of tensile shear strength in dry and wet conditions. Polysaccharides, 2: 110–120.
  • Altuntas, E., Aydemir, D., 2019. Effects of wood flour on the mechanical, thermal and morphological properties of poly (L-lactic acid)-chitosan biopolymer composites. Maderas Ciencia y Tecnología, 21(4): 611-618.
  • ASTM D3528-96, 2016. Standard test method for strength properties of double lap shear adhesive joints by tension loading. Annual Book of ASTM Standarts, USA.
  • Baran, T., 2020. Highly active and robust palladium nanoparticles immobilized on biodegradable microcapsules containing chitosan-guar gum composite for synthesis of biaryl compounds. Konya Mühendislik Bilimleri Dergisi, 8(1): 113-121.
  • Brinker, A., 2007. Guar gum in rainbow trout (Oncorhynchus mykiss) feed: The influence of quality and dose on stabilisation of faecal solids. Aquaculture, 267(1-4): 315-327.
  • Bumgardner, J.D., Wiser, R., Gerard, P.D., Bergin, P., Chestnutt, B., Marini, M., Gilbert, J.A., 2003. Chitosan: Potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science, Polymer Edition, 14(5): 423-438.
  • Chen, H., Xu, Z., Mo, J., Lyu, Y., Tang, X., Shen, X., 2017. Effects of guar gum on adhesion properties of soybean protein isolate onto porcine bones. International Journal of Adhesion and Adhesives, 75: 124-131.
  • Chen, Y., Lyu, Y., Yuan, X., Ji, X., Zhang, F., Li, X., Li, J., 2022. A biomimetic adhesive with high adhesion strength and toughness comprising soybean meal, chitosan, and condensed tannin-functionalized boron nitride nanosheets. International Journal of Biological Macromolecules, 219: 611-625.
  • Cirak, O., Icyer, N.C., Durak, M.Z., 2018. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR). Journal of Dairy Research, 85(2): 222-225. Cleymand, F., Poerio, A., Mamanov, A., Elkhoury, K., Ikhelf, L., Jehl, J.P., Mano, J.F., 2021. Development of novel chitosan/guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties. Bioprinting, 21: e00122.
  • Dunky, M., 2021. Wood adhesives based on natural resources: A critical review: Part III: Tannin‐ and lignin‐based adhesives. Progress in Adhesion and Adhesives, 6: 383-529.
  • Ergun, H., 2021. Segmentation of wood cell in cross-section using deep convolutional neural networks. Journal of Intelligent & Fuzzy Systems, 41: 7447–7456.
  • Ergun, M.E., 2023. Activated carbon and cellulose-reinforced biodegradable chitosan foams. BioResources, 18(1): 1215-1231.
  • Gadhave, R.V., Mahanwar, P.A., Gadekar, P.T., 2021. Effect of addition of boric acid on thermo-mechanical properties of microcrystalline cellulose/polyvinyl alcohol blend and applicability as wood adhesive. Journal of Adhesion Science and Technology, 35(10): 1072-1086.
  • Gönültaş, O., Uçar, M., 2019. Doğu ladini ve meşe kabuk taneninin biyotutkal üretiminde kullanılması. Turkish Journal of Forestry, 20(4): 458-465.
  • Herrera, R., Hermoso, E., Labidi, J., Fernandez-Golfin, J.I., 2022. Non-destructive determination of core-transition-outer wood of Pinus nigra combining FTIR spectroscopy and prediction models. Microchemical Journal, 179: 107532.
  • Iqbal, D.N., Nazir, A., Iqbal, M., Yameen, M., 2020. Green synthesis and characterization of carboxymethyl guar gum: Application in textile printing technology. Green Processing and Synthesis, 9(1): 212-218.
  • Istek, A., Bicer, A., Özlüsoylu, İ., 2020. Effect of sodium carboxymethyl cellulose (Na-CMC) added to urea-formaldehyde resinon particleboard properties. Turkish Journal of Agriculture and Forestry, 44(5): 526-532.
  • Istek, A., Özlüsoylu, İ., Onat, S.M., Özlüsoylu, Ş., 2018. Formaldehyde emission problems and solution recommendations on wood-based boards. Bartın Orman Fakültesi Dergisi, 20(2): 382-387.
  • ISO 9665, 1998. Adhesives — Animal glues — Methods of sampling and testing. International Standardization Organization, Switzerland.
  • Ji, X., Guo, M., 2018. Preparation and properties of a chitosan-lignin wood adhesive. International Journal of Adhesion and Adhesives, 82: 8-13.
  • Jiang, S., Liu, S., Du, G., Wang, S., Zhou, X., Yang, J., Li, T., 2023. Chitosan-tannin adhesive: Fully biomass, synthesis-free and high performance for bamboo-based composite bonding. International Journal of Biological Macromolecules, 123115.
  • Kasaai, M.R., Arul, J., Charlet, G., 2000. Intrinsic viscosity–molecular weight relationship for chitosan. Journal of Polymer Science Part B: Polymer Physics, 38(19): 2591-2598.
  • Lee, D.W., Lim, C., Israelachvili, J.N., Hwang, D.S., 2013. Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir, 29: 14222–14229.
  • Mathias, J.D., Grédiac, M., Michaud, P., 2016. Bio-based adhesives. In: Biopolymers and Biotech Admixtures For Eco-Efficient Construction Materials (Ed: Pacheco-Torgal, F., Ivanov, V., Karak, N., Jonkers, H.), Woodhead Publishing, Duxford, pp. 369–385.
  • Mati-Baouche, N., Delattre, C., De Baynast, H., Grédiac, M., Mathias, J.D., Ursu, A.V., Michaud, P., 2019. Alkyl-chitosan-based adhesive: Water resistance improvement. Molecules, 24(10): 1987.
  • Mohammadinejad, R., Maleki, H., Larraneta, E., Fajardo, A.R., Nik, A.B., Shavandi, A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A.R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J.F., Mishra, Y.K., Thakur, V. K., 2019. Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16: 213-246.
  • Morandini, M.C., Kain, G., Eckardt, J., Petutschnigg, A., Tippner, J., 2022. Physical-mechanical properties of peat moss (sphagnum) insulation panels with bio-based adhesives. Materials, 15(9): 3299.
  • Ozen, E., Yildirim, N., Dalkilic, B., Ergun, M.E., 2021. Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas. Ciencia y Tecnología, 23(26): 1-10.
  • Özlüsoylu, İ., İstek, A., 2015. Mobilya üretiminde kullanılan panellerden salınan formaldehit emisyonu ve insan sağlığı üzerine etkileri. Selçuk-Teknik Dergisi, 14(2): 213-227
  • Özlüsoylu, İ., 2016. Üre formaldehit tutkalının sodyum-karboksimetilselüloz ile modifikasyonun yonga levhaların bazı özellikleri üzerine etkisi. Yüksek Lisans Tezi, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Bartın.
  • Özlüsoylu, İ., İstek, A., 2018. Sodyum karboksimetil selüloz (Na-CMC) takviyeli üre formaldehit tutkalının yonga levha özellikleri ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry, 19(3): 317-322.
  • Patel, A.K., Michaud, P., Petit, E., de Baynast, H., Grédiac, M., Mathias, J.D., 2013. Development of a chitosan‐based adhesive. Application to wood bonding. Journal of Applied Polymer Science, 127(6): 5014-5021.
  • Prosanov, I.Y., Abdulrahman, S.T., Thomas, S., Bulina, N.V., Gerasimov, K.B., 2018. Complex of polyvinyl alcohol with boric acid: Structure and use. Materials Today Communications, 14: 77-81.
  • Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A., 2010. Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82(4): 1243-1247.
  • Rizhikovs, J., Brazdausks, P., Paze, A., Tupciauskas, R., Grinins, J., Puke, M., Makars, R., 2022. Characterization of suberinic acids from birch outer bark as bio-based adhesive in wood composites. International Journal of Adhesion and Adhesives, 112: 102989.
  • Solt, P., Konnerth, J., Gindl-Altmutter, W., Kantner, W., Moser, J., Mitter, R., Van Herwijnen, H.W., 2019. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. International Journal of Adhesion and Adhesives, 94: 99-131.
  • Song, C., Yu, H., Zhang, M., Yang, Y., Zhang, G., 2013. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International Journal of Biological Macromolecules, 60: 347-354.
  • Şenay, A., 1996. Lamine edilmiş ağaç malzemenin teknolojik özellikleri. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Vino, A.B., Ramasamy, P., Shanmugam, V., Shanmugam, A., 2012. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine, 2(1): S334-S341.
  • Xi, X., Pizzi, A., Lei, H., Zhang, B., Chen, X., Du, G., 2022. Environmentally friendly chitosan adhesives for plywood bonding. International Journal of Adhesion and Adhesives, 112: 103027.
  • Yildirim, N., Ozen, E., Ergun, M.E., Dalkilic, B., 2022. A atudy on physical, morphological and antibacterial properties of bio polymers reinforced polyvinyl acetate foams. Materials Research, 25: e20210579.
  • Yu, H., Cao, Y., Fang, Q., Liu, Z., 2015. Effects of treatment temperature on properties of starch-based adhesives. BioResources, 10(2): 3520-3530.
  • Zeng, G., Zhou, Y., Liang, Y., Zhang, F., Luo, J., Li, J., Fang, Z., 2022. A hair fiber inspired bio-based adhesive with high bonding strength and mildew tolerance. Chemical Engineering Journal, 434: 134632.

Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi

Year 2023, , 39 - 44, 29.03.2023
https://doi.org/10.18182/tjf.1205757

Abstract

Ahşap sektöründe kullanılan tutkalların büyük bir bölümü fosil yakıt temelli olup özellikle içerisindeki formaldehit nedeniyle çevre ve insan sağlığı açısından riskler oluşturmaktadır. Bu olumsuz durumu azaltmak amacıyla son yıllarda formaldehit emisyonunu azaltmaya yönelik farklı yöntemler üzerine araştırmalar yapılmaktadır. Bu araştırmalar içerisinde biyo bazlı tutkal kullanımı sağlık açısından sahip olduğu olumlu özellikler nedeniyle ilgi görmektedir. Bu çalışmada, doğal polimerlerden kitosan ve guar sakızı kullanılarak üretilen bağlayıcının ahşap tutkalı olarak kullanılabilme potansiyeli araştırılmıştır. Bu amaçla kitosan bazlı tutkalın içerisine 4 farklı oranda (%0.06, %0.2, %1 ve %2) guar sakızı ilave edilmiştir. Elde edilen tutkalın viskozitesi ölçülerek, farklı orandaki guar sakızı ilavesinin bağ kuvveti üzerindeki etkisi belirlenmiştir. Ayrıca kitosan bazlı tutkalların odun ile etkileşimini incelemek amacıyla Fourier transform kızılötesi spektroskopisi (FTIR) analizi yapılmıştır. Guar sakızı ilaveli kitosan bazlı tutkalın viskozitesi 1380 CP ile 5264 CP arasında bulunmuştur. %0.2 oranında guar sakızı ilave edilmiş kitosan bazlı tutkalın bağ kuvvet değerinin, guar sakızı ilave edilmeyen gruba göre %88 oranında iyileştiği tespit edilmiştir. Guar sakızı ilaveli kitosan bazlı tutkalın özellikle çevreci yapısı ile olumlu özelliklere sahip olduğu ve farklı alanlarda kullanılabileceği sonucuna varılmıştır.

References

  • Abdelmoula, M., Ben Hlima, H., Michalet, F., Bourduche, G., Chavant, J.Y., Gravier, A., Delattre, C., Grédiac, M., Mathias, J.D., Abdelkafi, S., Michaud, P., de Baynast, H., 2021. Chitosan-based adhesive: Optimization of tensile shear strength in dry and wet conditions. Polysaccharides, 2: 110–120.
  • Altuntas, E., Aydemir, D., 2019. Effects of wood flour on the mechanical, thermal and morphological properties of poly (L-lactic acid)-chitosan biopolymer composites. Maderas Ciencia y Tecnología, 21(4): 611-618.
  • ASTM D3528-96, 2016. Standard test method for strength properties of double lap shear adhesive joints by tension loading. Annual Book of ASTM Standarts, USA.
  • Baran, T., 2020. Highly active and robust palladium nanoparticles immobilized on biodegradable microcapsules containing chitosan-guar gum composite for synthesis of biaryl compounds. Konya Mühendislik Bilimleri Dergisi, 8(1): 113-121.
  • Brinker, A., 2007. Guar gum in rainbow trout (Oncorhynchus mykiss) feed: The influence of quality and dose on stabilisation of faecal solids. Aquaculture, 267(1-4): 315-327.
  • Bumgardner, J.D., Wiser, R., Gerard, P.D., Bergin, P., Chestnutt, B., Marini, M., Gilbert, J.A., 2003. Chitosan: Potential use as a bioactive coating for orthopaedic and craniofacial/dental implants. Journal of Biomaterials Science, Polymer Edition, 14(5): 423-438.
  • Chen, H., Xu, Z., Mo, J., Lyu, Y., Tang, X., Shen, X., 2017. Effects of guar gum on adhesion properties of soybean protein isolate onto porcine bones. International Journal of Adhesion and Adhesives, 75: 124-131.
  • Chen, Y., Lyu, Y., Yuan, X., Ji, X., Zhang, F., Li, X., Li, J., 2022. A biomimetic adhesive with high adhesion strength and toughness comprising soybean meal, chitosan, and condensed tannin-functionalized boron nitride nanosheets. International Journal of Biological Macromolecules, 219: 611-625.
  • Cirak, O., Icyer, N.C., Durak, M.Z., 2018. Rapid detection of adulteration of milks from different species using Fourier Transform Infrared Spectroscopy (FTIR). Journal of Dairy Research, 85(2): 222-225. Cleymand, F., Poerio, A., Mamanov, A., Elkhoury, K., Ikhelf, L., Jehl, J.P., Mano, J.F., 2021. Development of novel chitosan/guar gum inks for extrusion-based 3D bioprinting: Process, printability and properties. Bioprinting, 21: e00122.
  • Dunky, M., 2021. Wood adhesives based on natural resources: A critical review: Part III: Tannin‐ and lignin‐based adhesives. Progress in Adhesion and Adhesives, 6: 383-529.
  • Ergun, H., 2021. Segmentation of wood cell in cross-section using deep convolutional neural networks. Journal of Intelligent & Fuzzy Systems, 41: 7447–7456.
  • Ergun, M.E., 2023. Activated carbon and cellulose-reinforced biodegradable chitosan foams. BioResources, 18(1): 1215-1231.
  • Gadhave, R.V., Mahanwar, P.A., Gadekar, P.T., 2021. Effect of addition of boric acid on thermo-mechanical properties of microcrystalline cellulose/polyvinyl alcohol blend and applicability as wood adhesive. Journal of Adhesion Science and Technology, 35(10): 1072-1086.
  • Gönültaş, O., Uçar, M., 2019. Doğu ladini ve meşe kabuk taneninin biyotutkal üretiminde kullanılması. Turkish Journal of Forestry, 20(4): 458-465.
  • Herrera, R., Hermoso, E., Labidi, J., Fernandez-Golfin, J.I., 2022. Non-destructive determination of core-transition-outer wood of Pinus nigra combining FTIR spectroscopy and prediction models. Microchemical Journal, 179: 107532.
  • Iqbal, D.N., Nazir, A., Iqbal, M., Yameen, M., 2020. Green synthesis and characterization of carboxymethyl guar gum: Application in textile printing technology. Green Processing and Synthesis, 9(1): 212-218.
  • Istek, A., Bicer, A., Özlüsoylu, İ., 2020. Effect of sodium carboxymethyl cellulose (Na-CMC) added to urea-formaldehyde resinon particleboard properties. Turkish Journal of Agriculture and Forestry, 44(5): 526-532.
  • Istek, A., Özlüsoylu, İ., Onat, S.M., Özlüsoylu, Ş., 2018. Formaldehyde emission problems and solution recommendations on wood-based boards. Bartın Orman Fakültesi Dergisi, 20(2): 382-387.
  • ISO 9665, 1998. Adhesives — Animal glues — Methods of sampling and testing. International Standardization Organization, Switzerland.
  • Ji, X., Guo, M., 2018. Preparation and properties of a chitosan-lignin wood adhesive. International Journal of Adhesion and Adhesives, 82: 8-13.
  • Jiang, S., Liu, S., Du, G., Wang, S., Zhou, X., Yang, J., Li, T., 2023. Chitosan-tannin adhesive: Fully biomass, synthesis-free and high performance for bamboo-based composite bonding. International Journal of Biological Macromolecules, 123115.
  • Kasaai, M.R., Arul, J., Charlet, G., 2000. Intrinsic viscosity–molecular weight relationship for chitosan. Journal of Polymer Science Part B: Polymer Physics, 38(19): 2591-2598.
  • Lee, D.W., Lim, C., Israelachvili, J.N., Hwang, D.S., 2013. Strong adhesion and cohesion of chitosan in aqueous solutions. Langmuir, 29: 14222–14229.
  • Mathias, J.D., Grédiac, M., Michaud, P., 2016. Bio-based adhesives. In: Biopolymers and Biotech Admixtures For Eco-Efficient Construction Materials (Ed: Pacheco-Torgal, F., Ivanov, V., Karak, N., Jonkers, H.), Woodhead Publishing, Duxford, pp. 369–385.
  • Mati-Baouche, N., Delattre, C., De Baynast, H., Grédiac, M., Mathias, J.D., Ursu, A.V., Michaud, P., 2019. Alkyl-chitosan-based adhesive: Water resistance improvement. Molecules, 24(10): 1987.
  • Mohammadinejad, R., Maleki, H., Larraneta, E., Fajardo, A.R., Nik, A.B., Shavandi, A., Sheikhi, A., Ghorbanpour, M., Farokhi, M., Govindh, P., Cabane, E., Azizi, S., Aref, A.R., Mozafari, M., Mehrali, M., Thomas, S., Mano, J.F., Mishra, Y.K., Thakur, V. K., 2019. Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16: 213-246.
  • Morandini, M.C., Kain, G., Eckardt, J., Petutschnigg, A., Tippner, J., 2022. Physical-mechanical properties of peat moss (sphagnum) insulation panels with bio-based adhesives. Materials, 15(9): 3299.
  • Ozen, E., Yildirim, N., Dalkilic, B., Ergun, M.E., 2021. Effects of microcrystalline cellulose on some performance properties of chitosan aerogels. Maderas. Ciencia y Tecnología, 23(26): 1-10.
  • Özlüsoylu, İ., İstek, A., 2015. Mobilya üretiminde kullanılan panellerden salınan formaldehit emisyonu ve insan sağlığı üzerine etkileri. Selçuk-Teknik Dergisi, 14(2): 213-227
  • Özlüsoylu, İ., 2016. Üre formaldehit tutkalının sodyum-karboksimetilselüloz ile modifikasyonun yonga levhaların bazı özellikleri üzerine etkisi. Yüksek Lisans Tezi, Bartın Üniversitesi, Fen Bilimleri Enstitüsü, Bartın.
  • Özlüsoylu, İ., İstek, A., 2018. Sodyum karboksimetil selüloz (Na-CMC) takviyeli üre formaldehit tutkalının yonga levha özellikleri ve formaldehit emisyonuna etkisi. Turkish Journal of Forestry, 19(3): 317-322.
  • Patel, A.K., Michaud, P., Petit, E., de Baynast, H., Grédiac, M., Mathias, J.D., 2013. Development of a chitosan‐based adhesive. Application to wood bonding. Journal of Applied Polymer Science, 127(6): 5014-5021.
  • Prosanov, I.Y., Abdulrahman, S.T., Thomas, S., Bulina, N.V., Gerasimov, K.B., 2018. Complex of polyvinyl alcohol with boric acid: Structure and use. Materials Today Communications, 14: 77-81.
  • Rao, M.S., Kanatt, S.R., Chawla, S.P., Sharma, A., 2010. Chitosan and guar gum composite films: Preparation, physical, mechanical and antimicrobial properties. Carbohydrate Polymers, 82(4): 1243-1247.
  • Rizhikovs, J., Brazdausks, P., Paze, A., Tupciauskas, R., Grinins, J., Puke, M., Makars, R., 2022. Characterization of suberinic acids from birch outer bark as bio-based adhesive in wood composites. International Journal of Adhesion and Adhesives, 112: 102989.
  • Solt, P., Konnerth, J., Gindl-Altmutter, W., Kantner, W., Moser, J., Mitter, R., Van Herwijnen, H.W., 2019. Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. International Journal of Adhesion and Adhesives, 94: 99-131.
  • Song, C., Yu, H., Zhang, M., Yang, Y., Zhang, G., 2013. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International Journal of Biological Macromolecules, 60: 347-354.
  • Şenay, A., 1996. Lamine edilmiş ağaç malzemenin teknolojik özellikleri. Doktora Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Vino, A.B., Ramasamy, P., Shanmugam, V., Shanmugam, A., 2012. Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine, 2(1): S334-S341.
  • Xi, X., Pizzi, A., Lei, H., Zhang, B., Chen, X., Du, G., 2022. Environmentally friendly chitosan adhesives for plywood bonding. International Journal of Adhesion and Adhesives, 112: 103027.
  • Yildirim, N., Ozen, E., Ergun, M.E., Dalkilic, B., 2022. A atudy on physical, morphological and antibacterial properties of bio polymers reinforced polyvinyl acetate foams. Materials Research, 25: e20210579.
  • Yu, H., Cao, Y., Fang, Q., Liu, Z., 2015. Effects of treatment temperature on properties of starch-based adhesives. BioResources, 10(2): 3520-3530.
  • Zeng, G., Zhou, Y., Liang, Y., Zhang, F., Luo, J., Li, J., Fang, Z., 2022. A hair fiber inspired bio-based adhesive with high bonding strength and mildew tolerance. Chemical Engineering Journal, 434: 134632.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Orijinal Araştırma Makalesi
Authors

Mehmet Emin Ergün 0000-0002-9938-7561

İsmail Özlüsoylu 0000-0002-0391-4794

Publication Date March 29, 2023
Acceptance Date March 6, 2023
Published in Issue Year 2023

Cite

APA Ergün, M. E., & Özlüsoylu, İ. (2023). Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi. Turkish Journal of Forestry, 24(1), 39-44. https://doi.org/10.18182/tjf.1205757
AMA Ergün ME, Özlüsoylu İ. Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi. Turkish Journal of Forestry. March 2023;24(1):39-44. doi:10.18182/tjf.1205757
Chicago Ergün, Mehmet Emin, and İsmail Özlüsoylu. “Guar sakızı Ilaveli Kitosan Bazlı tutkalların Bazı özelliklerinin Belirlenmesi”. Turkish Journal of Forestry 24, no. 1 (March 2023): 39-44. https://doi.org/10.18182/tjf.1205757.
EndNote Ergün ME, Özlüsoylu İ (March 1, 2023) Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi. Turkish Journal of Forestry 24 1 39–44.
IEEE M. E. Ergün and İ. Özlüsoylu, “Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi”, Turkish Journal of Forestry, vol. 24, no. 1, pp. 39–44, 2023, doi: 10.18182/tjf.1205757.
ISNAD Ergün, Mehmet Emin - Özlüsoylu, İsmail. “Guar sakızı Ilaveli Kitosan Bazlı tutkalların Bazı özelliklerinin Belirlenmesi”. Turkish Journal of Forestry 24/1 (March 2023), 39-44. https://doi.org/10.18182/tjf.1205757.
JAMA Ergün ME, Özlüsoylu İ. Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi. Turkish Journal of Forestry. 2023;24:39–44.
MLA Ergün, Mehmet Emin and İsmail Özlüsoylu. “Guar sakızı Ilaveli Kitosan Bazlı tutkalların Bazı özelliklerinin Belirlenmesi”. Turkish Journal of Forestry, vol. 24, no. 1, 2023, pp. 39-44, doi:10.18182/tjf.1205757.
Vancouver Ergün ME, Özlüsoylu İ. Guar sakızı ilaveli kitosan bazlı tutkalların bazı özelliklerinin belirlenmesi. Turkish Journal of Forestry. 2023;24(1):39-44.