Research Article
BibTex RIS Cite

Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi

Year 2023, , 403 - 410, 28.12.2023
https://doi.org/10.18182/tjf.1316871

Abstract

Anyonik bir boyar madde olan Kongo Kırmızısı (KR) günümüzde endüstrinin birçok alanında kullanılmaktadır. Anyonik ve katyonik boyar maddelerin temizlenmeden su kaynakları ile temas etmesi ciddi çevre sorunlarına yol açmaktadır. Bu çalışmada ülkemizde geniş yayılış gösteren kızılçam (Pinus brutia Ten.) kozalağı biyokömür (PBKB) haline getirilmiş ve sulu çözeltilerden KR gideriminde kullanılmıştır. Elde edilen sonuçlarda, PBKB ile KR gideriminin Langmuir adsorpsiyon izotermine uygun olduğu (R2=0.975) ve maksimum adsorpsiyon kapasitesi değerinin 14.124 mg/g olduğu bulunmuştur. Yapılan kinetik ve termodinamik hesaplamalar sonucunda adsorpsiyon sürecinin endotermik olduğu ve pseudo-second-order (PSO) üzerinden yürüdüğü sonucuna ulaşılmıştır. PBKB, KR ile temas etmeden önce ve temas ettikten sonra SEM-EDS ve FT-IR cihazlarıyla karakterize edilmiştir. Temas etmeden önce SEM-EDS karakterizasyonu yapıldığında C elementinin ağırlık yüzdesi (%57.450), atomik yüzdesi (%66.540) ve O elementinin ağırlık yüzdesi (%34.310), atomik yüzdesi (%29.830) olarak hesaplamıştır. Sonrasında ise C elementinin ağırlık yüzdesi (%67.230), atomik yüzdesi (%75.400) ve O elementinin ağırlık yüzdesi (%26.110), atomik yüzdesi (%21.990) olarak hesaplanmıştır.

References

  • Aichour, A., Zaghouane-Boudiaf, H., Khodja, H.D., 2022. Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. Arabian Journal of Chemistry, 15(1): 103542.
  • Akpomie, K.G., Adegoke, K.A., Oyedotun, K.O., Ighalo, J.O., Amaku, J.F., Olisah, C., Adeola, A.O., Iwuozor, K.O., Conradie, J., 2022. Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery, 1-29.
  • Bayram, O., Moral, E., Göde, F., 2023a. İğde çekirdeklerinden elde edilen biyokömür kullanılarak sulu çözeltiden kristal viyole boyarmaddesinin uzaklaştırılması. Journal of the Institute of Science and Technology, 13(1): 448-457.
  • Bayram, O., Göde, F., Pekgözlü, İ., 2023b. Removal of methyl blue (MB) from aqueous solution using strontium aluminoborate (SrAl2B2O7): synthesis, characterization and adsorption studies. Journal of Dispersion Science and Technology, 1-9.
  • Chong, K.Y., Chia, C.H., Zakaria, S., Sajab, M.S., 2014. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. Journal of environmental chemical engineering, 2(4): 2156-2161. Cruz, E.D., Missau, J., Tanabe, E.H., Collinson, S.R., Bertuol, D.A., 2023. Efficient removal of congo red dye using activated lychee peel biochar supported Ca-Cr layered double hydroxide. Environmental Nanotechnology, Monitoring & Management, 20, 100835.
  • Durgun, H., Çoban, H.O., Eker, M., 2022. İnsansız hava aracıyla elde edilen hava fotoğraflarından kızılçam ağaçlarının çap ve boylarının ölçümü ve gövde hacminin tahmini. Turkish Journal of Forestry, 23(4): 255-267.
  • Freundlich, H., 1907. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57(1): 385-470.
  • Fu, Y., Viraraghavan, T., 2002. Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 7(1): 239-247.
  • Giri, B.S., Sonwani, R.K., Varjani, S., Chaurasia, D., Varadavenkatesan, T., Chaturvedi, P., Yadav, S., Katiyar, V., Singh, R.S., Pandey, A., 2022. Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). Chemosphere, 287: 132282.
  • Hiew, B.Y.Z., Lee, L.Y., Lee, X.J., Thangalazhy-Gopakumar, S., Gan, S., Lim, S. S., Pan, G.T., Yang, T.C.K., Chiu, W.S., Khiew, P.S., 2018. Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Process Safety and Environmental Protection, 116: 262-286.
  • Hosny, N.M., Gomaa, I., Elmahgary, M.G., 2023. Adsorption of polluted dyes from water by transition metal oxides: A review. Applied Surface Science Advances, 15: 100395.
  • Hu, Z., Chen, H., Ji, F., Yuan, S., 2010. Removal of Congo Red from aqueous solution by cattail root. Journal of Hazardous materials, 173(1-3): 292-297.
  • Huang, X., Yu, F., Peng, Q., Huang, Y., 2018. Superb adsorption capacity of biochar derived from leather shavings for Congo red. RSC advances, 8(52): 29781-29788.
  • İçgen, Y., Kaya, Z., Çengel, B., Velioğlu, E., Öztürk, H., Önde, S., 2006. Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. Forest Ecology and Management, 225(1-3): 328-336.
  • Jabar, J.M., Odusote, Y.A., Ayinde, Y.T., Yılmaz, M., 2022. African almond (Terminalia catappa L) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye. Results in Engineering, 14: 100385.
  • Kapoor, R.T., Sivamani, S., 2023. Adsorptive potential of orange peel biochar for removal of basic red 46 dye and phytotoxicity analysis. Chemical Engineering & Technology, 46(4): 756-765.
  • Kapoor, R.T., Rafatullah, M., Siddiqui, M.R., Khan, M.A., Sillanpää, M., 2022. Removal of reactive black 5 dye by banana peel biochar and evaluation of its phytotoxicity on tomato. Sustainability, 14(7): 4176.
  • Karagöz, G., Demirci, M., 2012. Forestry property of Turkey. General Directorate of Forestry, No: 85, Ankara.
  • Khader, E.H., Mohammed, T.J., Mirghaffari, N., Salman, A.D., Juzsakova, T., Abdullah, T. A., 2022. Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technologies and Environmental Policy, 24(2): 713-720.
  • Lafi, R., Montasser, I., Hafiane, A., 2019. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorption Science & Technology, 37(1-2): 160-181.
  • Langmuir, I., 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11): 2221-2295.
  • Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y., Xue, X., 2019. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresource Technology, 282: 48-55.
  • Mandal, S., Calderon, J., Marpu, S. B., Omary, M.A., Shi, S. Q., 2021. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology, 243: 103869.
  • Melo, A. L., Carneiro, M. T., Nascimento, A. M., Morais, A. I., Bezerra, R. D., Viana, B. C., Osajima, J. A., Silva-Filho, E. C., 2022. Biochar obtained from caryocar brasiliense endocarp for removal of dyes from the aqueous medium. Materials, 15(24): 9076.
  • Natarajan, S., Bajaj, H.C., Tayade, R.J., 2018. Recent advances based on the synergetic effect of adsorption for removal of dyes from wastewater using photocatalytic process. Journal of Environmental Sciences, 65: 201-222.
  • Ogunlusi, G. O., Amos, O. D., Olatunji, O. F., Adenuga, A.A.,2023. Equilibrium, kinetic, and thermodynamic studies of the adsorption of anionic and cationic dyes from aqueous solution using agricultural waste biochar. Journal of the Iranian Chemical Society, 20(4), 817-830.
  • Oraon, A., Prajapati, A.K., Ram, M., Saxena, V.K., Dutta, S., Gupta‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬, A. K., 2022. Synthesis, characterization, and application of microporous biochar prepared from Pterospermum acerifolium plant fruit shell waste for methylene blue dye adsorption: the role of surface modification by SDS surfactant. Biomass Conversion and Biorefinery, 1-23.
  • Pandey, D., Daverey, A., Dutta, K., Yata, V. K., Arunachalam, K., 2022. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study. Environmental Technology & Innovation, 25: 102200.
  • Parlayıcı, Ş., Pehlivan, E., 2022. An ecologically sustainable specific method using new magnetic alginate-biochar from acorn cups (Quercus coccifera L.) for decolorization of dyes. Polymer Bulletin, 1-25.
  • Rajabi, M., Keihankhadiv, S., Suhas, Tyagi, I., Karri, R.R., Chaudhary, M., Mubarak, N.M., Chaudhary, S., Kumar, P., Singh, P., 2023. Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials a comprehensive review. Journal of Nanostructure in Chemistry, 13(1): 43-65.
  • Rubangakene, N.O., Elwardany, A., Fujii, M., Sekiguchi, H., Elkady, M., Shokry, H., 2023. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chemical Engineering Research and Design, 189: 636-651.
  • Sahu, S., Pahi, S., Tripathy, S., Singh, S. K., Behera, A., Sahu, U.K., Patel, R.K., 2020. Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. Journal of Molecular Liquids, 315: 113743.
  • Sassi, W., Ghanmi, I., Oulego, P., Collado, S., Ammar, S., Díaz, M., 2023. Pomegranate peel-derived biochar as ecofriendly adsorbent of aniline-based dyes removal from wastewater. Clean Technologies and Environmental Policy, 1-17.
  • Scatchard, G., 1949. The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences, 51(4): 660-672.
  • Temkin, M.J., Pyzhev, V., 1940. Recent modifications to Langmuir isotherms.
  • Ullah, F., Ji, G., Irfan, M., Gao, Y., Shafiq, F., Sun, Y., Ain, Q. U., Li, A., 2022. Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis. Environmental Pollution, 314: 120271.
  • Wang, L., Wang, A., 2008. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. Journal of hazardous materials, 160(1): 173-180.
  • Wang, Y.Y., Lyu, H.H., Hu, Y.D., Liu, Y.X., He, L.L., Luo, F. C., Yang, S.M., 2022. Graphene–Biochar composite for effective congo red dye removal from water. Journal of Environmental Engineering, 148(7): 04022030.
  • Yan, S., Yu, W., Yang, T., Li, Q., Guo, J., 2022. The adsorption of corn stalk biochar for Pb and Cd: preparation, characterization, and batch adsorption study. Separations, 9(2): 22.
  • Yin, Y., Yang, S., Jia, Z., Zhang, H., Gao, Y., Zhang, X., Zhong, H., Zhou, Z., Zhang, X., Zhou, H., 2023. Magnetic biochar based on furfural residue as an excellent candidate for efficient adsorption of Tetracycline, Bisphenol A, Congo red, and Cr6+. Environmental Science and Pollution Research, 30(10): 26510-26522.
  • Zhang, L., Tu, L. Y., Liang, Y., Chen, Q., Li, Z. S., Li, C. H., Wang, Z. H., Li, W., 2018. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC advances, 8(74): 42280-42291.

Utilization as absorban of biochar made from red pine cones: Removal of Congo Red from aqueous solutions

Year 2023, , 403 - 410, 28.12.2023
https://doi.org/10.18182/tjf.1316871

Abstract

Congo Red, an anionic dyestuff, is used in many areas of industry today. Contact of anionic and cationic dyestuffs with water sources without cleaning causes serious environmental problems. In this study, red pine (Pinus brutia Ten.) cones, which can be found in many parts of the world, were turned into biochar (PBKB) and used for KR removal from aqueous solutions. In the results obtained, it was found that the removal of CR by PBKB was in accordance with the Langmuir adsorption isotherm (R2=0.975) and the maximum adsorption capacity value was 14.124 mg/g. As a result of the kinetic and thermodynamic calculations, it was concluded that the adsorption process is endothermic and proceeds over pseudo-second-order (PSO). PBKB was characterized by SEM-EDS and FT-IR devices before and after contact with the CR. When SEM-EDS characterization was performed before contact, it was calculated as the weight percentage (57.450%) and atomic percentage (66.540%) of element C and the weight percentage (34.310%) and atomic percentage (29.830%) of element O. Afterwards, the weight percentage (67.230%) and atomic percentage (75.400%) of element C and the weight percentage (26.110%) and atomic percentage (21.990%) of element O were calculated.

References

  • Aichour, A., Zaghouane-Boudiaf, H., Khodja, H.D., 2022. Highly removal of anionic dye from aqueous medium using a promising biochar derived from date palm petioles: Characterization, adsorption properties and reuse studies. Arabian Journal of Chemistry, 15(1): 103542.
  • Akpomie, K.G., Adegoke, K.A., Oyedotun, K.O., Ighalo, J.O., Amaku, J.F., Olisah, C., Adeola, A.O., Iwuozor, K.O., Conradie, J., 2022. Removal of bromophenol blue dye from water onto biomass, activated carbon, biochar, polymer, nanoparticle, and composite adsorbents. Biomass Conversion and Biorefinery, 1-29.
  • Bayram, O., Moral, E., Göde, F., 2023a. İğde çekirdeklerinden elde edilen biyokömür kullanılarak sulu çözeltiden kristal viyole boyarmaddesinin uzaklaştırılması. Journal of the Institute of Science and Technology, 13(1): 448-457.
  • Bayram, O., Göde, F., Pekgözlü, İ., 2023b. Removal of methyl blue (MB) from aqueous solution using strontium aluminoborate (SrAl2B2O7): synthesis, characterization and adsorption studies. Journal of Dispersion Science and Technology, 1-9.
  • Chong, K.Y., Chia, C.H., Zakaria, S., Sajab, M.S., 2014. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. Journal of environmental chemical engineering, 2(4): 2156-2161. Cruz, E.D., Missau, J., Tanabe, E.H., Collinson, S.R., Bertuol, D.A., 2023. Efficient removal of congo red dye using activated lychee peel biochar supported Ca-Cr layered double hydroxide. Environmental Nanotechnology, Monitoring & Management, 20, 100835.
  • Durgun, H., Çoban, H.O., Eker, M., 2022. İnsansız hava aracıyla elde edilen hava fotoğraflarından kızılçam ağaçlarının çap ve boylarının ölçümü ve gövde hacminin tahmini. Turkish Journal of Forestry, 23(4): 255-267.
  • Freundlich, H., 1907. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, 57(1): 385-470.
  • Fu, Y., Viraraghavan, T., 2002. Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 7(1): 239-247.
  • Giri, B.S., Sonwani, R.K., Varjani, S., Chaurasia, D., Varadavenkatesan, T., Chaturvedi, P., Yadav, S., Katiyar, V., Singh, R.S., Pandey, A., 2022. Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona chinensis). Chemosphere, 287: 132282.
  • Hiew, B.Y.Z., Lee, L.Y., Lee, X.J., Thangalazhy-Gopakumar, S., Gan, S., Lim, S. S., Pan, G.T., Yang, T.C.K., Chiu, W.S., Khiew, P.S., 2018. Review on synthesis of 3D graphene-based configurations and their adsorption performance for hazardous water pollutants. Process Safety and Environmental Protection, 116: 262-286.
  • Hosny, N.M., Gomaa, I., Elmahgary, M.G., 2023. Adsorption of polluted dyes from water by transition metal oxides: A review. Applied Surface Science Advances, 15: 100395.
  • Hu, Z., Chen, H., Ji, F., Yuan, S., 2010. Removal of Congo Red from aqueous solution by cattail root. Journal of Hazardous materials, 173(1-3): 292-297.
  • Huang, X., Yu, F., Peng, Q., Huang, Y., 2018. Superb adsorption capacity of biochar derived from leather shavings for Congo red. RSC advances, 8(52): 29781-29788.
  • İçgen, Y., Kaya, Z., Çengel, B., Velioğlu, E., Öztürk, H., Önde, S., 2006. Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. Forest Ecology and Management, 225(1-3): 328-336.
  • Jabar, J.M., Odusote, Y.A., Ayinde, Y.T., Yılmaz, M., 2022. African almond (Terminalia catappa L) leaves biochar prepared through pyrolysis using H3PO4 as chemical activator for sequestration of methylene blue dye. Results in Engineering, 14: 100385.
  • Kapoor, R.T., Sivamani, S., 2023. Adsorptive potential of orange peel biochar for removal of basic red 46 dye and phytotoxicity analysis. Chemical Engineering & Technology, 46(4): 756-765.
  • Kapoor, R.T., Rafatullah, M., Siddiqui, M.R., Khan, M.A., Sillanpää, M., 2022. Removal of reactive black 5 dye by banana peel biochar and evaluation of its phytotoxicity on tomato. Sustainability, 14(7): 4176.
  • Karagöz, G., Demirci, M., 2012. Forestry property of Turkey. General Directorate of Forestry, No: 85, Ankara.
  • Khader, E.H., Mohammed, T.J., Mirghaffari, N., Salman, A.D., Juzsakova, T., Abdullah, T. A., 2022. Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technologies and Environmental Policy, 24(2): 713-720.
  • Lafi, R., Montasser, I., Hafiane, A., 2019. Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorption Science & Technology, 37(1-2): 160-181.
  • Langmuir, I., 1916. The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11): 2221-2295.
  • Liu, S., Li, J., Xu, S., Wang, M., Zhang, Y., Xue, X., 2019. A modified method for enhancing adsorption capability of banana pseudostem biochar towards methylene blue at low temperature. Bioresource Technology, 282: 48-55.
  • Mandal, S., Calderon, J., Marpu, S. B., Omary, M.A., Shi, S. Q., 2021. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology, 243: 103869.
  • Melo, A. L., Carneiro, M. T., Nascimento, A. M., Morais, A. I., Bezerra, R. D., Viana, B. C., Osajima, J. A., Silva-Filho, E. C., 2022. Biochar obtained from caryocar brasiliense endocarp for removal of dyes from the aqueous medium. Materials, 15(24): 9076.
  • Natarajan, S., Bajaj, H.C., Tayade, R.J., 2018. Recent advances based on the synergetic effect of adsorption for removal of dyes from wastewater using photocatalytic process. Journal of Environmental Sciences, 65: 201-222.
  • Ogunlusi, G. O., Amos, O. D., Olatunji, O. F., Adenuga, A.A.,2023. Equilibrium, kinetic, and thermodynamic studies of the adsorption of anionic and cationic dyes from aqueous solution using agricultural waste biochar. Journal of the Iranian Chemical Society, 20(4), 817-830.
  • Oraon, A., Prajapati, A.K., Ram, M., Saxena, V.K., Dutta, S., Gupta‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬, A. K., 2022. Synthesis, characterization, and application of microporous biochar prepared from Pterospermum acerifolium plant fruit shell waste for methylene blue dye adsorption: the role of surface modification by SDS surfactant. Biomass Conversion and Biorefinery, 1-23.
  • Pandey, D., Daverey, A., Dutta, K., Yata, V. K., Arunachalam, K., 2022. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study. Environmental Technology & Innovation, 25: 102200.
  • Parlayıcı, Ş., Pehlivan, E., 2022. An ecologically sustainable specific method using new magnetic alginate-biochar from acorn cups (Quercus coccifera L.) for decolorization of dyes. Polymer Bulletin, 1-25.
  • Rajabi, M., Keihankhadiv, S., Suhas, Tyagi, I., Karri, R.R., Chaudhary, M., Mubarak, N.M., Chaudhary, S., Kumar, P., Singh, P., 2023. Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials a comprehensive review. Journal of Nanostructure in Chemistry, 13(1): 43-65.
  • Rubangakene, N.O., Elwardany, A., Fujii, M., Sekiguchi, H., Elkady, M., Shokry, H., 2023. Biosorption of Congo Red dye from aqueous solutions using pristine biochar and ZnO biochar from green pea peels. Chemical Engineering Research and Design, 189: 636-651.
  • Sahu, S., Pahi, S., Tripathy, S., Singh, S. K., Behera, A., Sahu, U.K., Patel, R.K., 2020. Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. Journal of Molecular Liquids, 315: 113743.
  • Sassi, W., Ghanmi, I., Oulego, P., Collado, S., Ammar, S., Díaz, M., 2023. Pomegranate peel-derived biochar as ecofriendly adsorbent of aniline-based dyes removal from wastewater. Clean Technologies and Environmental Policy, 1-17.
  • Scatchard, G., 1949. The attractions of proteins for small molecules and ions. Annals of the New York Academy of Sciences, 51(4): 660-672.
  • Temkin, M.J., Pyzhev, V., 1940. Recent modifications to Langmuir isotherms.
  • Ullah, F., Ji, G., Irfan, M., Gao, Y., Shafiq, F., Sun, Y., Ain, Q. U., Li, A., 2022. Adsorption performance and mechanism of cationic and anionic dyes by KOH activated biochar derived from medical waste pyrolysis. Environmental Pollution, 314: 120271.
  • Wang, L., Wang, A., 2008. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite. Journal of hazardous materials, 160(1): 173-180.
  • Wang, Y.Y., Lyu, H.H., Hu, Y.D., Liu, Y.X., He, L.L., Luo, F. C., Yang, S.M., 2022. Graphene–Biochar composite for effective congo red dye removal from water. Journal of Environmental Engineering, 148(7): 04022030.
  • Yan, S., Yu, W., Yang, T., Li, Q., Guo, J., 2022. The adsorption of corn stalk biochar for Pb and Cd: preparation, characterization, and batch adsorption study. Separations, 9(2): 22.
  • Yin, Y., Yang, S., Jia, Z., Zhang, H., Gao, Y., Zhang, X., Zhong, H., Zhou, Z., Zhang, X., Zhou, H., 2023. Magnetic biochar based on furfural residue as an excellent candidate for efficient adsorption of Tetracycline, Bisphenol A, Congo red, and Cr6+. Environmental Science and Pollution Research, 30(10): 26510-26522.
  • Zhang, L., Tu, L. Y., Liang, Y., Chen, Q., Li, Z. S., Li, C. H., Wang, Z. H., Li, W., 2018. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC advances, 8(74): 42280-42291.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Forestry Biomass and Bioproducts, Forestry Sciences (Other)
Journal Section Orijinal Araştırma Makalesi
Authors

Okan Bayram 0000-0002-1748-9354

Uğur Özkan 0000-0003-0147-9976

Halil Turgut Şahin 0000-0001-5633-6505

Publication Date December 28, 2023
Acceptance Date November 2, 2023
Published in Issue Year 2023

Cite

APA Bayram, O., Özkan, U., & Şahin, H. T. (2023). Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi. Turkish Journal of Forestry, 24(4), 403-410. https://doi.org/10.18182/tjf.1316871
AMA Bayram O, Özkan U, Şahin HT. Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi. Turkish Journal of Forestry. December 2023;24(4):403-410. doi:10.18182/tjf.1316871
Chicago Bayram, Okan, Uğur Özkan, and Halil Turgut Şahin. “Kızılçam kozalağından Elde Edilen biyokömürün Absorban Olarak kullanımı: Sulu çözeltiden Kongo kırmızısı Giderimi”. Turkish Journal of Forestry 24, no. 4 (December 2023): 403-10. https://doi.org/10.18182/tjf.1316871.
EndNote Bayram O, Özkan U, Şahin HT (December 1, 2023) Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi. Turkish Journal of Forestry 24 4 403–410.
IEEE O. Bayram, U. Özkan, and H. T. Şahin, “Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi”, Turkish Journal of Forestry, vol. 24, no. 4, pp. 403–410, 2023, doi: 10.18182/tjf.1316871.
ISNAD Bayram, Okan et al. “Kızılçam kozalağından Elde Edilen biyokömürün Absorban Olarak kullanımı: Sulu çözeltiden Kongo kırmızısı Giderimi”. Turkish Journal of Forestry 24/4 (December 2023), 403-410. https://doi.org/10.18182/tjf.1316871.
JAMA Bayram O, Özkan U, Şahin HT. Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi. Turkish Journal of Forestry. 2023;24:403–410.
MLA Bayram, Okan et al. “Kızılçam kozalağından Elde Edilen biyokömürün Absorban Olarak kullanımı: Sulu çözeltiden Kongo kırmızısı Giderimi”. Turkish Journal of Forestry, vol. 24, no. 4, 2023, pp. 403-10, doi:10.18182/tjf.1316871.
Vancouver Bayram O, Özkan U, Şahin HT. Kızılçam kozalağından elde edilen biyokömürün absorban olarak kullanımı: Sulu çözeltiden kongo kırmızısı giderimi. Turkish Journal of Forestry. 2023;24(4):403-10.